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Abstract — Workload consolidation, use of powerful 
processors and the advancement in Artificial Intelligence (AI) 
have enabled deployment of complex algorithms on high 
compute processors. Over time, the ability to derive effective 
algorithms using AI has increased dramatically paving their use 
in safety critical application. However, their adequacy from the 
perspective of safety certification remains controversial. In this 
paper we explain a methodology on how to use AI for safety 
critical applications using explainable AI (XAI) techniques. The 
approach is explained taking a use case of traffic light detection 
(TLD) as a part of active safety implementation targeting ASIL 
B. Recommendations from recent standards like SOTIF and UL 
4600 are incorporated to augment the safety case.  

Keywords — XAI, AI, DL, FuSa, ISO 26262, SOTIF, UL 4600. 

I. BACKGROUND. MOTIVATION AND OBJECTVE 

Dramatic success of machine learning and deep learning 
algorithms together with the advancement of processors has 
triggered an accelerated growth of complex autonomous 
systems incorporating AI models in diverse applications. 
These autonomous systems are developed with an objective to 
build intelligent agents that perceive, learn, decide, and act on 
their own. Most of the DL models are designed to make 
accurate predictions for a given static dataset. The models are 
black box by nature because they are created directly from 
static dataset which means that even humans who create the 
model might seldom understand how the variables are 
combined to obtain the target prediction. Therefore, their 
performance in real-life scenarios are not predictable and 
hence discouraged for use in safety critical applications [1].  

Algorithms like linear or logistic regression and decision 
trees are easy to understand on how the decisions are made 
with built-in support for feature visualization and its 
importance. Deep learning models like CNNs, YOLO, 
SSD_MobileNet, etc are not easily interpretable or 
explainable due to the depth in terms of the number of layers 
and their ability to automatically learn features based on the 
input dataset. Due to the nature in which they learn and 
perceive complex features, they are termed as black box 
models thus, making explainability difficult. Unless a model 
can be interpreted or explained, it becomes difficult to deploy 
them for safety critical applications [2] [3].  

The terms interpretability and explainability are often 
confused. In simple terms, interpretable models are those 
models where the cause and effect can be observed within the 
system. They are also referred to as white box models. On the 
other hand, explainable models are those where the internal 
working of a model can be explained in human terms. An 
explainable model can be designed to explain the working of 
the underlying DL model there by augmenting the trust in the 
DL model. Typically, classification problems using DL can be 
the right pick for explainability, whereas regression models 

and decision trees can be considered as interpretable models. 
Although the functional safety standards (FuSa) like ISO 
26262 do not discourage use of DL models, they expect 
suitable justification and the methodology followed to 
implement the model. SOTIF and UL 4600 are emerging 
standards where guidelines are being formulated for use of AI 
in safety critical applications. In this paper we cherry pick 
recommendations from the upcoming standards and apply it 
by taking a real-life use case. The implementation flow is 
explained considering a use case where a DL model is used 
for traffic light detection (TLD) and warning system as a part 
of active safety function. The target ASIL considered for this 
use case is ASIL B.  

Remaining part of this paper is organised into four sections: 

 Section II provides the requirements and expectations 
of ISO 26262 standards for model-based development.  

 Section III provides implementation details for the use 
case considered 

 Section IV provides the results and discussion 

 Section V summarises the findings and identifies the 
scope of future work.  

 

II. MODEL BASED DESIGN USING ISO 26262 

ISO 26262-part 6 Annexure B gives detailed requirements 
for using model-based design in safety critical application. 
The key requirements are captured in Table 1 
 
Table 1 - Key requirements from ISO 26262-6 Annexure B 

Requirement Proposed implementation 
Models shall be developed 
using formal or semi formal 
notations 

Model summary for the 
given AI model along with a 
textual description of the 
accuracies and the 
limitations of the model can 
be documented using semi-
formal notations 

Modelling guidelines shall 
be specified. Key features 
to be captured include 
comprehensibility, correct 
transformation, and 
execution of the model 

One way to achieve this 
requirement is by using XAI 
where the explanations can 
help in documenting the 
comprehensibility of the 
model apart from the 
accuracy and precision of 
the model. 

Software safety 
requirements 

Can be adopted SOTIF 
standards where the training 



 

 

datasets derived based on 
the HARA can be used as 
requirements [4].  

Development of the 
software architecture 

Software architecture shall 
consider list of system 
limitations and counter 
measures. For example, a 
computer vision system 
might perform poorly if 
sufficient illumination is not 
present. Using sensor fusion 
to provide a weighted 
probability of the target 
class could overcome this 
limitation.  

Software Unit testing as 
specified in section B.3.4 
[5] 

Since it is not easy to verify 
AI models at a unit level, the 
model can be verified using 
input images for various 
scenarios and XAI applied 
to obtain the explanations 
for the selected class. If the 
explanations are in line with 
what a human user would 
consider, then it can be 
marked as a PASS 

Verification static/dynamic 
as specified in section B.3.4 
[5] 

Verification of AI model 
can be done with unseen 
datasets which were never 
used in training or testing as 
a part of unit test. Typical 
dataset taken from real 
world scenarios can serve as 
a verification set. If the 
model accuracies are greater 
than 90% for the sample 
selected, then we could 
consider the model as safe to 
use under the conditions 
documented in the safety 
manual.  

Creation of a valid Safety 
case (adopted from UL 
4600 standards 

Design of a robust safety 
case which includes three 
elements viz, safety goal, an 
argument to satisfy the goal 
and evidence to verify the 
argument. UL 4600 aims at 
technology agnostic and 
goal-oriented safety case. 

  
In section III, the implementation of the above 

requirements will be presented considering a use case where a 
DL model is used for detecting traffic lights and provides a 
visual/audio indication to the driver, with a target of meeting 
ASIL B. 

III. MODELING OF TRAFFIC LIGHT DETECTION 

Traffic light detection is an important requirement in 
autonomous navigation. The video feed can be obtained from 
a dashcam which can be processed using a DL model. This 
model detects presence of a traffic light in the scene and 

identifies which of the three lights are illuminated. In this 
paper a benchmark model for traffic light detection using 
ssd_mobilenet_v2 [6]. The model is trained using 150 images 
composed of 50 each of red, yellow, and green traffic light. 
The model is verified using 33 images. The goal of this 
benchmark model is to show a methodology of augmenting 
safety and not to discuss about the training strategy or data set 
selected for this model.   

A. Safety goal and HARA analysis  

In this section, we provide the safety goals for TLD use 
case. HARA analysis is performed considering UL 4600 
standards where the safety case is goal oriented and 
technology agnostic. A detailed HARA analysis is performed 
to identify the risks and possible mitigation strategies. 
 
Table 2 - Safety goal and HARA analysis 

Hazard 
Description 

Targeted 
ASIL Safety Goal Verification 

Requirements 

TLD can 
fail to detect 
an 
illuminated 
traffic light. 

ASIL B The DL 
model shall 
be 
explainable 
using a 
human 
interpretable 
method.  

The accuracy 
of the DL 
model is 
verified. The 
model is 
explained 
using a diverse 
redundancy.  

TLD can 
incorrectly 
detect an 
illuminated 
traffic light 
causing a 
confusion 
for the 
driver. 

ASIL B TLD model 
shall provide 
an accuracy 
≥ 90% 

The accuracy 
of detecting a 
traffic light 
shall be greater 
than 90% 
along with the 
redundant 
model 
provideing  an 
accuracy ≥ 
70%. Note 
since the 
explainer 
represented 
using a 
mathematical 
model a lower 
accuracy. 

TLD can 
fail to detect 
an 
illuminated 
traffic light 
due to 
background 
illumination 

ASIL B TLD model 
shall be 
trained with 
different 
background 
illumination. 

Review of the 
dataset which 
contains all 
driving 
scenarios as 
specified in the 
SOTIF 
standards.  

 

Based on the HARA analysis, TLD  is trained based on the 
recommendations provided by SOTIF specification Annexure 
G [4]. The model is self-verified by looking at the training 
accuracies. As mentioned in [4], TLD model verification 
alone might be insufficient since it is difficult to ensure that 
the learning system has trained on the essential characteristics 
of the training data instead of coincidental correlations. The  



 

 

model is verified using an explainable AI approach which is 
referred to as TLD_Explainer. A weighted average of TLD 
and TLD_Explainer can be considered for arriving at the final 
prediction. It can be mathematically expressed as  

𝑦௧௧ = 𝑓(𝑇𝐿𝐷, 𝑇𝐿𝐷 − 𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑟)  − − − (1) 

Weights for TLD and TLD_Explainer can be determined 
based on the background illumination as the model might 
perform differently during the day or night. The model can be 
fused with ambient light sensor which helps to determine the 
histogram thresholds. 

 

IV. RESULTS AND DISCUSSION 

TLD model was implemented using SSD_MobileNet V2. 
Training data set consist of images obtained from different 
traffic intersections. The dataset is collected during different 
times of day as specified in Table F.1 in [4]. A distribution of 
50% day, 35% night and 15% dusk dataset were considered. 
The training dataset was annotated into four classes vis. 
{Class A = Red light illuminated, Class B = Yellow light 
illuminated, Class C = Green light illuminated, Class D = No 
light illuminated}. The model is trained with a mean average 
precision 92.3%.  

Since the model isn’t explainable, the inferences obtained 
from the model are passed to an explainer to verify the model 
accuracy. The process steps are captured in Figure 1. 
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Figure 1 - Process Flow 

A. Obtaining Inference explanations 

TLD_Explainer helps in providing a justification for the 
prediction results obtained from TLD and can be used as a 
diverse method of recalculating the output. Furthermore 
TLD_Explainer is a simple mathematical model and can be 
easily expressed as a mathematical function. The process 
flow for implementing the diverse redundancy is shown in 
Figure 2.  

 

The output of TLD as shown in Figure 3 is passed on to 
TLD_Explainer. The first step is to extract the ROI based on 
the bounding box information obtained from TLD. The ROI 
is converted from the RGB color space to HSV. This is shown 
in Figure 4. From the HSV image, saturation values are 
calculated, and a histogram is plotted to pick the filter mask 
that can be applied to extract out the significant region of 
interest as shown in Figure 5 and Figure 6 

Once the filter mask is applied based on the value and 
saturation, the HSV image is converted back into RGB 
values. The highest value obtained from the RGB values 
indicate the target class for the given traffic light color.  
 

 
 
 
 
 
 
 
 
 

Figure 3 - Original scene image and the output of TLD model 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4 - Extraction of bounding box and color space conversion 

 
 

Figure 5 - Histogram 

 
 
 
 
 
 
 
 

 

 Figure 2 - Process Flow TLD_Explainer 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 - Filter Mask 
 
The final verdict is calculated by applying a weighted 

average of the predictions obtained from TLD and the 
TLD_Explainer. Since TLD_Explainer can be represented as 
a mathematical equation, a higher weightage is given to 
TLD_Explainer. In this paper, the weightage given to TLD is 
0.75 and for TLD_Explainer is 1.25.  

B. Results obtained for green light detection 

The original image as show in Figure 3 was passed to TLD 
model and it identified three green traffic light with a 
detection probability of 92%, 93% and 90% respectively.  
The output of this model was passed to the TLD_Explainer 
which predicted the light intensity as green with a 75% 
probability. Hence the final verdict that can be considered for 
the safety function is  
 

 
(0.92 ∗  0.75 +  0.75 ∗  1.25)

2
 ∗ 100 = 81% 

 
Since the verdict is greater than 70%, we can consider that 

the classification to belong to Class C Green light.  
Based on the obtained confidence from both the models, the 
safety loop can be authorized to either take supervisory action 
or provide an indication to the driver. The decision by the 
safety loop can be defined as a function of the confidence 
levels obtained. For example, the safety loop can take a 
decision to slow down the vehicle in case the confidence from 
both the models is high and restrict itself to a warning 
indication otherwise.  

The concept presented can be implemented on any 
ASIL/SIL certified processors like Intel® x6000FE. This 
processor implements a software lock step which can be used 
for obtaining the desired safety metric as per the standards. A 
reference implementation can be found in [7]. 

V. CONCLUSION AND FUTURE WORK 

The above work explains a methodology to use DL/ML 
techniques for augmenting safety for automotive applications. 
We demonstrated how the requirements mentioned in SOTIF, 
UL 4600 and ISO 26262 can be integrated to ensure 
incorporation of complex algorithms in safety critical 
applications without compromising the safety goals.  

In future we propose to consider primary models, which 
have faster inferencing rates but poor explainability due to the 
underlying complexity of the model architecture. The 
outcome of these models can be passed to surrogate models 
which can be implemented using CNN and explained using 
existing XAI techniques like GradCAM [8] or LIME [9], 
thereby augmenting safety. This methodology can be applied 
for use cases like pedestrian detection, lane departure warning, 
obstacle detection, etc.  

REFERENCES 

[1] C. Rudin and J. Radin, “Why Are We Using Black Box Models in AI 

When We Don’t Need To? A Lesson From An Explainable AI 

Competition,” Harvard Data Sci. Rev., vol. 1, no. 2, 2019, doi: 

10.1162/99608f92.5a8a3a3d. 

[2] D. Gunning and D. Aha, “DARPA’s Explainable Artificial 

Intelligence (XAI) Program,” AI Mag., vol. 40, no. 2, pp. 44–58, 2019, 

doi: 10.1609/aimag.v40i2.2850. 

[3] Y. Lou, R. Caruana, and J. Gehrke, “Intelligible models for 

classification and regression,” 2012, doi: 10.1145/2339530.2339556. 

[4] ISO, ISO PAS 21448 - SOTIF standards, 1st ed. Japan, 2017. 

[5] ISO, ISO 26262 part 6, 2nd ed. 2016. 

[6] Y. Takahashi, “Train a traffic light classifier using Tensorflow Object 

Detection API.” https://github.com/yuki678/driving-object-

detection/blob/master/README.md. 

[7] T. Wilkening, J. O. Krah, M. Salardi, and F. Heinzelmann, “Safety-

Related High-Performance Motion Control based on a Quad-Core 

SoC,” in PCIM Europe digital days 2021; International Exhibition 

and Conference for Power Electronics, Intelligent Motion, Renewable 

Energy and Energy Management, 2021, pp. 1–8. 

[8] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and 

D. Batra, “Grad-CAM: Visual Explanations from Deep Networks via 

Gradient-Based Localization,” Int. J. Comput. Vis., vol. 128, no. 2, pp. 

336–359, Oct. 2019, doi: 10.1007/s11263-019-01228-7. 

[9] M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why should i trust you?’ 

Explaining the predictions of any classifier,” 2016, doi: 

10.1145/2939672.2939778. 

 

 


