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Abstract. The basic statements of the classical renewal theory are extended to the so-called 

Markov renewal equation. As a result of this extension the proof of the Markov renewal 
theorems for the scheme of series is given. 
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Introduction. 

The classical renewal theory deals with the asymptotic properties of the solutions to the 

renewal equation 

𝑓(𝑡) = 𝑔(𝑡) + ∫𝐺(𝑑𝑢)𝑓(𝑡 − 𝑢)

𝑡

0

, 

where 𝑓 is the function to be found, 𝑔 is given function, and 𝐺(𝑑𝑢) is a given probability 
distribution. The classical renewal theorems describe the asymptotic properties of convolutions 

𝑓(𝑡) = 𝑈 ∗ 𝑔(𝑡) = ∫𝑈(𝑑𝑢)𝑔(𝑡 − 𝑢)

𝑡

0

, 𝑎𝑠 𝑡 → ∞,  

where 𝑈 is the potential of a homogeneous critical kernel 𝐺(𝑑𝑢), which is an ordinary 
probability distribution.  

 The basic statements of the classical renewal theory can be extended to the so-called Markov 
renewal equation 

𝑓(𝑥, 𝑡) = 𝑔(𝑥, 𝑡) + ∫ ∫𝐺(𝑥, 𝑑𝑦 × 𝑑𝑢)

𝑡

0𝐸

𝑓(𝑦, 𝑡 − 𝑢), 𝑡 ≥ 0, 𝑥 ∈ 𝐸.                                   

where 𝐸 is a given phase space, 𝐺(𝑥, 𝑑𝑦 × 𝑑𝑢) is so-called semi-Markov kernel, 𝑔(𝑥, 𝑡) is a 
given function of 𝑥 ∈ 𝐸, and 𝑡 ≥ 0, and 𝑓(𝑥, 𝑡) is the function to be found. Its solution is the 
convolution 

𝑓(𝑥, 𝑡) = 𝑈 ∗ 𝑔(𝑥, 𝑡) = ∫ ∫𝑈(𝑥, 𝑑𝑦 × 𝑑𝑢)

𝑡

0𝐸

𝑔(𝑦, 𝑡 − 𝑢), 𝑡 ≥ 0, 𝑥 ∈ 𝐸.                                   

where 𝑈(𝑥, 𝑑𝑦 × 𝑑𝑢) is the potential of the semi-homogeneous kernel 𝐺(𝑥, 𝑑𝑦 × 𝑑𝑢). 
Generally, the renewal theory has wide range of applications in mathematical practice. 

Markov renewal theorems are an analytical tool for studying the limiting behavior of Markov 
and related processes, including semi-Markov and regenerative processes. 

Main results. 
Let (E, 𝔅) be a measurable (phase) space with the countably generated σ-algebra 𝔅.  We will 

assume, without loss of generality, that σ-algebra 𝔅 contains all one-point sets. Let us introduce 

a family of non-negative semi-homogeneous [3] kernels 𝐺𝜀(𝑥, 𝑑𝑦 × 𝑑𝑡) which depend on a 

small parameter ɛ > 0. 

Consider the Markov renewal equation 

              𝑓𝜀(𝑥, 𝑡) = 𝑔𝜀(𝑥, 𝑡) + ∫ ∫𝐺𝜀(𝑥, 𝑑𝑦 × 𝑑𝑢)

𝑡

0𝐸

𝑓𝜀(𝑦, 𝑡 − 𝑢), 𝑡 ≥ 0, 𝑥 ∈ 𝐸,                       (1) 



where 𝑔𝜀(𝑥, 𝑡) is a given nonnegative 𝔅 × 𝔅+-measurable function, 𝑓𝜀(𝑥, 𝑡) is the function to 

be found, 𝔅+ is the Borel σ-algebra on R+= [0,∞).  
Next, we impose a number of restrictions. Let's assume that the kernels 𝐺𝜀(𝑥, {𝑥} × 𝑑𝑡) for 

all 𝑥 ∈ 𝐸,   converge to a probabilistic right-continuous function 𝐹(𝑥, 𝑑𝑡) which measurably 

depends on all 𝑥 ∈ 𝐸, in that sense 

                                               

                         | ∫ 𝐺𝜀(𝑥, {𝑥} × 𝑑𝑡)𝜑(𝑡) − ∫ 𝐹(𝑥, 𝑑𝑡)𝜑(𝑡)

∞

0

∞

0

|
𝜀→0
→  0                                                (2) 

 

for an arbitrary continuous bounded function 𝜑(𝑡), 𝑡 ≥ 0. It follows that for all 𝑥 ∈ 𝐸  

  

                                                  lim
𝜀→0
𝐺𝜀( 𝑥, {𝑥}) = 1,                                                                        (3) 

 

where 𝐺𝜀(𝑥, {𝑥}) is the basis of the kernel 𝐺𝜀(𝑥, {𝑥} × 𝑑𝑡), that is 𝐺𝜀(𝑥, {𝑥}) = 𝐺𝜀(𝑥, {𝑥} ×
[0,∞)). 

         Denote the basis of the kernel 𝐺𝜀(𝑥, 𝑑𝑦 × 𝑑𝑡) by 𝐺𝜀(𝑥, 𝑑𝑦) and let 

 

                                                   lim
𝜀→0
𝐺𝜀( 𝑥, 𝐸\{𝑥}) = 0,                                                                    (4) 

 

Suppose there exists a function 𝑐(𝑥) and a kernel 𝐶(𝑥, 𝐴) on (E, 𝔅) such that for all 𝑥 ∈ 𝐸  

 

                                          lim
𝜀→0

1

𝜀
{1 − 𝐺𝜀(𝑥, {𝑥})} = 𝑐(𝑥),                                                                 (5) 

                                                   

                 sup
𝐴∈𝔅 

|
1

𝜀
𝐺𝜀(𝑥, 𝐴) − 𝐶(𝑥, 𝐴)|

𝜀→0
→  0, 𝑥 ∉ 𝐴.                                                         (6) 

 

For convenience, we put 𝐶(𝑥, {𝑥}) = 0, 𝑥 ∈ 𝐸. Note that based on (5) and (6) for all 𝑥 ∈ 𝐸  

 

                                                                     |𝑐(𝑥)| < ∞, 𝐶(𝑥, 𝐸) < ∞. 
Let's demand that  

                                                                sup
𝑥∈𝐸
|𝑐(𝑥)| < ∞, sup

𝑥∈𝐸
𝐶(𝑥, 𝐸) < ∞.                                           (7) 

We will assume that 

                                                     sup
𝜀>0

∫ 𝐺𝜀(𝑥, 𝐸 × 𝑑𝑡)𝑡

∞

𝑇
𝑇→∞
→   0, 𝑥 ∈ 𝐸.                                                 (8) 

 From this, in particular, it follows that 

∫ 𝐹(𝑥, 𝑑𝑡)𝑡 < ∞, 𝑥 ∈ 𝐸.

∞

0

 

Denote by 𝑚(𝑥) = ∫ 𝐹(𝑥, 𝑑𝑡)𝑡
∞

0
  and finally assume 

  

                                                                        inf
𝑥∈𝐸
𝑚(𝑥) > 0.                                                                        (9) 

W. Feller introduced the very important notion of direct Riemann integrability. 

Namely, a family of functions 𝑔𝜀(𝑥, 𝑡) on 𝐸 × 𝑅+, that depend on a small parameter 𝜀 > 0 , 
is called directly Riemann-integrable if the series  

                                                               ∑ sup
𝑘≤𝑡≤𝑘+1

𝑔𝜀(𝑥, 𝑡)                                                                     (10)

∞

𝑘=0

 

 



                           sup
𝜀>0

𝛿∑{ sup
𝑘𝛿≤𝑡≤𝑘𝛿+𝛿

𝑔𝜀(𝑥, 𝑡) − inf
𝑘𝛿≤𝑡≤𝑘𝛿+𝛿

𝑔𝜀(𝑥, 𝑡)}
𝛿→0
→  0.

∞

𝑘=0

                             (11) 

 

Under these conditions, the improper integral 

∫ 𝑔𝜀(𝑥, 𝑡)𝑑𝑡

∞

0

 

is the limit of the integral sums constructed for a direct partition (hence the name) of the 

semi-axis [0,∞) uniformly on 𝜀 > 0 for all 𝑥 ∈ 𝐸, that is 

 

sup
𝜀>0

|∫ 𝑔𝜀(𝑥, 𝑡)𝑑𝑡 − 𝛿

∞

0

∑𝑔𝜀(𝑥, 𝑡𝑘)

∞

𝑘=0

|
𝛿→0
→  0, 

 

where 𝑡𝑘 ∈ [𝑘𝛿, 𝑘𝛿 + 𝛿], in contrast to the improper Riemann integral as limit of integrals over 

finite intervals. 

That is why such a function 𝑔𝜀(𝑥, 𝑡) is called directly Riemann-integrable. 

Let the distribution function 𝐹(𝑥, 𝑑𝑡)be non-lattice for all 𝑥 ∈ 𝐸  and there be a limit  

                                     lim
𝜀→0
∫ 𝑔𝜀(𝑥, 𝑡)𝑑𝑡 = ∫ 𝑔(𝑥, 𝑡)𝑑𝑡

∞

0

= 𝑑(𝑥),   𝑥 ∈ 𝐸.                    

∞

0

                  (12) 

Each kernel 𝐾(𝑥, 𝐴) naturally generates a linear operator 𝐾 that operates in Banach space 𝑩  

bounded 𝔅-measurable function 𝑓  with a norm ‖𝑓‖ = sup𝑥∈𝐸|𝑓(𝑥)| by a formula 

𝐾𝑓(𝑥) = ∫ 𝐾(𝑥, 𝑑𝑦)𝑓(𝑦).

𝐸

 

Denote by 𝑀 and 𝐷 the operators corresponding to the kernels 𝑚(𝑥) and 

𝐷(𝑥, 𝐴) = −𝑐(𝑥)𝐼(𝑥, 𝐴) + 𝐶(𝑥, 𝐴). 
Thus we have proved the following theorem. 

Theorem.  Let in conditions (2), (5), (6), (7), (8), (9),(10),(11),(12) for all 𝑥 ∈ 𝐸 the 

probability distribution 𝐹(𝑥, 𝑡)be non-lattice, then 

 

lim
𝜀→0
𝑡→∞
𝜀𝑡→𝑢

𝑓𝜀(𝑥, 𝑡) = 𝑒
𝑢
𝐷
𝑀𝑀−1𝑑(𝑥) 

for all 𝑥 ∈ 𝐸. 

Conclusion. 

The asymptotics of the solution of the Markov renewal equation when the basis 𝐺𝜀(𝑥, 𝑑𝑦) =

𝐺𝜀(𝑥, 𝑑𝑦 × [0,∞)) of the kernel 𝐺𝜀(𝑥, 𝑑𝑦 × 𝑑𝑡)close to the singular kernel 𝐼(𝑥, 𝑑𝑦) on a given 

measurable phase space (E, 𝔅) was studied in [2].The main result of that study was formulated in 

the form of a theorem. At the same time, severe restrictions were imposed. Uniform convergence 

on 𝑥 ∈ 𝐸 was required. In this paper, we prove a similar statement under weaker assumptions, 

namely, it is sufficient that the conditions of the theorem are satisfied for all 𝑥 ∈ 𝐸. For this, a 

completely different idea of proof is used.  
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