
EasyChair Preprint
№ 15429

Efficient Failure Information Propagation Under
Complex Stress States in Fiber Reinforced
Polymers: from Micro- to Meso-Scale Using
Machine Learning

Johannes Gerritzen, Andreas Hornig and Maik Gude

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 14, 2024



Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of 
this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under license by Materials 
Research Forum LLC. 

 1 

Efficient Failure Information Propagation under Complex 
Stress States in Fiber Reinforced Polymers: From Micro- to 

Meso-scale using Machine Learning  
Johannes Gerritzen1,a*, Andreas Hornig1,2,3,b and Maik Gude1,c  

1 Institute of Lightweight Engineering and Polymer Technology,  
TUD Dresden University of Technology, Holbeinstr. 3, 01307 Dresden, Germany 

2 Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Dresden/Leipzig,  
TUD Dresden University of Technology, Chemnitzer Straße 46b, 01187, Dresden, Germany 

3 Department of Engineering Science, Solid Mechanics and Materials Engineering,  
University of Oxford, OX1 3PJ, Oxford, United Kingdom 

ajohannes.gerritzen@tu-dresden.de, bandreas.hornig@tu-dresden.de, cmaik.gude@tu-dresden.de 

* Corresponding author 

Keywords: Fiber reinforced plastic, Machine Learning, Failure 

Abstract The failure behavior of fiber reinforced polymers (FRP) is strongly influenced by their 
microstructure, i.e. fiber arrangement or local fiber volume content. However, this information 
cannot be directly used for structural analyses, since it requires a discretization on micrometer 
level. Therefore, current failure theories do not directly account for such effects, but describe the 
behavior averaged over an entire specimen. This foundation in experimentally accessible loading 
conditions leads to purely theory based extension to more complex stress states without direct 
validation possibilities. This work aims at leveraging micro-scale simulations to obtain failure 
information under arbitrary loading conditions. The results are propagated to the meso-scale, 
enabling efficient structural analyses, by means of machine learning (ML). It is shown that the ML 
model is capable of correctly assessing previously unseen stress states and therefore poses an 
efficient tool of exploiting information from the micro-scale in larger simulations. 

Introduction 
Fiber reinforced polymers (FRP) play a crucial role in lightweight applications due to their 
excellent specific properties [1]. This allows significant weight reduction and thus improvement 
of energy efficiency in the mobility sector and of frequently accelerated parts in general [2]. 
However, one major obstacle for the wider application of FRP is the challenge of joining FRP with 
dissimilar materials [3]. So far, adhesive bonding has been the widest spread solution [4]. This 
however is undesirable when considering end of life and recycling, because dejoining is impossible 
or requires a significant amount of effort. Hence, material preserving recycling has yet to be widely 
adopted for FRP [5]. 

One possible solution to improve the dejoinability, and thus the recyclability, of FRP is the 
implementation of mechanical joining technologies. However, these lead to significant changes in 
the local material structure and therefore the joints load bearing behavior [6]. Established failure 
criteria for FRP originate in thin walled materials with almost plane stress conditions [7]. Even 
though many theories have been extended to consider all stress components, even biaxial stress 
states still pose a significant challenge [8]. One significant contributing factor are the microscopic 
inhomogeneities of FRP, which strongly influence the failure behavior [9].  
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With rising computing power, the study of failure behavior by finite element analyses (FEA) 
on micro-scale has received more attention in research. The effect of fiber distribution as well as 
yarn alignment and waviness on elastic properties of entire plies has been studied with a special 
focus on draping effects in [10]. Pulungan et al. investigated the effect of local microstructure and 
RVE size on the failure behavior under transverse tension [11].  

Such micro-scale models allow deep insight into the local behavior. However, their 
computational cost remains prohibitive for real world structures [12]. For elastic properties, 
homogenization approaches are well established to efficiently take information from the micro-
scale into account on the meso-scale. This is enabled by the well accepted models on meso-scale. 
Given the lack thereof for FRP specific failure criteria under arbitrary stress states, the 
homogenization approach cannot directly be applied to failure behavior. 

Fueled by the growing application of machine learning (ML) techniques, some approaches have 
been presented, obtaining data from micro-scale simulations and training various ML models on 
these data. Chen et al. used an RVE subjected to three stress components to predict critical loading 
conditions and trained these into an NN with all used data points being close to the failure envelope 
[13]. Wan et al. added the aspect of failure probability by analyzing multiple RVEs and taking all 
their results into account for the subsequent training [14]. None of these approaches take the 
simultaneous superposition of all stress components into account. Since this is crucial to accurately 
describe FRP behavior in the zone of a mechanical joint, the aim of this work is to establish a 
dataset from simulations on micro-scale representative volume elements (RVEs) under arbitrary 
loading conditions and subsequently train an ML model to assess criticality of a full stress state. 
This ML model is intended as alternative to established failure criteria, which can be incorporated 
into meso-scale FEA in future works. 

Modeling approach 
Material structure. Data regarding constituent behavior and uniaxial strengths are taken from the 
glass fiber-epoxy with Silenka E-Glass fibers and MY750/HY917/DY063 epoxy resin [15]. Here, 
data for a thermoset are used because of the amount of reliable data on its failure behavior and its 
status as the de facto standard for modeling FRP failure behavior. The different matrix system does 
not affect the presented development of a methodology for data driven failure determination and 
its propagation across length scales. 

Based on the published data, constitutive models for the constituents are chosen. The glass 
fibers are modeled using an isotropic linear elastic model, with Young’s modulus and Poisson ratio 
taken directly from [15]. Failure is modeled as element deletion by a minimum/maximum principal 
strain criterion with corresponding strain values taken as uniaxial ones. For the epoxy resin, 
inelasticities have to be considered. These are modeled as purely plastic up to triaxiality dependent 
damage initiation, using LS-DYNA keywords *MAT_PIECEWISE_LINEAR_PLASTICITY and 
*MAT_ADD_DAMAGE_GISSMO. Under uniaxial tension and compression, this leads to 
excellent agreement with the published strength and failure strain: Under tension a maximum stress 
of 79 MPa occurs in the simulation and 80 MPa are given in the paper, with a corresponding failure 
strain of 4.9 % and 5 % respectively. Under compression, the constitutive model leads to a strength 
of 117 MPa, the paper states 120 MPa. 

The constituents are assembled in a representative volume element (RVE) as shown in Fig. 1. 
Given the structured placement of individual fibers, identical edge lengths in x and y direction are 
highly important to ensure transversal isotropy in the RVE’s failure behavior. For this study, no 
fiber-matrix debonding is considered. 
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Figure 1 Geometrical arrangement of fibers in the RVE 

Data generation. As database for subsequent ML model training a total of 5000 loadcases 
triggering all six stress components in the RVE are analyzed. To define these, 5000 unit vectors �⃗�𝑣 
in six dimensional stress space are taken such that the minimum distance of their endpoints is 
maximized, using the implementation of the maximin algorithm [16] in the open source Python 
package diversipy [17]. This ensures a good sampling of the full dimensional design space [18] 
and therefore yields ample information on the failure surface. An estimate for failure along each 
of the unit vectors is obtained by calculating the reserve factor 𝑓𝑓res through the failure criterion 
proposed in [19] with the further adaptions from [20]; the best performing criteria on general stress 
states tested in [7]. Given the homogeneous formulation of the failure criterion, the estimates can 
be obtained from  𝜎𝜎fail ≈ �⃗�𝑣 / 𝑓𝑓res. To ensure simulations leading to failure, a termination time is 
chosen that is expected to lead to 2𝜎𝜎fail when extrapolating from the initial RVE stiffness. 
Simulations are carried out on the high performance computing cluster Barnard at the NHR Center 
of TU Dresden. Given that the objective of this study is the modeling of the onset of failure, 
simulations are terminated once one element has been deleted. To reduce the data’s dependency 
on integration step width, simulations are restarted from the last state before failure with the step 
size decreased and sampling frequency increased by a factor of 100. 

From the simulation results, homogenized stress as well as failure information on the RVE are 
extracted, aligned by the simulation time, using the open source Python library lasso-python [21]. 
Here, information on failure mode is determined by the first material to fail, allowing for the 
differentiation between fiber failure (FF) and inter fiber failure (IFF). While neither failure model 
is triggered, a proxy mode “no failure” (nF) is added. This data is aggregated across all loadcases 
and loaded into three distinct databases with a unique identifier (UID) per loadcase. 

For the training of the ML model, the database is split into training, test and validation sets, 
enforcing stratification by the loadcase UID to prevent cross contamination of the datasets. A ratio 
of 70:20:10 is chosen for this. 

Machine learning. In this study, failure detection is treated as classification task. This is 
addressed by a fully connected neural network (NN), taking the six independent stress components 
as input and mapping them to the considered failure modes. To achieve the highly non-linear 
mapping necessary, three hidden layers with 58, 65, 21 neurons respectively are used. The 
parameters were obtained by hyperparameter optimization, using the tool OmniOpt [22]. During 
this, the number of neurons per layer, batch size and learning rate were . For the output layer, the 
softmax activation function is used, leading to a probability prediction for the failure modes; all 
other layers have “Swish” [23] as activation function. The training is conducted using the Adam 
optimizer [24] for up to 200 epochs with categorical crossentropy loss, a batch size of 221 and a 
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learning rate of 10^-2.033. Early stopping is activated to avoid overfitting if no improvement of 
the loss, evaluated on the test set, occurs for 50 epochs. 

Results and discussion 
Simulation. The RVE setup is first used to simulate uniaxial stress states. Strengths obtained from 
the simulations are given alongside experimental values in Table 1. From the comparison of the 
values, it becomes clear that the chosen setup is capturing the FRP’s uniaxial failure behavior well 
in all cases except for transverse tension. This deviation can be attributed to the idealized fiber-
matrix interface, since failure under transverse tension is typically initiated by fiber matrix 
debonding [25]. Therefore, results obtained by the presented RVE with the constitutive models for 
its constituents are considered representative for FRP and constitute a valid basis for developing a 
methodology for a data driven failure criterion. 

 
Table 1 Strength values from experiment and RVE simulation 

 𝑅𝑅∥+ [MPa] 𝑅𝑅∥− [MPa] 𝑅𝑅⊥+ [MPa] 𝑅𝑅⊥− [MPa] 𝑅𝑅⊥∥ [MPa] 
WWFE [15] 1280 800 40 145 73 
RVE 1292 799 77 139 67 

 
From the 5000 loadcases, 4577 lead to IFF and 94 to FF. The remaining 329 cases did not yield 

usable results, 209 due to numerical problems and 120 since termination time was reached in the 
simulation before the RVE failed. To alleviate the substantial imbalance of the failure modes, an 
additional 100 loadcases with 𝜎𝜎∥ > 0.9 𝑅𝑅∥+ or 𝜎𝜎∥ < −0.9 𝑅𝑅∥− were simulated, all leading to FF. 

Machine Learning. During the training, of the ML model, loss and accuracy improve quickly 
for 35 epochs. Afterwards, model performance plateaus before signs of overfitting occur after 57 
epochs. This is caught by the early stopping algorithm and training is terminated after 107 epochs 
with restoration to the state after 57 epochs. The development is shown in Fig. 2, with the loss on 
the left and accuracy on the right. The final model achieves an accuracy of 87 % on the training 
data and 84 % both on test and validation data. 

 
Figure 2 Development of performance metrics throughout model training 

Additional insight into model performance is given confusion matrices. In this, each row 
represents the actual label and each column the model predictions. In each cell, the ratio of 
predictions for the respective true class is given. Hence, on the main diagonal represents correctly 
classified datapoints for each failure mode. On the left of Fig. 3, the confusion matrix for the 
validation dataset is shown. From this it becomes clear, that detecting IFF poses the highest 
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challenge to the model, especially differentiating from nF. Similarly, a confusion of nF and IFF 
occurs, though significantly less frequently. This challenge can be attributed to the very high 
sampling frequency in the simulation when approaching the failure point. Therefore, the ternary 
decision has to be changed completely based on miniscule changes in the stress state.  

 

 
Figure 3 Confusion matrix for the validation data set (left) and correction factor κ for stress 

state necessary to obtain correct failure mode (right) 
To quantify how far off the model predictions are in cases of misclassification, the stress state 

of misclassified data points is multiplied with a correction factor κ, which is smaller than 1 in cases 
where failure was predicted for uncritical stress states and greater than 1 otherwise. On the right 
in Fig. 3, a histogram of κ in the range 0.95 to 1.05 is shown alongside a kernel density estimate 
(KDE). Based on the KDE, an estimation of the increase in accuracy with percentage of acceptable 
deviation is possible. 77 % of misclassifications can be corrected κ in ±5 %, leading to an increase 
in accuracy of 12.3 %. With κ in ±1 %, still 49 % correction rate can be achieved, improving the 
accuracy by 8 %. This allows to take additional engineering judgement into account  

Conclusion 
A methodology for the development of a data driven failure criterion for FRP under arbitrary stress 
states has been established. Based on results of RVE simulations, a database of stress state and 
corresponding failure model was created. This database was used to train a simple NN on the posed 
classification task. It could be shown, that the NN achieves high accuracy on training, testing and 
validation data. Additionally, a large share of misclassifications is based on very narrow margins. 
Useable accuracy can therefore be further increased by incorporating engineering judgement. The 
current version of the model can be used for post hoc analyses of FRP parts, efficiently using the 
failure information from micro-scale on the meso-scale. 

The strong oscillations of loss and accuracy during training could be indicators of a suboptimal 
network architecture or the demand for additional data. Therefore, generating additional data and 
focusing the hyperparameter optimization on modulating the architecture are expected to further 
improve model performance. Additionally, transferring the trained model to a user material routine 
would further enhance its capabilities and allow the usage during simulations to trigger element 
deletion. 
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