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Abstract—This research investigates the use of large language
models and machine learning techniques to identify the primary
triggers for air traffic flow management regulations. The study
focuses on textual remarks made by flow managers who imple-
mented these regulations. The investigation takes a concrete form
by using weather-related regulations with the referenced location
being an aerodrome. Specifically, a large language model is asked
to assign each of these regulations to a specific group, or cluster,
based on the remark made by the flow manager, where each cluster
represents a particular kind of weather disruption. These clusters
then act as labels for the dataset, and each regulation is combined
with the weather conditions observed during its implementation.
This labelled dataset is then used to train a tree-based classifier
using supervised learning. This two-step methodology enables the
identification of the most likely precise trigger for each regulation,
such as low visibility, snow, strong winds, etc. based solely on
observed weather conditions. The clusters identified by the large
language model are also compared with those discovered in previous
research using self-learning and supervised clustering. Nevertheless,
the practical applications of this method go far beyond the
classification of weather-related regulations. This approach could
be used in post-operational analysis to identify the primary triggers
of any type of regulation - not just weather-related. Furthermore,
it enables the analysis and classification of other types of text, such
as notices to airmen, further broadening its potential use cases.
This paper showcases the versatility and broad application of large
language models in the field of air transportation.
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I. INTRODUCTION

Large language models (LLMs), such as GPT-3, BERT and
T5, have transformed the fields of natural language processing
(NLP) and artificial intelligence (AI) since their inception in
the mid-2010s. Trained on large amounts of text data, these
models excel at producing text that is contextually relevant and
grammatically correct, just as humans do.

Their capabilities include answering questions, writing essays,
summarising and categorising text, translating languages, and
even producing creative content such as poetry and code. The
ability of LLMs to understand and create text represents a

significant advance over their predecessors, transforming the
ability to understand and generate human language.

As a matter of fact, the aviation industry generates a large
amount of textual data, such as notices to airmen (NOTAMs),
customer feedback, transcriptions of air traffic control (ATC)
communications, and incident reports. LLMs can be used to
analyse this data, providing comprehensive insights that can im-
prove operational efficiency, safety, and passenger experiences.

This paper focuses on a particular kind of textual data: com-
ments made by flow managers during the implementation of air
traffic flow management (ATFM) regulations. For instance, in a
recent regulation applied at Frankfurt Airport, the flow manager
that activated the measure included the following remark: RWY
North1 temporary blocked. The aim of this paper is to examine
these remarks and classify them into clusters that encapsulate
the most prevalent reasons for ATFM regulations, making use
of the capabilities of LLMs. Specifically, we concentrate on
regulations caused by weather and which reference location was
an aerodrome. This focus is not arbitrary, but rather to facilitate
a comparison with the results of [1], who used classical machine
learning methods to identify the reason behind observed airborne
holdings. Such a comparison allows for the evaluation of LLMs’
effectiveness in a practical task against a stablished baseline.

In [1], observed airborne holdings were categorised based on
their underlying high-level causes, namely weather conditions or
other factors, utilising a self-learning approach. The initial labels
used in this process were derived from the reasons for the ATFM
regulations in effect at the airport at the time of the holding (if
any). Subsequently, the specific low-level causes of the holdings
likely caused by weather, such as low visibility, low ceiling, or
strong winds were identified by using supervised clustering [2].

The case study in this paper aims to achieve a similar result,
but with a twist: using LLMs instead of traditional machine
learning. The dataset used in the experiment contains thousands
of weather-related ATFM regulations. After using LLMs to
analyse flow managers’ comments on these regulations, we split
this dataset into different clusters, each representing a specific
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Figure 1. Methodology followed to cluster and model weather-related ATFM regulations due to weather from textual comments and weather observations.

type of weather disruption. We then match each regulation in the
dataset to the weather conditions at the time it was implemented,
using the clusters to label the dataset.

This enriched dataset, which includes a set of numerical and
categorical features from weather observations, as well as a label
corresponding to the cluster discovered in the previous step, is
then used to train a tree-based classifier using supervised learn-
ing. Consequently, the resulting classifier is able to determine
the most likely cause of each regulation based solely on the
observed weather conditions. As a side effect, this classifier
can also determine the cause of any other event (such as a
holding or a flight diversion) simply by considering the weather
conditions at the time of observation. This capability allows
comparison with the results of previous work. Figure 1 illustrates
the methodology used in this paper. Sections III and IV will
provide more information on the two main steps, respectively.

It is critical to note that the primary goal of this paper
is not solely focused on the quantitative results it generates.
Instead, the primary focus is on explaining the methodology
used and contrasting it with established approaches, such as [1].
The paper focuses on outlining the step-by-step process, the
rationale behind it, and how it compares to existing methods.
This emphasis highlights the paper’s contribution to advancing
methodologies in the field of LLMs applied to air transportation
textual data, rather than simply presenting experimental results.

II. LITERATURE REVIEW

This section provides a brief overview of embeddings and
their relevance in natural language processing, followed by a
discussion on the application of LLMs in air transportation.

A. Embbedings and large language models for classifying and
clustering text

Recent advances in text classification and clustering have
made innovative use of LLMs and deep learning techniques. For
example, the CLUSTERLLM approach refines embedders based
on LLM feedback, improving text clustering performance [3].
Similarly, another framework uses LLMs to cluster news streams
into key events, and then uses temporal analysis and event
summarising to improve cluster coherence and significance [4].

The authors of [5] proposed a semi-supervised text clustering
approach that incorporates LLMs at various stages, reducing the
need for expert feedback while retaining high cluster quality.
The framework proposed by [6], on the other hand, combines
unsupervised clustering with contrastive learning, simplifying
the process and effectively managing high-dimensional data
overlap for more effectively clustering of short texts.

On the text classification front, the VGCN-BERT proposed
by [7], which combines the local contextual capabilities of BERT
with the global vocabulary insights from Graph Convolutional
Networks (GCN), demonstrated excellent performance across
a variety of datasets. In this context, the comparative study
by [8] revealed performance gaps between classical and con-
textual word embeddings, with CNNs generally outperforming
BiLSTM encoders and BERT outperforming ELMo, especially
for longer texts. Another comparison shows the superiority of
BERT over traditional machine learning methods in NLP tasks
across different languages, highlighting the flexibility of this
well-known model and the importance of transfer learning [9].

The authors of [10] performed a comprehensive review of
text classification algorithms and assessed the effectiveness of
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various feature extraction, dimensionality reduction and classifi-
cation techniques, providing insights into their applicability and
practical limitations. Additionally, advances in deep learning-
based text classification methods were thoroughly reviewed
by [11]. The authors evaluated the performance of over 150
models on tasks such as sentiment analysis and question an-
swering, and proposed future research directions to address the
major shortfalls.

In conclusion, the incorporation of LLMs into text clustering
and classification tasks represents a significant shift towards
more efficient and coherent methodologies. These advancements,
combined with deep learning techniques, set an entirely novel
benchmark for text analysis, demonstrating the field’s rapid
evolution and the potential for future innovation.

B. Large language models in air transportation

Recent research has focused on leveraging AI for text clas-
sification and clustering in aviation safety analysis, showcas-
ing significant advancements in this domain. For instance, the
ASRS-CMFS model, which is built on Transformers (a specific
neural network architecture), demonstrates promise in accurately
classifying any kind of incident report related to aviation [12].

In the same application, the integration of LLMs like ChatGPT
into aviation safety analysis represents a significant step towards
automating incident report summaries and identifying human
factors [13]. This integration encourages humans and AI to work
together to effectively streamline analysis processes.

More and more research emphasises the adaptation of LLMs,
particularly for aviation-related tasks, implying a tailored ap-
proach to improving text classification and clustering outcomes.
For instance, [14] emphasised the importance of domain-specific
adaptations by implementing sentence transformers in the avi-
ation domain. The proposed approach improved NLP task per-
formance by pre-training on specific data and fine-tuning.

Similarly, the authors of [15] delved into NLP-based method-
ologies focusing on aviation safety reports, shedding light on
the primary causes of weather-related delays and cancellations.
This underscores the relevance of LLMs in uncovering critical
insights from textual data for operational enhancements.

Last but not least, the introduction of Aviation-BERT, a model
tailored for aviation safety texts, demonstrates the ability of
specialised NLP models to improve the analysis of aviation
incidents and accidents. Pre-trained with data from prominent
aviation databases, this model outperforms its predecessors in
understanding the intricacies of aviation narratives, providing a
breakthrough tool for safety management [16].

In conclusion, recent research demonstrates the critical role
of LLMs in revolutionising text classification and clustering in
aviation texts (particularly in the safety domain), paving the way
for more effective and practical methodologies.

III. DATA AND CLUSTERING METHODOLOGY

This section describes the dataset and the first part of the
process shown in Fig. 1, which consists of using LLMs to cluster
ATFM regulations, specifically those related to weather, based
on the textual comments provided by flow managers.

A. Dataset description

The dataset comprises ATFM regulations for the 45 busiest
airports in Europe in 2022, as listed by Wikipedia, with data
recorded at 30-minute intervals. Each observation in the dataset,
which corresponds to a specific ATFM regulation during a
30-minute interval, is supplemented with weather information
from the nearest meteorological aerodrome report (METAR). A
specific set of weather attributes, suitable for machine learning
applications (e.g., wind speed, visibility), were extracted from
the raw METARs using the metafora1 tool. These attributes
will be further discussed in Section IV. The dataset covers the
period from January 1st, 2022 to June 1st, 2023.

Each observation in the dataset is annotated with a tag that
denotes the broad category of the corresponding regulation. The
tag determines whether the regulation was caused by weather
(W) or by other causes (O), such as ATC capacity or industrial
actions. Additionally, each observation may include textual com-
ments from the flow manager who activated the regulation. These
comments provide valuable context for each regulation, despite
their inconsistent writing style and use of abbreviations. In
Table I, a subset of these comments is showcased, emphasising
their variety and lack of uniformity in the format.

In total, the dataset contains 112,875 weather-related regula-
tions, of which 26,999 include textual comments.

TABLE I
EXAMPLES OF WEATHER REGULATION REMARKS

Textual Description
CBs NOTAM

single RWY OPS due to wind direction
LVP forecast

A/D CLOSED DUE TO STORM DAMAGES
Wind and Rain / after 1230 Aerodrome capacity: Single RWY

WIND DIRECTION
snow clearance NOTAM

Fog (LVP)/ at 10H00 Aerodrome Capacity
LOW VIS AS FROM 2000 AD CAPACITY

B. Clustering methodology

The clustering methodology consists of four meticulously
scheduled steps with the goal of extracting meaningful patterns
from the textual comments of thousands of weather-related
ATFM regulations with minimal human intervention.

1) Sentence embedding generation: using Sentence-
BERT [17], a tailored variant of the BERT architecture

1https://github.com/ramondalmau/metafora
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Figure 2. Cluster embedding representation using t-SNE algorithm.

optimised for the generation of semantically rich sentence
embeddings, we transformed the textual explanations into
a high-dimensional space (i.e., a large vector of numerical
values, here 756 dimensions). This step facilitates the
comparison of semantic similarities between explanations
in the high-dimensional space, thus setting the stage for
effective clustering. To display the embedding, the t-SNE
algorithm was used to map the representation into two
dimensions. The result is shown in figure 2. We observe a
consistent proximity for cumulonimbus and thunderstorm
clusters and for fog with low visibility clusters.

2) First clustering: we used the Birch clustering algo-
rithm [18] to group the sentence embeddings into initial
clusters. The Birch algorithm was chosen for its efficiency
in handling large datasets and its ability to produce a man-
ageable number of clusters without sacrificing granularity.
By setting the Birch threshold parameter to 0.8, we achieved
a balanced distribution of clusters, resulting in 23 groups.
At this point in the process, each cluster was assigned a
numerical identifier, but its meaning remained a mystery.

3) Cluster naming: to assign meaningful names to the clus-

ters, we used an automated process involving ChatGPT.
That is, ChatGPT was given a variety of examples from
each cluster and asked to select the most representative
name. This approach ensured that the name of each cluster
accurately reflected the common thematic elements of its
constituent regulations, thereby enhancing interpretability.
The clusters proposed by ChatGPT are shown in Table II.

4) Manual refinement: As a final step, we manually reviewed
the automatically generated clusters to ensure coherence
and relevance. This included merging overlapping clusters
and fine-tuning cluster definitions to better capture the
unique characteristics of weather-related disruptions. This
careful refinement resulted in the set of clusters shown in
Table III, which effectively encapsulate the various weather
conditions that impact airport operations.

TABLE II
CLUSTERS OBTAINED FROM WEATHER REGULATIONS USING AUTOMATIC

CLUSTERING WITH CHATGPT

Cluster name
Snow and Runway Conditions

Thunderstorms and Adverse Weather Conditions
Cumulonimbus and Thunderstorms Activity

Low Visibility and Ceiling Conditions
Fog and Related Conditions
Low Visibility Procedures

Wind
Cumulonimbus

Runway operations
Low Visibility Procedures

Thunderstorms
Aerodrome Closure

Cumulonimbus and Aerodrome Capacity
Stop Bar Unserviceable

Fog and Low Visibility Procedures
Freezing Fog and Fog

Other
ILS CAT II and CAT III
Snow and Freezing Rain

Crosswinds and High Demand
Clustered Cumulonimbus

Forecasted Cumulonimbus and Thunderstorms
Cloud Base

Forecast Hurricane

TABLE III
MANUALLY REFINED CLUSTERS OBTAINED FROM WEATHER REGULATIONS

Cluster Id Cluster description Samples #
1 Snow and runway conditions 4 450
2 Low visibility and ceiling conditions 7 317
3 Wind 4 008
4 Cumulonimbus and thunderstorms activity 4 888
5 Fog and related conditions 2 319
6 Thunderstorms and adverse weather conditions 1 524
7 Cumulonimbus 2 443
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TABLE IV
DATASET DESCRIPTION.

Features Label

Numerical Boolean

Name Mean Q1 Q2 Q3 Name Proportion of falses Class Occurrences

speed (m/s) 4.0 2.1 3.6 5.1 precipitation 0.87 Unlabelled 41620 (85%)
gust (m/s) 0.6 0.0 0.0 0.0 obscuration 0.94 Weather 3484 (7%)
visibility (m) 9242 9999 9999 9999 thunderstorms 0.98 Other 4051 (8%)
ceiling (m) 2252 1067 3048 3048 snow 0.99
cover (oktas) 3 0 2 6 clouds 0.92

IV. SUPERVISED LEARNING

This section describes the second part of the process shown
in Fig. 1, which consists of modelling the relationship between
the precise reason of ATFM regulations (e.g., visibility or strong
winds) and weather observations using supervised learning.

A. Supervised model for weather regulations

Our initial model, which is based on supervised learning, is
designed to classify ATFM regulations into the distinct weather-
related clusters found during the first step of the process (which
are shown in Table III) using weather attributes as well as the
name of the airport where the regulation was applied.

The weather attributes include numerical features like wind
speed, visibility, and ceiling, as well as boolean flags that
indicate the presence of specific events like precipitation, thun-
derstorms, and fog. Categorical features are dummy encoded,
whereas numerical features are standard normalised. Table IV
summarises the weather attributes used to train the model. It
should be noted that the same set of features were used in our
previous study [1].

The dataset was split with 80% of the observations for training
and 20% for testing. Before splitting, the dataset was arranged
in chronological order to prevent data leakage. Furthermore, the
training set was used for a comprehensive model and hyper-
parameter optimisation with 5-fold cross-validation. A variety of
classification models were tested, and LightGBM emerged as the
best in terms of area under the receiver operating characteristic
curve (AUC). The optimum model had an AUC of 0.947. It
included 93 trees, each with a maximum of 20 leaves, and a
learning rate of 0.35. The model’s performance on the test set
was then assessed using a confusion matrix, which demonstrated
its ability to accurately distinguish between different clusters.

The confusion matrix shown in Table V reveals interesting
patterns and challenges in predicting different weather clusters.
Notably, the model accurately predicts ‘Snow and Runway
Conditions’ and ‘Wind’ conditions, with success rates of 92.7%
and 85.9%, respectively. It also performs well for ‘Low Visibility
and Ceiling Conditions’ and ‘Cumulonimbus and Thunderstorms
Activity’, with success rates of 70.4% and 76%, respectively.

TABLE V
CONFUSION MATRIX FOR WEATHER CLUSTER PREDICTION

Pred 1 2 3 4 5 6 7 Total
True % % % % % % % #

1 92.7 1.0 1.4 1.0 1.6 1.7 0.6 874

2 1.7 70.4 1.6 1.7 15.6 1.3 7.8 1496

3 2.1 0.7 85.9 4.3 0.5 2.4 4.0 1026

4 1.4 1.9 5.5 56.9 2.0 18.1 14.1 817

5 1.3 18.0 0.4 1.5 76.0 1.3 1.5 471

6 2.3 0.6 7.0 23.8 0.6 61.0 4.7 341

7 1.0 8.4 4.7 18.7 1.4 10.7 54.9 486

Total # 885 1216 843 833 639 506 589 5511

However, certain clusters, such as ‘Fog and related conditions’
and ‘Cumulonimbus’ are more challenging to predict, with
success rates of 56.9% and 54.9%, respectively.

The analysis of misclassifications revealed two primary groups
where the model encountered difficulties. These groups are
defined by conditions with similar weather events, such as
‘Low Visibility and Ceiling Conditions’ and ‘Fog and Related
Conditions’ (group 1), and ‘Cumulonimbus and Thunderstorms
Activity’, ‘Thunderstorms and Adverse Weather Condition’, and
‘Cumulonimbus’ (group 2). To enhance the model’s predictive
performance, these closely related clusters were amalgamated
into larger clusters. This approach reduced the granularity of
the predictions while boosting overall accuracy. Furthermore,
to assess the model’s overall performance beyond just weather
information, an equal number of non-weather-related regulations
(e.g., caused by ATC capacity, industrial actions, etc.) were
grouped into cluster E, as depicted in Table VI.

B. Supervised model for weather and other regulations

Initially, we focused solely on weather-related clusters. How-
ever, we extended the scope of our supervised learning frame-
work to include both weather and non-weather regulations.

This all-encompassing strategy is intended to provide a com-
prehensive view and lay the groundwork for a more universal
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TABLE VI
FINAL REFINED CLUSTERS AFTER THE FIRST SUPERVISED LEARNING STEP

Cluster Id Cluster description
A Snow and runway conditions
B Low visibility, fog and ceiling Conditions
C Wind
D Cumulonimbus, thunderstorms and adverse weather
E Other regulations (not weather)

predictive model. Mirroring the approach taken with the weather-
specific model, several classifiers were assessed, with LightGBM
once again emerging as the superior choice. The optimal model,
identified after a hyper-parameters search, achieved an AUC of
0.982. It comprised 114 trees, each with a maximum of 260
leaves, and a selected learning rate of 0.1

The efficacy of this expanded model was assessed using a
confusion matrix, depicted in Table VII. The matrix demon-
strates the model’s proficiency in accurately categorising ATFM
rules into five distinct clusters: A (snow and runway conditions),
B (low visibility, fog and ceiling conditions), C (wind), D
(cumulonimbus, thunderstorms and adverse weather), and E
(other regulations). It is worth noting that clusters C and D
exhibit some overlap (8.0% and 5.6%), which is understandable
given that wind often accompanies thunderstorms.

TABLE VII
CONFUSION MATRIX FOR REFINED REGULATION CLUSTER PREDICTION

Pred A B C D E Total
True % % % % % #

A 92.1 2.1 1.0 2.4 2.4 874

B 1.0 90.3 1.2 5.6 1.9 1967

C 2.4 1.3 83.7 8.0 4.5 817

D 1.6 5.7 5.6 81.9 5.3 1853

E 1.3 2.8 2.6 5.5 87.8 5371

Total # 943 2061 961 2007 4910 10882

V. HOLDING PATTERN USE CASE AND COMPARATIVE
ANALYSIS

In this section, we utilise the dataset from our previous
research [1], which comprises holding patterns derived from
Automatic Dependent Surveillance-Broadcast (ADS-B) trajec-
tory data. This extraction was performed using the ‘traffic‘
library [19]. The dataset is structured in 30-minute intervals
of holding patterns, each enhanced with weather observations
from the nearest METAR. Additionally, it includes associated
fuel consumption calculations performed using OpenAP [20].

We applied to this dataset the final LightGBM supervised
classification model and we analyse the difference between the
clustering results of our previous research [1], which utilised

Shapley values for clustering. The comparison is visually rep-
resented in Fig. 3. The left side of the figure displays the
refined clusters as derived from the current LLM analysis, while
the right side illustrates the clusters identified in our previous
research. This graph employs a Sankey diagram to depict the
flow and transformation of clusters. The following conclusions
can be drawn from Fig. 3:

• Clusters initially representing low visibility and ceiling tran-
sition to clusters predominantly representing obscuration
and ceiling, indicating a coherent correlation.

• Clusters initially representing thunderstorms and adverse
weather conditions bifurcate into distinct clusters focused
on clouds, thunderstorms and obscuration.

• Snow and runway conditions are primarily clustered into
groups representing snow and obscuration, consistent with
expected weather impact scenarios.

• The wind cluster was subject to careful analysis due to
its bifurcation into clusters representing wind, ceiling and
clouds. Analysis of the sub-clusters reveals a mixture of low
ceiling and wind components, suggesting that the clusters
may encapsulate multiple causative factors.

The discussion of overlapping clusters is made in section VII.

VI. DISCUSSION

When analysing holding patterns and their associated weather
conditions, a significant observation is the overlap of clusters,
particularly those related to wind and ceiling conditions. Tra-
ditional clustering methods, which tend to classify observa-
tions into mutually exclusive groups, may not fully capture
the nuanced relationship between such weather variables. This
complexity points to the limitations of single-day models and
highlights the need for a more sophisticated modelling approach
that can account for the multifaceted nature of weather impacts
on aviation operations. To address this challenge, a novel mod-
elling framework could be developed in which multiple tags can
be assigned to holds and regulations to reflect the multi-factorial
influences on ATM decisions. This approach allows for a more
granular and accurate representation of the conditions that lead
to air traffic holds and regulations.

Secondly, the approach taken for the second refinement af-
ter our initial supervised classification provides an alternative
method worth considering. Specifically, we could have used the
predicted labels as a basis for further analysis, cross-referencing
them with the operators remarks to determine a more accurate
alignment with the alternative cluster. The complex nature of
weather phenomena and their interaction with air traffic manage-
ment practices introduce a level of uncertainty that our current
model may not fully capture. Moreover, our methodology’s focus
on specific types of disruptions, primarily weather-related, means
that it might not account for or predict the full spectrum of
factors influencing aircraft holding patterns, such as operational,
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Figure 3. Comparative visualisation of clusters obtain with our current methodology (left) and our previous methodology [1] using Shapley values (right)

or technical issues. Future research directions would benefit from
integrating more diverse data sources, expanding the scope to
include a broader range of influencing factors to enhance the
model’s comprehensiveness and applicability.

Finally, relying on LLMs such as ChatGPT to analyse air
traffic management texts and find primary clusters presents
both opportunities and challenges. While ChatGPT excels at
processing and categorising large datasets, it’s not an open
source model and has a cost if we want to fully automate this
part. This limitation could be mitigated by exploring alternative
LLMs such as Llama2 or Mistral. Comparing the performance
of ChatGPT with these models could help identify the most
effective approach for air traffic management applications, aim-
ing at a balance between accuracy, interpretability and resource
efficiency.

VII. CONCLUSIONS

In this study, we have developed and presented a novel
methodology that uses Large Language Models (LLMs) along-
side machine learning techniques to infer and identify weather-
related causes behind Air Traffic Flow Management (ATFM)
regulations using METAR data from major European airports.
This research intricately blends the study of ATFM regulation
data, reported weather conditions via METAR, and the strategic
use of supervised learning algorithms to separate ATFM regu-
lations into specific clusters that reflect different weather and
operational factors.

The incorporation of LLMs for text classification and clus-
tering has significantly improved the analysis process, enabling
automated and detailed interpretation of the data provided by
ATFM operators. The identification of weather-related disrup-
tions was significantly aided by this approach.

The predictive models formulated through this research have
shown a high degree of accuracy in categorising ATFM regula-
tions, and an extended model that includes both weather-related

and other types of regulations has shown encouraging results.
A comparative evaluation with previous studies underlines the
reliability and precision of our methodology, especially in the
detail and accuracy of the identified weather-related clusters,
while suggesting the need for a model capable of multi-tag
classification.

Looking ahead, our future efforts will be directed towards
defining a multi-cluster model and investigating its applicability
to events beyond those caused by weather, thereby broadening
the scope and utility of our approach in the field of air traffic
management.
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