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Abstract. The need for lightweight cryptographic primitives is greater
than ever due to the rapid advancements in the Internet of Things (IoT)
and the increasing presence of resource-constrained devices. In response
to this, the NIST has standardized the ASCON lightweight authenticated
encryption with associated data (AEAD) and hash algorithm as a stan-
dard for lightweight cryptography (LWC). Besides protected IoT data
communications, IoT data analytics is crucial for operational efficiency,
data-driven innovation, improved decision-making, and predictive main-
tenance. We consider a real-world scenario of Cloud-IoT where an IoT
application is connected to a (potentially untrusted) cloud. In this paper,
we propose Priv-IoT, a privacy-preserving machine learning (PPML) sys-
tem, using it an IoT application owner can securely transport IoT data
to the cloud and enable secure machine learning (ML) on the IoT data.
Our secure IoT data transport protocol is based on a lightweight AEAD
scheme and a standard security protocol (e.g., TLS) to resist against var-
ious external and internal attacks. We enable secure ML analytics using
a trusted execution environment (e.g., Intel-SGX) in the bring-your-own-
encryption paradigm. We prototype and evaluate our proposed system
using a list of LWC algorithms and fundamental regression algorithms in
SGX, and present extensive experimental results on real-world datasets.

Keywords: IoT · Machine Learning · Trusted Execution Environment
· Lightweight Cryptography.

1 Introduction
With technological advancements such as IoT and smart grids, the demand for
resource-constrained devices like smart meters, smart cards, RFIDs, and low-
power wireless devices is increasing rapidly. Due to the constrained nature of
these devices, providing security and privacy is a significant concern and it is
not possible to use the conventional cryptography standards that are used for
high-speed powered processors like servers and desktops. The devices mentioned
use hardware or software implementation to perform the cryptography compu-
tations. RFIDs are embedded with FPGAs and ASICs and smart meters use
16-bit, 8-bit, or sometimes 4-bit microcontrollers. When designing a crypto-
graphic primitive, there is always a trade-off between resource and efficiency
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for a constant security level. In lightweight cryptography, it is much harder since
the researchers are limited in using resources and they have to meet a certain
security level at the same time. The resources for software include RAM, ROM,
and registers, while the resources for hardware implementation are gate equiv-
alents and gate area. Latency, power and energy consumption, and throughput
are the key metrics to evaluate the performance of these primitives. Over the
past more than a decade, several cryptographic primitives have been proposed
including block ciphers, stream ciphers, message authentication code, and hash
functions. In the case of block ciphers, DESL [29] has been proposed by reducing
the S-box rounds from eight to one round and, Present [10], was designed as
a dedicated algorithm. Moreover, Simon and Speck [5], RC5 [36], TEA [39] and
XTEA [32] are proposed for efficient performance on resource constrained devices.
Lightweight hash functions including PHOTON [22], Quark [1], SPONGNET [9]
and Lesamnta-LW [24] are developed that have smaller state size and lower en-
ergy consumption. Chaskey [31], TuLP [20], and LightMAC [30] are some of the
examples of lightweight MAC algorithms developed on hardware applications.
The growth in IoT and smart grid, has led to the initiation of many commu-
nications between many of previously unconnected nodes in the network and
thereby introducing new security and privacy challenges. The data from smaller
nodes are transmitted to the more powerful nodes to be processed, aggregated
or stored but data owners are sensitive about the privacy of their data. For in-
stance, there are many sensors in a smart home, these sensors collects the data
from different appliances and transmit it to the utility providers server for fur-
ther analysis. With accessing this data, adversaries can understand about the
pattern of the residences and extract important information. In the smart grid,
thousands of smart meters send the metering data to the data aggregator, or as
another example, hospitals send their patient health information to the third-
party cloud provider to be processed. The adversary can be an attacker far away
in another continent or an insider that is working in the utility provider com-
pany. The data must be protected against all types of misuse. A solid solution to
this challenge is using Trusted Execution Environments (TEEs). TEE uses the
enclaves as a protected area in the memory suitable for maintaining the sensitive
information, the data residing in this area is encrypted and is only decrypted
when it is being processed by CPU. By using this technology, confidentiality and
integrity of the private data is guaranteed and even the OS and system adminis-
trator do not have access to its data and code. Finally, if data is encrypted using
the mentioned lightweight ciphers in the resource-constrained devices, they need
to be decrypted using the same lightweight algorithm before being used in the
cloud or data aggregator. This shows that the resource-constrained devices are
not the only devices in which lightweight primitives are performed and assessing
their performance in the powerful processors is required and important equally.
Although TEE is a beneficial tool and many benchmarks performed on NIST
finalists, to the best of our knowledge no research has evaluated the performance
of those lightweight algorithms on Trusted Execution Environments.
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Our contributions. Motivated by the deployment of Cloud-IoT system in the
real-world and the need for secure IoT data processing, we propose Priv-IoT,
a privacy-preserving system for secure collection and processing of IoT in the
cloud. Our contributions in this paper are summarized as follows:

– Privacy-preserving ML system for Cloud-IoT: We present a privacy-
preserving machine learning system tailored for Cloud-IoT systems. The Priv-
IoT system has three main entities namely an IoT application, the owner of
the application and a cloud. We leverage well-analyzed/understood crypto-
graphic schemes and security protocols to design our secure system. Our
Priv-IoT system is built upon four fundamental building blocks namely a
lightweight AEAD scheme, a TEE realized by SGX, the TLS security pro-
tocol, and a key-exchange protocol for enclave. Our choice of cryptograhic
primitives and protocols for IoT devices is done so that it meets the lightweight
requirement. We prove the security of our proposed system against semi-
honest adversaries.

– Evaluating NIST LWC finalists in SGX. As an independent contri-
bution, we evaluate and benchmark the execution of the encryption and
decryption algorithms of ten (finalists) AEAD algorithms from the NIST
LWC competition. Our experimental shows that the overhead of running en-
cryption/decryption algorithms inside SGX, compared to the cleartext com-
putation, lies in the range of 1.06 and 2.23. To the best of our knowledge,
our work is the first to perform such analysis of lightweight ciphers.

– Experimental evaluation. To capture the real-world Cloud-IoT scenario,
we develop a testbed using a Raspberry Pi Pico (IoT device), Raspberry
Pi 4B (IoT gateway) and the Microsoft Azure cloud. We implement our
privacy-preserving ML system on IoT devices and the Azure cloud. We con-
sider linear and logistic regression algorithms and evaluate the performances
on 11 different real-world datasets from the UCI ML repository. We present
experimental results for different regression training.

2 Preliminaries
2.1 Security and Privacy in IoT
Security must be lightweight due to IoT’s resource limitations. It involves se-
curing devices across layers: the perception layer against attacks, the network
layer for secure routing, and the application layer with authentication and access
control. The fundamental security properties of IoT data and systems include
authentication, confidentiality, integrity, and availability. Moreover, privacy is
critical due to an autonomous data transmission of IoT devices. Even fragmented
data can reveal sensitive information when combined. Users should control their
data dissemination [12].

2.2 Lightweight Cryptography

Despite all available algorithms, the National Institute of Standards and Tech-
nology was planning to develop a family of algorithms that are more fast and
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lightweight, and still secure in resource-constrained devices. In 2018, the NIST
published a call for algorithms to describe the requirements, selection process,
and evaluation criteria [34]. After two rounds of the NIST standardization pro-
cess, the final rounds began by selecting ten algorithms namely, ASCON [16], Ele-
phant [8], GIFT-COFB [3], Grain- 128AEAD [23], ISAP [15], PHOTON-Beetle [4],
Romulus [25], SPARKLE [6], TinyJAMBU [40], and Xoodyak [14]. The final round
ended with the selection of the ASCON family as the NIST lightweight cryptog-
raphy standard in February 2023.

2.3 Trusted Execution Environments
A Trusted Execution Environment is a secure processing environment that iso-
lates sensitive operations, data, and computations from the normal rich execu-
tion environment (REE) where typical operating systems and applications run.
TEEs enhance security by ensuring confidentiality and integrity, allowing REE
applications to securely partition sensitive tasks into the TEE.

Software Guard Extension. Intel Software Guard Extension (SGX) is a
set of instructions added to some of Intel CPUs that ensures the confidentiality,
integrity of the code and data by creating a trusted execution environment called
an enclave. SGX reserves a memory region called Processor Reserved Memory
(PRM). CPU protection keeps the PRM safe from non-enclave memory accesses,
including kernel, hypervisor, and SMM accesses, and DMA accesses from pe-
ripherals. The PRM manages the Enclave Page Cache (EPC) with 4 KB pages
housing enclave code and data. Untrusted system software assigns EPC pages
to enclaves, tracked by the CPU in the Enclave Page Cache Metadata (EPCM).
Initially, the system software loads code and data into enclaves from unpro-
tected memory, establishing the initial enclave state. Once all pages are loaded,
the enclave is marked as initialized, allowing application code execution inside.
Enclave execution occurs in protected mode, with CPU-enforced isolation. Inter-
ruptions during enclave execution trigger an Asynchronous Enclave Exit (AEX)
to handle them securely. OS or hypervisor manages EPC page allocation, using
cryptographic protections for evictions to untrusted memory.

Attestation plays a vital role in SGX usage and comes in two forms: remote
attestation and local attestation. Remote attestation is employed when an exter-
nal client seeks to connect to the enclave. Before key exchange, the client must
verify the SGX enclave. This involves requesting the enclave to generate a report,
which is then passed to a platform service to produce a credential known as a
quote, reflecting the enclave and platform state. The client receives the quote
and employs the Intel Attestation Service to verify the enclave, enabling trust
based on the IAS response for key exchange. On the other hand, local attestation
is used when two enclaves within a platform wish to communicate. Each enclave
sends a report to the other enclave, allowing both sides to verify each other using
this report and a symmetric key (GETKEY).

2.4 Transport Layer Security

Transport Layer Security (TLS) is a cryptographic protocol ensuring secure com-
munication over networks, most notably securing HTTPS. It provides privacy,
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integrity, and authenticity using techniques like certificates. TLS evolved from
SSL and is currently at version 1.3 (defined in 2018). Operating at the presen-
tation layer, it has two main components:
– TLS Handshake: Establishes a secure communication channel by exchang-

ing messages between a client and server. The process involves agreeing on
cryptographic parameters, authenticating identities, and generating session
keys. In TLS 1.3, the handshake includes a client hello message, a server
hello message, and key exchange to finalize secure communication.

– TLS Record Protocol: Secures data transmission after the handshake by
ensuring confidentiality, integrity, and authenticity. It segments, compresses
(optional), authenticates, and encrypts outgoing data, while performing the
reverse on incoming data. Encrypted data is then passed to the TCP layer
for transport.

3 Related Work
Lightweight cryptography. While we could not find any studies to evaluate
the NIST ten finalists performance on trusted execution environments, there are
several benchmarks available for software and hardware implementations. These
implementations evaluate the performance of NIST finalists on FPGAs, micro-
controllers and desktops and servers bringing a wide range of insights about
their efficiency on different devices from resource-constrained devices in the
edge to powerful servers on the cloud. The NIST team compared AEAD fi-
nalists to AES-GCM and SHA-256 on 8-bit and 32-bit microcontrollers, with
ASCON, TinyJAMBU, and GIFT-COFB performing best [33]. Weatherley [38]
optimized finalists on AVR, ESP32, and Cortex-M3, with ASCON, GIFT-COFB,
SPARKLE, and Xoodyak outperforming ChaChaPoly on AEAD benchmarks.
SPARKLE was fastest overall. eBACS [7] showed ASCON and Xoodyak out-
performing AES-GCM without AES-NI and on ARM Cortex-A7. Both were
competitive with SHA-256. Renner et al. [35] benchmarked AEAD finalists on
five microcontrollers, with ASCON leading in speed, code size, and RAM usage.

Privacy-preserving ML using TEE/SGX. The IoT has various applications
of regression analysis. In general, privacy-preserving regression analysis received
considerable attention. There are various ways to realize a privacy-preserving re-
gression system such as homomorphic encryption (e.g., [11,19,27]), secret sharing
(e.g., [13,17,18] ), and garbled circuit (e.g., [2]). However, we focus on designing
private regression systems based on TEE. Several frameworks have been devel-
oped to perform secure computations using Intel SGX. PRIVADO [21] ensures
secure DNN inference in SGX by eliminating input-dependent access patterns,
reducing leakage while maintaining low performance overheads across various
models. SecureLR [26] proposes a hybrid cryptographic framework that com-
bines homomorphic encryption and Intel SGX to enable secure logistic regres-
sion on biomedical data in public clouds without compromising data security
or efficiency. VC3 [37] secures distributed MapReduce by isolating memory re-
gions using SGX, achieving minimal overhead while ensuring confidentiality and
integrity even if large components like the OS are compromised . EnclaveDB
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secures databases by placing sensitive data within SGX enclaves, ensuring confi-
dentiality, integrity, and freshness with low overhead. Lastly, SGX-PySpark [28]
integrates SGX with PySpark to secure distributed data analytics in cloud en-
vironments.

4 The Cloud-IoT System Model
In this section, we describe the Cloud-IoT system model, its adversarial model,
and present a privacy-preserving machine learning system for IoT ML analytics.

4.1 Our System and Trust Model
We consider a real-world Cloud-IoT system consisting of three key entities,
namely a set of IoT devices, a gateway, and a cloud server. The IoT devices
are connected to the cloud via a gateway and transmit IoT data to the cloud.
We assume that all the devices belong to a single owner who wishes to perform
various tasks on IoT data such as data collection, processing, ML learning com-
putations, and visualization. Figure 1 shows a high-level overview of the system.

Fig. 1: A Cloud-IoT system connecting an IoT application to the cloud

Problem statement. Suppose the IoT devices streams high-dimensional data
to the cloud. Let D = {(x, y)} be a combined dataset of the same type generated
by IoT devices, where (x, y) is a high-dimensional data point. Suppose the owner
wishes to train a regression model θ, i.e., θ ← Training(θ,D, f) where f is a linear
or logistic regression algorithm. We consider the problem of securely transmitting
data from the IoT devices to the cloud and privately performing training linear
or logistic regression models θ on D in the cloud. Our system is aimed to protect
IoT data privacy and integrity when in-transit, at-rest and in-use, and ensure
the fine-grain control that remains exclusively with its legitimate owner, while
still allowing them to access and benefit for various purposes such as operational
and automation.

Adversarial/Trust model. Our trust model is similar to the one in [37]. In
our system, we consider semi-honest adversaries where an adversary may com-
promise some IoT devices or the cloud applications, and observes the execution
of the protocol. The goal of the adversary is to learn any unintended information
about other honest IoT devices’ data or the trained model. We assume that the
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adversary can intercept the IoT data communications including record, replay,
and modify network data and can compromise the cloud software applications.
We also assume that the adversary is unable to physically open and tamper the
SGX-enabled processors located at the cloud. If such is possible, we claim no
IoT data and ML model privacy.

5 Our Solution for Private Cloud-IoT Data Analytics
Overview. To design a secure Cloud-IoT analytics system, we take a practical
approach and make use of well-understood cryptographic schemes and protocols,
namely a trusted execution environment (e.g., SGX), a security protocol (e.g.,
TLS) and a lightweight AEAD algorithm (e.g., ASCON). In our system, funda-
mentally there are two tasks: 1) securely transport data from an IoT application
to the cloud, and 2) privately perform an analytical algorithm in the cloud so
that the cloud cannot infer any private data at-rest and in-use. Our solution
takes the bring-your-own-encryption (BYOE) paradigm where the owner man-
ages the keys of IoT devices. To achieve the IoT data security and privacy, we
design a doubly-encryption mechanism by combining a lightweight AEAD with
the standard TLS-like security protocol to achieve the privacy against external
communication attacks and internal attacks in the cloud. We perform analytics
securely in a trusted execution environment to achieve IoT data privacy against
the cloud. We formalize our secure system in Definition 1. Figure 2 shows a
secure version of the system.

Definition 1. Our secure system consists of a set of four algorithms/sub-protocols
involving the IoT devices, the owner, the cloud server and the TEE:

– {KID}ID∈[n] ← KeySetup(1λ): On a security parameter λ, the owner runs this
algorithm to generate a set of keys {KID}ID∈[n] where the unique key KID is
for each IoT device with a unique ID and n is the number of IoT devices
in the system. The owner securely stores and distributes the keys to the IoT
devices.

– (c, tag, ID) ← SecureDataTransport(KID, (x, y), ID) : The secure data trans-
port protocol is run between an IoT device with identity ID and the cloud
server where the IoT device gives KID, (x, y) as inputs, and the cloud receives
(c, tag, ID) as output.

– (KID, ID) ← SecureKeyTransport(KID, ID) : The secure key transport protocol
is run between the owner with identity ID and the TEE where the owner gives
KID as inputs, and the TEE receives (KID, ID) as output.

– θ ← SecureAnalytics(D, {KID}, f): After receiving a training request from the
owner for an ML training algorithm f and the dataset D, the TEE runs this
algorithm to train a model θ ← Training(θ,D, f) within the trusted envi-
ronment and return either an encrypted model or the cleartext model to the
request party.

5.1 Description of Components in Our Secure System

We now provide the details of the security algorithms in Definition 1.
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Fig. 2: Overview of Our Privacy-preserving ML System for Cloud-IoT

KeySetup. Suppose there are n IoT devices in the system and each device
has a unique identity (ID). Based on a security parameter λ (e.g., λ = 128-bit
security), the owner randomly samples a set of symmetric-keys {KID}ID∈[n], one
key KID is for each IoT device with identity ID. These symmetric-keys will be
used in an AEAD algorithm to encrypt and authenticate IoT data.

SecureDataTransport. When an IoT device with identity ID wishes to send a
high-dimensional data (x, y), it first encrypts the data using a lightweight AEAD
algorithm to produce (c, tag) ← AEAD.Enc(KID, (x, y)) where c is a ciphertext
and tag is an authentication tag. The encrypted data (c, tag) is put in the pay-
load of the corresponding application layer protocol. Our rationale for choosing
a (symmetric-key) lightweight AEAD is to have a reduced computational com-
plexity of IoT devices and less ciphertext expansion which will grately save space
in the cloud.

Next, the gateway/IoT device establishes a TLS connection with the cloud
and transmit the message M := (c, tag, ID) over TLS as (C, T ) ← TLS.Enc(M)
where the TLS connection establishment includes the handshake, key establish-
ment and record protocols. We omit these details. When the cloud receives (C, T )
from the TLS, it removes the TLS layer encryption as M ← TLS.Dec(C, T ) to
obtain (c, t, ID) and stored in the database in a structured way.

SecureKeyTransport. As the owner manages the keys for the IoT devices,
to decrypt an AEAD ciphertext inside the TEE/enclave, the corresponding
symmetric-key has to be transported to the TEE using a security protocol
and the decryption algorithm is run inside the enclave. For this purpose, the
owner and the enclave first execute a key-exchange protocol, called enclave key-
exchange protocol (EKEP), to establish a shared secret-key, which the owner
uses to securely transport the key of the AEAD algorithm for a particular IoT
device or an AEAD encrypted datasets.

SecureAnalytics. Before performing an analytics inside TEE, a necessary first
step is to execute the SecureKeyTransport protocol to securely transport the
key(s) to the enclave. As IoT data are stored in the encrypted form, data is
transmitted to a remote attested enclave, which has received AEAD key(s) via
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the remote attestation. To start an analytical computation (e.g., training) within
the enclave, encrypted data is decrypted first using the received key(s) and then
the decrypted data/plaintext is fed into the analytics algorithms such as regres-
sion training. That is, θ ← Training(θ,D, f) is run in the enclave. Finally, the
resulting output/model θ is encrypted or sent to the cloud without any knowl-
edge of the fine-grained data.

Memory optimized training. Although our proposed system works for any
ML training, we restrict ourselves to linear and logistic regression in this work.
We propose two implementations of training algorithms that can be implemented
as follows: 1) full enclave memory implementation – loading the entire dataset
D in the enclave memory; and 2) low enclave memory implementation – loading
a subset of D as needed by the training. For instance, to train a model for a
linear regression model, one can build the model by solving a system of equa-
tions which will need the entire matrix associated with the dataset to be loaded
in the enclave. On the other hand, training a linear model using a stochastic
gradient descent (SGD) or mini-batch gradient descent requires a single or sub-
set of data point loaded in the enclave by exploiting the tradeoff between the
(secondary) storage and computation (performing the decryption of data stored
in the secondary storage).

5.2 Security Discussion

In this section, we present a (semi-)formal security proof of our system. Recall
that our system is built upon four fundamental secure building blocks namely a
lightweight AEAD scheme, the TLS protocol, an enclave key-exchange protocol
(EKEP) and a TEE realized by SGX.

Theorem 1. Assume that the lightweight AEAD scheme is secure under indis-
tinguishability under chosen plaintext attack (IND-CPA), the TLS and EKPE
protocols are secure, and the TEE realized by SGX is trusted. Our proposed sys-
tem is secure against semi-honest adversaries.

Proof (Sketch). In our system, there are two types of adversaries. We use Ai to
denote internal adversaries and Bi to denote external adversaries. Both adver-
saries may collude that can be considered as a single adversary. As the AEAD
scheme is IND-CPA secure, the advantage of a (polynomial-time) adversary A0,
denoted by AdvIND-CPA

A0
, is negligible. We consider an IND-CPA adversary B0

for TLS where the adversary B0’s goal is to distinguish encrypted messages
transmitted over a TLS-secured communication. The security of TLS assures
that the advantage of B0, denoted by AdvTLSB0

, is negligible. The security of the
EKEP, denoted by B1, is defined using the indistinguishability of the shared
secrey-key, where there is no polynomial-time adversary that can distinguish the
shared-key/session key from a random key. The security of the EKEP assures
that the advantage of B1, denoted by AdvEKEPB1

, is negligible. The SGX security
guarantees that no adversary A1 can distinguish between real and simulated
enclave data (analytical algorithm’s code and metering data) and can break the
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integrity or tampering the computation with a valid output of f . The advan-
tage of A1, denoted by AdvTEEA1

is negligible. We argue that the advantage of
a (semi-honest) adversary A (internal or external) to break IoT data and an-
alytical computation confidentiality with respect to IND-CPA in all phases is
bounded by AdvIND-CPA

A ≤ 2 · AdvIND-CPA
A0

+ AdvTLSB0
+ AdvEKEPB1

+ AdvTEEA1
. We de-

fine the real system’s security with the IND-CPA game where the adversary A
interacts with the real system and aims to distinguish an IoT data at any phase.
The initial game is the standard IND-CPA game between the adversary A and
the challenger. The advantage of A is AdvIND-CPA

A .

– Reduction to the AEAD security: In this game G1, we replace an original
ciphertext (c, tag)← AEAD.Enc(KID, (x, y)) with an encryption of a random
plaintext (rx, ry), i.e., (rc, rtag) ← AEAD.Enc(KID, (rx, ry)). Since AEAD is
IND-CPA secure, the ciphertexts c and rc are indistinguishable. A’s advan-
tage in distinguishing the original game and this game is negligible. The
difference between the advantages is |AdvIND-CPA

A − AdvG1

A | ≤ AdvIND-CPA
A0

.
– Reduction to the TLS security: In this game G2, we replace actual TLS en-

cryption with a TLS encryption of a random value M ′ := (rc, rtag, rID), i.e.,
(C ′, T ′) ← TLS.Enc(M ′) By the security of TLS, A’s advantage in distin-
guishing between G1 and G2 is negligible, and we have |AdvG1

A − AdvG2

A | ≤
AdvTLSB0

.
– Reduction to the EKEP security: In this game G3, we simulate the EKEP

protocol and obtain a shared-key rK and then use the shared-key rK in
the AEAD to encrypt KID, i.e., AEAD.Enc(rK ,KID). The security of EKEP
and AEAD assures that AEAD.Enc(rK ,KID) and AEAD.Enc(Ks,KID) are
indistinguishable and the adversary’s advantage is negligible. So, we have
|AdvG2

A − AdvG3

A | ≤ AdvEKEPB1
+ AdvIND-CPA

A0
.

– Reduction to the TEE security: In this game G4, we replace the TEE with
a simulated enclave that guarantees confidentiality and integrity of the data
and computation. This game is indistinguishable from the previous one due
to the security of the TEE, and A’s advantage is negligible. Therefore, we
have |AdvG4

A − AdvG4

A | ≤ AdvTEEA1
.

Combining all reductions, we can conclude the claimed advantage bound of the
adversary A, which is negligible. Hence, the overall system’s IoT data privacy is
preserved. We emphasize that the integrity against the semi-honest adversary is
assured. Due to the space limit, we skip the security arguments.
6 Experimental Evaluation
In this section, we evaluate our system when instantiate by lightweight AEAD
schemes from the NIST LWC competition and the TEE by Intel-SGX. We
present the benchmarking results on lightweight AEAD schemes in SGX, fol-
lowed by training linear and logistic regression models in SGX.

6.1 Setup

Testbed setup. We implement our Cloud-IoT data analytics framework, en-
suring privacy and security of users’ sensitive data, controlled by a legitimate
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data owner. We simulate our system model, shown in Figure 2, an IoT device
that is a Raspberry Pi Pico and a gateway using Raspberry Pi 4B. We use
a Microsoft Azure virtual machine with an Intel Xeon (Ice Lake) processor,
8 GB of RAM, and 4 GB of memory EPC. The Raspberry Pico is a resource-
constrained device with an ARM Cortex-M0+ processor, while the Raspberry Pi
4B, equipped with a 64-bit quad-core ARM Cortex-A7 processor, functions as
a more powerful gateway. The Raspberry Pi 4B is connected to both the Mi-
crosoft Azure cloud and the Raspberry Pico. We program the Pico device so
that data is set at a regular time interval and transmitted via the gateway to
the Microsoft Azure cloud. Figure 3 shows a snapshot of our Cloud-IoT system
implementation in our lab environment.

We prototype our system in C/C++. We realize a secure channel between the
Raspberry Pi 4B and the cloud using the OpenSSL library, while the Raspberry
Pi Pico uses mbedTLS, a lighter version of TLS, to connect to the Raspberry Pi
4B. Before performing the TLS, we use the NIST lightweight AEAD to encrypt
the IoT data in the application layer where we put the AEAD ciphertext and
tag in the payload. The second layer of security is enable by the standard TLS
protocol before it is transmitted to the Azure cloud using the TCP/IP protocol.

Fig. 3: An Overview of Our
Testbed Setup using the Azure
cloud, Raspberry Pi Pico and
Raspberry Pi 4B Devices

6.2 Results on Lightweight Ciphers in SGX

AEAD implementation details in SGX. We use a lightweight AEAD as
a symmetric-key encryption and integrity protection algorithm as it is suitable
for the IoT devices. We instantiate the AEAD algorithm by ten finalists, men-
tioned in Section 2.2, from the NIST LWC competition. We use the source code
implementations of these ciphers from the NIST LWC competition website [34].

We evaluate the performance of each AEAD encryption/decryption inside the
SGX by counting the number of clock cycles. We also obtain the execution time
outside of SGX to compare the overhead introduced by the security operations of
SGX. In our experiment, we use 128-bit plaintext data and an empty associated
data for both encryption and decryption operations.

In our experiment, encryption and decryption functions are performed five
times for each AEAD scheme, and the average clock cycles are computed for
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both inside and outside the enclave. To implement an SGX version of each
AEAD scheme, we create an E-call that triggers the encryption/decryption
function and add this E-call to the Enclave.edl file. The AEAD scheme code
and headers are included in the trusted part of the program, and the headers
are added in the Enclave.cpp file. The corresponding function is run inside the
E-call function in Enclave.cpp. To compare performance with the untrusted
version, we measure the E-call clock cycles for all algorithms five times and
compute the average time similarly.

Benchmark results. Table 1 shows the number of clock cycles for the encryp-
tion operation for both trusted and untrusted execution of ten NIST finalists.
Despite ASCON being in the NIST LWC standard and demonstrating a robust
performance, TinyJambu exhibits a better performance, achieving the shortest
encryption and decryption times in both environments. In contrast, Grain128 and
Photon-Beetle exhibit the longest processing time, particularly in SGX. Table 1
also shows the overhead introduced by the SGX operations for the encryption
of each AEAD algorithm. The cipher Romulus has the highest overhead that is
2.23×, and ISAP has the lowest overhead which is 1.06×.
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Fig. 4: Encryption Time in SGX and App
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Fig. 5: Decryption Time in SGX and App

Table 1: Encryption Performance Comparison: SGX vs App
AEAD Cipher SGX Encryption App Encryption Overhead

(clock cycle) (clock cycle) (×)

Ascon 5,708 5,122 1.11
Elephant 331,888 212,682 1.56

GIFT-COFB 90,864 72,918 1.25
Grain128 2,972,530 1,373,994 2.16

ISAP 28,020 26,520 1.06
Photon-Beetle 1,764,714 1,554,082 1.14

Romulus 350,980 157,296 2.23
TinyJambu 6,486 5,544 1.17

Sparkle 12,748 5,656 2.25
Xoodyak 38,764 19,818 1.95
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6.3 Results on Regression Analysis in SGX

Training implementation details in SGX. We assume that the IoT devices
already streamed their data to the cloud. To protect data privacy at-rest against
the cloud provider, we store ML data to be trained in the encrypted form using
a lightweight AEAD algorithm and fetch within an enclave when the training
is performed. Before we perform training, we first decrypt the ciphertext inside
the enclave. Our implementation design of training linear and logistic models
in SGX are similar to the one in Section 6.2. For an SGX-memory optimized
implementation of training, we perform a stochastic gradient descent (SGD)-
based training where we do not require to load all training data inside the enclave
simultaneously.
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In our experiment, we implemented two types of regression models, namely
linear regression and logistic regression and train them on 11 different datasets,
mentioned in Section 6.1, in both the SGX environment and an untrusted envi-
ronment. We measured the training duration for all models 5 times.

Timing results. As the training time inside the SGX environment includes the
timings of the decryption of AEAD ciphertexts and the linear/logistic training
time. However, to better understand the only training time, we do not include the
time taken the decryption and report the training time. First section in Table 2
shows the execution time in millisecond (ms) to train a logistic regression model
on the Diabetes, Credit Approval, Breast Cancer, Credit Card Clients, and US
Census Income datasets. Compared to training in an untrusted environment,
the overhead of training the model in SGX varies from 32 milliseconds to 15,319
milliseconds. In Table 2, n and d denote the dimension and the size of a dataset.
The second section of Table 2 shows the execution time to train a linear regression
model on the Auto MPG, Boston Housing, Energy Efficiency, Wine Quality,
Parkinson’s Telemonitoring, and Bike Sharing datasets. Compared to training in
an untrusted environment, the overhead of training a linear model in SGX varies
from 15 milliseconds to 2,471 milliseconds. Larger datasets and those with more
features generally experience a greater increase in training time in the secure
environment.

7 Conclusion and Future Work
In this paper, we presented a privacy-preserving ML system for Cloud-IoT that
enables secure collection and training of ML models on fine-grained IoT data. By
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Table 2: Processing times and dataset details for regression models.
Model Type Name n d Untrusted (ms) SGX (ms) Overhead (×)

Logistic Regression

Diabetes 9 768 83 115 1.387
Credit Approval 14 652 96 145 1.515
Breast Cancer 32 454 162 247 1.523
Credit Card Clients 24 30,000 26,972 33,245 1.231
US Census Income 20 48,842 60,276 75,595 1.255

Linear Regression

Auto MPG 8 392 53 68 1.283
Boston Housing 14 506 104 147 1.415
Energy Efficiency 9 768 115 138 1.217
Wine Quality 12 1,599 323 425 1.316
Parkinson 22 5,875 2,489 3,392 1.362
Bike Sharing 12 17,379 9,777 12,248 1.251

employing a lightweight AEAD scheme for encryption and leveraging TEE for
in-use data protection, our system ensures data confidentiality and integrity. We
validated its practicality by encrypting IoT testbed data, securely transmitting
it to the cloud, and training logistic and linear regression models on real-world
datasets. As a future work, we have been continuing to implement application-
specific deep learning algorithms in our testbed.
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