
EasyChair Preprint
№ 15915

Salesforce Integration Best Practices: a
Complete Guide

Laxman Vattam and Kalpana Puli

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 18, 2025

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

76

International Journal of Multidisciplinary Research and Growth Evaluation

ISSN: 2582-7138

Received: 02-04-2020; Accepted: 18-04-2020

www.allmultidisciplinaryjournal.com

Volume 1; Issue 1; March-April 2020; Page No. 76-80

Salesforce integration best practices: A complete guide

Laxman Vattam 1, Kalpana Puli
1 Independent Researcher, Washington, USA

2 Independent Researcher, Texas, USA

Corresponding Author: Laxman Vattam

DOI: https://doi.org/10.54660/.IJMRGE.2020.1.1-76-80

Abstract

The growing need to connect data from various sources is

essential for ensuring scalability, security, data consistency,

and the long-term maintainability of an organization’s

technology infrastructure. Salesforce cannot act as the

definitive source of truth for all data. The true strength of

Salesforce lies in its capacity to integrate effortlessly with

other systems, forming a cohesive business ecosystem. This

guide outlines best practices for Salesforce integration,

helping ensure your systems collaborate seamlessly and

operate efficiently.

Keywords: Salesforce, integrations, platform events, rest API, Bulk API, SOAP API, External Objects, Long Polling

Introduction

If you're planning to adopt Salesforce-based applications or the Lightning Platform at scale, it's essential to familiarize yourself

with the integration capabilities and options available. IT Team (Salesforce Architects and developers) should carefully consider

these integration patterns and best practices during the design and implementation stages of any Salesforce integration project.

Salesforces own consulting architects rely on these patterns during architectural reviews and are actively involved in refining

and enhancing them. When implemented correctly, these patterns enable a rapid path to production, ensuring a stable, scalable,

and low-maintenance set of applications.

While these patterns cover most integration scenarios, they don’t encompass every possible use case. For instance, UI

integrations, such as mashups, are outside the scope of this guide.

Pattern Selection Guide

The patterns are categorized using these dimensions.

• Timing

Synchronous—Blocking or near-real-time requests are request/response operations. The result is returned to the caller

immediately via this operation.

Asynchronous—Nonblocking, queue, or message-based requests are invoked by a one-way operation. The results and any faults

are returned by invoking other one-way operations. The caller therefore makes the request and continues without waiting for a

response.

• Type

Process – Process-based integrations involve synchronizing the functional flow between two or more applications.

Data – Data integrations focus on connecting and exchanging the information used by different applications.

Virtual – Virtual integrations allow Salesforce to interact with data stored in an external system without the need to replicate

that data within Salesforce.

• Integrating Salesforce with Another System

This table outlines the integration patterns and their key characteristics to help you identify the most suitable pattern for your

needs when integrating Salesforce with another system.

www.allmultidisciplinaryjournal.com
https://doi.org/10.54660/.IJMRGE.2020.1.1-76-80

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

77

Fig 1: Patterns [1]

• Integrating Another System with Salesforce

This table outlines the integration patterns and their key

characteristics to help you identify the most suitable pattern

for your needs when integrating another system with

Salesforce.

Fig 2: Integrations [1]

Salesforce Integration Patterns

• Request and Reply Pattern

 The request and reply pattern in Salesforce is a powerful

approach for integrating Salesforce with external

systems. When an event occurs in Salesforce, this pattern

facilitates triggering a process in an external system,

transmitting the necessary data, receiving a response,

and using that response to update Salesforce. It provides

a structured mechanism for bi-directional

communication, ensuring seamless data flow and

process synchronization between systems.

When implementing the request and reply pattern, it is

essential to choose the appropriate method based on the

specific use case. External Services are ideal for simple,

schema-driven integrations, while Lightning Components

and Visualforce offer greater flexibility for custom UI-driven

interactions. Triggers are effective for asynchronous, event-

driven processes, and Batch Apex is best for large-scale

operations. By carefully selecting and optimizing the

integration approach, businesses can ensure secure, efficient,

and reliable communication between Salesforce and external

systems.

Triggers can be configured to make callouts to external

systems when specific data changes occur in Salesforce.

However, these callouts must be asynchronous, as Salesforce

does not support synchronous callouts within triggers. While

this approach is not well-suited for request-response

interactions, it works effectively for fire-and-forget scenarios

where a response is not immediately required. This makes it

ideal for initiating processes or notifications in external

systems without disrupting Salesforce operations.

Salesforce supports integration through Lightning

Components or Visualforce pages by consuming WSDL files

and generating proxy classes. These tools enable Salesforce

to interact with external systems using SOAP or REST-based

web services. Additionally, HTTP services are supported to

perform operations such as GET, POST, PUT, or DELETE.

This method is highly flexible and allows users to initiate

external system interactions directly from custom user

interfaces, making it ideal for real-time data exchange

scenarios.

Salesforce’s External Services feature allows for integration

with external systems using point-and-click tools within

Lightning Flow. This method requires the external system to

provide an OpenAPI or Interagent schema to define the

endpoints and operations. External Services support only

primitive data types, making them suitable for simpler

integrations where complex data structures are unnecessary.

This approach empowers administrators and non-developers

to build integrations without writing extensive code.

• Fire-and-Forget Pattern

The fire-and-forget pattern in Salesforce is designed for

scenarios where an event in Salesforce triggers a process

in a remote system without requiring a response. This

approach is suitable for asynchronous operations,

ensuring that Salesforce processes continue seamlessly

while initiating the desired external action. The fire-and-

forget pattern is efficient for integrating loosely coupled

systems and is commonly used for notifications or

process initiation in external platforms.

 Apex-based callouts offer a highly flexible method for fire-

and-forget scenarios. Developers can write Apex code to

make HTTP requests (e.g., POST or PUT) to remote systems

when specific events occur in Salesforce. This approach is

particularly useful for integrating with RESTful APIs or

complex external services. Since these callouts are

asynchronous, they do not wait for a response, ensuring

minimal impact on Salesforce performance while triggering

the external process.

 Platform events provide a robust mechanism for achieving

fire-and-forget integrations in Salesforce. In this method, an

event is published when a specific process occurs, such as

record creation or update. External systems subscribed to the

event can consume the published data and initiate the

necessary actions. Process Builder or Lightning Flow can be

used to configure and automate these events, enabling

administrators to create integrations without code. This

method ensures scalability and real-time communication

between systems.

 For more complex scenarios, custom platform events can be

designed to accommodate specific data structures and

requirements. Developers can define custom events using the

Salesforce schema and write Apex triggers to publish these

events based on specific conditions. External systems can

then subscribe to these events through APIs, ensuring they

receive the required information. Customization-driven

platform events are particularly useful for handling intricate

data relationships and tailored workflows.

Outbound messages, configured through Salesforce

workflows, provide a straightforward way to send data to

www.allmultidisciplinaryjournal.com

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

78

external systems. When a workflow rule is triggered,

Salesforce sends an XML message to a specified endpoint,

passing the necessary information. This method is easy to set

up and does not require coding, making it ideal for simpler

integrations. However, it requires the external system to be

capable of consuming the XML message and processing it

appropriately.

 Selecting the appropriate fire-and-forget method depends on

the complexity of the integration, the required level of

customization, and the external system’s capabilities.

Platform events are ideal for scalable, real-time

communication, while outbound messages suit simpler, pre-

defined integrations. Apex-based callouts offer the greatest

flexibility for complex scenarios. By understanding the

unique requirements of each use case, businesses can

effectively implement the fire-and-forget pattern to enhance

their Salesforce integrations.

• Batch Data Synchronization

 Batch data synchronization is a strategy for keeping data

consistent between Salesforce and external systems by

processing updates in batches. This method is particularly

effective for scenarios involving large datasets or periodic

updates. By synchronizing data in a structured and efficient

manner, businesses can ensure seamless communication and

data integrity across systems while minimizing performance

impacts.

 Change Data Capture (CDC) is a Salesforce feature that

publishes change events to reflect record modifications, such

as create, update, delete, or undelete actions. External

systems subscribed to these change events can process the

updates and synchronize their data accordingly. CDC is well-

suited for real-time synchronization with minimal coding and

allows organizations to track changes efficiently. It is

especially valuable for maintaining data consistency in

complex integration scenarios.

ETL (Extract, Transform, Load) tools play a central role in

batch data synchronization by managing data movement

between Salesforce and external systems. These tools extract

data from the source system, transform it into the required

format, and load it into the target system using Salesforce’s

Bulk API or SOAP API. ETL tools are highly scalable,

allowing businesses to handle large data volumes effectively.

This method is ideal for periodic or scheduled data

synchronization tasks where real-time updates are not

required.

In this approach, Salesforce and external systems make direct

calls to each other whenever data changes. While this method

provides flexibility, it can generate excessive traffic and lead

to performance bottlenecks, especially when dealing with

frequent updates or high data volumes. As such, manual

remote calls are generally not recommended for batch data

synchronization unless used in limited or highly specific

scenarios.

To maximize the efficiency of batch data synchronization,

businesses should prioritize methods that balance

performance and reliability. Change Data Capture is ideal for

real-time updates with minimal overhead, while ETL tools

are best suited for periodic synchronization tasks involving

large datasets. Manual remote calls should be used sparingly

to avoid unnecessary traffic. By carefully evaluating the

integration requirements, businesses can implement a

synchronization strategy that meets their operational needs

without compromising system performance.

Batch data synchronization ensures data consistency across

systems, reduces manual data entry errors, and streamlines

operations. By using Salesforce features like CDC and

leveraging ETL tools, organizations can achieve reliable and

scalable data synchronization. This capability supports better

decision-making, improves customer experiences, and

enhances the overall efficiency of integrated business

processes.

Batch Apex provides a robust mechanism for making callouts

to external systems, particularly for large datasets or bulk

operations. The execute method within Batch Apex resets

governor limits for each batch, enabling a higher number of

callouts compared to standard operations. However, there are

still limitations on the total number of callouts or the

maximum duration of callouts within a single transaction.

This approach is suitable for processing extensive data sets

while maintaining adherence to Salesforce’s governor limits.

• Remote Call-In

If data in Salesforce needs to be created, retrieved, updated

or deleted by a remote system, we can consider this pattern

▪ SOAP & Rest API

▪ Apex based APIs

• UI Update Based on Data Changes

When an event occurs in Salesforce, if the user needs to be

notified in the Salesforce user interface without having to

refresh their screen and potentially losing work, this pattern

can be considered.

Recommended solution is to use PushTopic with a query

definition that allows you to:

▪ Specify what events trigger an update

▪ Select what data to include in the notification

• Data Virtualization

Salesforce accesses external data in real-time, eliminating the

need to store data within Salesforce and reconcile it with the

external system.

Use Salesforce Connect to access data from external sources,

along with the Salesforce data. We can pull data from legacy

systems such as SAP, Microsoft, and Oracle in real time

without making a copy of the data in Salesforce.

Authorize Apps with OAuth

OAuth is an open standard protocol that enables a client

application to securely access data from a protected resource

by exchanging tokens. These tokens serve as authorizations,

granting specific permissions to the client application.

1. OAuth Authorization Flows

OAuth authorization flows provide client applications with

limited access to protected resources on a resource server.

Each flow follows a unique process for granting access, but

they generally involve three key steps. First, the client

application requests access to a protected resource. Next, the

authorization server issues access tokens to the client

application in response. Finally, the resource server verifies

the validity of these tokens and permits access to the

protected resource.

• OAuth 2.0 Web Server Flow

This flow allows external web apps to integrate with the

Salesforce API using the OAuth 2.0 authorization code

grant type. The server hosting the web app must secure

the connected app’s identity through the client ID and

www.allmultidisciplinaryjournal.com

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

79

client secret.

• OAuth 2.0 User-Agent Flow

The user-agent flow enables users to authorize desktop

or mobile apps to access data via an external or

embedded browser. It is suitable for client apps running

within a browser, such as those using JavaScript. This

flow follows the OAuth 2.0 implicit grant type.

• OAuth 2.0 Refresh Token Flow

The refresh token flow renews access tokens issued by

either the OAuth 2.0 web server flow or the OAuth 2.0

user-agent flow.

• OAuth 2.0 Token Exchange Flow

For architectures involving Salesforce and a central

identity provider, the token exchange flow simplifies

integration. It allows the exchange of tokens from

external identity providers for Salesforce tokens,

enabling access to Salesforce data.

• OAuth 2.0 for Hybrid Apps

Hybrid apps often require complex session management.

OAuth 2.0 hybrid app flows connect access and refresh

tokens with web sessions, simplifying token tracking and

session management for hybrid apps, unlike typical user-

agent or refresh token flows.

• OAuth 2.0 JWT Bearer Flow

The JWT bearer flow authorizes servers to access data

without requiring interactive login. It uses a certificate to

sign the JWT request and eliminates the need for user

interaction, though prior client app approval is required.

• OAuth 2.0 Client Credentials Flow

The client credentials flow facilitates direct data sharing

between applications without user interaction. The client

app exchanges its credentials (consumer key and secret)

for an access token. It requires specifying an integration

user and is a more secure alternative to the username-

password flow.

• OAuth 2.0 Device Flow

The device flow is designed for apps running on devices

with limited input or display capabilities, such as IoT

devices, Smart TVs, or command-line apps. Users can

connect these devices to Salesforce by accessing a

browser on a more advanced device.

• OAuth 2.0 Asset Token Flow

This flow integrates IoT devices with the Salesforce API

using asset tokens, which are JWT authentication tokens

that secure and verify device requests. They link devices

to Salesforce CRM data related to customers, accounts,

or contacts.

• Demo the Asset Token Flow

The Asset Token Explorer demo app simplifies the

process of acquiring an access token and exchanging it

for an asset token.

• OAuth 2.0 Username-Password Flow

While the username-password flow allows authorization

via a connected app using user credentials, it’s generally

not recommended due to security concerns with

transmitting credentials. It’s best used when there is a

high degree of trust, and alternative grant types are

unavailable.

• OAuth 2.0 SAML Bearer Assertion Flow

In this flow, a client can use a signed SAML 2.0 assertion

to request an OAuth access token. The digital signature

authenticates the connected app, and the SAML

assertion, issued by an identity provider, identifies the

subject for security purposes.

• SAML Assertion Flow

For organizations using SAML to access Salesforce, the

SAML assertion flow provides a way to federate with the

API, similar to how they federate with Salesforce for

Web SSO. This flow can be used without a connected

app.

2. OAuth Tokens and Scopes

OAuth tokens grant access to protected resources, allowing

connected apps to receive tokens on behalf of a client after

successful authorization. Scopes define the specific types of

resources that the connected app is permitted to access. These

scopes are assigned during the creation of the connected app

and are included with the OAuth tokens as part of the

authorization flow.

▪ Authorization code: The authorization server creates an

authorization code, which is a short-lived token, and

passes it to the client after successful authentication. The

client sends the authorization code to the authorization

server to obtain an access token and, optionally, a refresh

token.

▪ Access token: After a client is authorized, Salesforce

sends the client an access token. The client passes the

access token to the resource server to request access to

protected resources. The resource server validates the

access token and additional permissions in the form of

scopes before granting access to the client. The access

token has a longer lifetime than the authorization code,

usually minutes or hours. When an access token expires,

attempts to use it fail, and the client must obtain a new

access token by using a refresh token or reinitiating the

authorization flow.

▪ Refresh token: Like a password, a refresh token can be

used repeatedly by a client to gain access to the resource

server. When a refresh token expires or a user revokes it

outside of the client, the client requests a new access

token, typically by implementing the authorization flow

from the start. A refresh token can have an indefinite

lifetime, persisting for an admin-configured interval or

until explicitly revoked. The client can store a refresh

token and use it to obtain new access tokens. For

security, the client must protect a refresh token against

unauthorized access.

Conclusion

The patterns above address the requirement to synchronize

data that resides across two or more systems so that both

systems always contain timely and meaningful information.

When designing your integration approach, assess the

complexity of your use cases and requirements as a business

and tailor it specifically. Ensure data security compliance and

comply with industry regulations during integration. Select

an integration approach which.h can scale with future

business growth. Implement trusted testing procedures in

order to detect issues before they disrupt operations;

Implement trusted testing procedures.

References

1. MuleSoft. Synchronous vs. Asynchronous

Communication in Applications Integration.

MuleSoft.com. [Online]. Available:

https://www.mulesoft.com/resources/esb/applications-

integration. [Accessed Nov. 22, 2019].

www.allmultidisciplinaryjournal.com

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

80

2. Microsoft Corporation. Integration Patterns (Patterns &

Practices). Redmond, WA, USA: Microsoft Press; 2004.

[Online]. Available: https://www.microsoft.com/en-

us/download/details.aspx?id=12474. [Accessed Dec. 13,

2019].

3. Enterprise Integration Patterns. Hub and Spoke [or] Zen

and the Art of Message Broker Maintenance. [Online].

Available:

http://www.eaipatterns.com/ramblings/03_hubandspoke

.html. [Accessed Dec. 1, 2019].

4. Enterprise Integration Patterns. Messaging Patterns.

[Online]. Available:

https://www.enterpriseintegrationpatterns.com/patterns/

messaging/. [Accessed Dec. 13, 2019].

5. Salesforce. Integration Pattern Summary. [Online].

Available:

https://developer.salesforce.com/docs/atlas.en-

us.214.0.integration_patterns_and_practices.meta/integr

ation_patterns_and_practices/integ_pat_pat_summary.h

tm?_ga=2.159182394.1420426287.1736288671-

1033462729.1736288671. [Accessed Jan. 11, 2020].

6. Salesforce. REST API. [Online]. Available:

https://developer.salesforce.com/docs/atlas.en-

us.api_rest.meta/api_rest/intro_what_is_rest_api.htm.

[Accessed Feb. 23, 2020].

7. Salesforce. Platform Events. [Online]. Available:

https://developer.salesforce.com/docs/atlas.en-

us.platform_events.meta/platform_events/platform_eve

nts_intro.htm. [Accessed Mar. 25, 2020].

www.allmultidisciplinaryjournal.com

