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Mining app-specific opinions in mobile app reviews
using lexico-syntactic patterns

Abstract—Mobile app markets are increasingly crowded and
competitive. User opinions in app reviews are important for
app developers to improve users’ experience and satisfaction
with their apps. However, current approaches for automated
analysis of mobile app reviews (e.g. SURF, AR-Miner) have two
problems: firstly, developers do not have the ability to define
their own topic of interest to query relevant information from
app reviews, as these approaches focus more on the common and
established aspects of the app (e.g. GUI, connection, payments,
etc); secondly, while some of them use linguistic patterns to
classify the intentions of each opinion, they suffered from low
recall due to the messy nature of review text (e.g. SURF has
22.5% recall for feature request classification). To address these
problems, in this paper, we introduce MARP as a semi-automatic
tool for developers to search and classify their opinions of interest
using a Lexico-Syntactic Pattern approach. A Lexico-Syntactic
Pattern is a sequence of tokens including syntactic lexicons (e.g.
’have’ or ’please’) and content fragments (e.g. OBJECT or AC-
TION) that together represent the syntax pattern of an intention.
Our experiments show that MARP can extract complaints and
requests more accurately than the baseline approach and is rated
with comparable usefulness by app developers.

Index Terms—phrase, template, app, review

I. INTRODUCTION

Mobile app development is becoming more and more
competitive with more than a million of available apps on
popular app market such as Google Play. This number is still
growing, leads to a strictly competitive environment for app
development. Newcomers want to know how users think of
the available apps to make better ones and the old players
also need that information to improve their owns. One simple
way to get that kind of information is to read user reviews
on the rating system of app markets. However, in reality, it is
not as easy as it sounds since each apps could have millions
of review. Therefore, a research trend was formed to analyze
app reviews, including classifications, information extraction
by keywords, topics, specific text structures or just exploring
the possibilities of user reviews.

Currently, many state-of-the-art tools[7,9,13,32] have been
introduced with novel and unique approaches. Those tools
have excelled in determining the common sentiments and opin-
ions from app reviews as a whole. For example, developers can
easily use SURF or AR-miner to find out how the customers
think of several aspects of the apps. Those aspects have been
proven to be interesting and useful by actual developers [9].
However, while the covered topics are representative to many
apps, they may not be able to address specific needs of a single
app, such as when a developer need to know how customers
think about their new or unique feature. Apps, much like any

other type of software, constantly innovate. Each new app
could introduce many special aspects that were not widely
presented before. Hence, the common topics may not apply
to them. We believe the developers’ desire to understand what
customers discuss/talk about a specific topic really exists and
is crucial to app development. Let us demonstrate one example
of such needs via a case-study of Magic Tile 3 below.

Magic Tiles 3 was developed by AMANOTES as a piano
tapping game for mobile phone. The app has between 50
millions to 100 millions downloads on Google Play and
generally get a positive feedback from its customer with
average rating of 4.5 up to the date of January 2018. We
have interviewed the developers of this app to ask them what
are the user’s opinions they want to learn about their app,
and if there is any automated tool helping them to do that.
Their answers were that they want to know what their users
suggestions for the songs, what they think about their main
competitor Piano Tiles 2 and what they think about the new
Battle Mode. Normally, they would have to hire a team of
customer service employees to read through all the comments
and write a summary for the developers to update the app.

As we can see from this case, app developers wanted to find
user opinions based on their intention (i.e. bug report, feature
request, etc) about a few specific topics of interest.

With this requirement, we searched through the literature
and found several state-of-the-art tools that may be able to help
with their queries: AR-Miner, MARK, and SURF. However,
none of them can point to the exact opinion without substantial
human effort. AR-Miner can help finding informative reviews,
but not just the ones belong to our topic about songs, Piano
Tiles 2 and Battle Mode. SURF can find suggestions, bug
reports amongst other intentions for 12 fixed general topics,
however, none of those topics was asked by the developers.
Lastly, MARK can find the keywords of queried topics, then
search the reviews containing those keywords, but could not
determine their intentions. Even though MARK comes close
to answering the queries, human resource is still needed to
infer what the reviews actually say about those topics.

From this observation, we believe that the current state of
the art tools are not sufficient to give developers a report of
what they want to learn from users about their various topics
of interest. Therefore, in this paper, we propose MARP as a
robust tool to help developers analyze specific topics on their
own. It allows them to start with a set of words or phrases as a
topic and an intention that they wish to learn about. After that,
it automatically searches for text sequences that matched with
such topic and intention. Furthermore, if the analysts want to



create, or to extend an intention, they can define such intention
by adding linguistic patterns for it and let our tool find similar
patterns in the text automatically. Our developer evaluations
indicated that developers with specific topics in mind found
our tool more useful than the state-of-the-art tools.

A linguistic pattern is a commonly used grammatical struc-
ture. For example, “[somebody] should [do] [something]” is
a linguistic pattern used for suggestions or requests. For ex-
ample, the app review “You should add some Hindi songs”
matches the aforementioned pattern. In previous studies [9,10],
linguistic patterns have been used as an effective approach to
classify intention in text. However, those patterns were not
easy to obtain, as they require manual effort. More importantly,
users often use slightly different patterns to describe the same
idea. This causes the Parse Tree approach to suffer from even
the smallest changes in the tree structure of users’ sentences,
leading to a low recall rate in classification (e.g., recall rate
for extracting feature requests is 22.5% [28]).

MARP has several advantages over the state-of-the-art tool
in classifying intentions by patterns. First, rather than using
ambiguous patterns like “[somebody] should [do] [some-
thing]”, MARP uses Lexico-Syntatic ones.A Lexico-Syntactic
pattern is a sequence of tokens including fixed syntactic
lexicons (e.g. should or please) and content fragments (e.g.
OBJECT or ACTION) that together represent the syntax
pattern of an intention. For example, “[OBJECT] should
[ACTION]” is a Lexico-Syntactic Pattern. In this pattern,
[OBJECT] is the placeholder for an object/entity, [ACTION]
is for an action. [OBJECT] and [ACTION] inferred from the
word sequence by several English heuristics. MARP defines its
Lexico-Syntatic Patterns as sequences of tokens, each could be
a fixed word like ’should’ or a placeholder. We have defined
a similarity measurement for such linguistic patterns, thus,
MARP can expand its set of patterns from data. In addition, we
designed a near-matching algorithm to match these patterns to
text. This algorithm is sequence-based, which does not require
traversing parsed trees. Our experiments have shown that it is
much more efficient and effective than the Parse Tree traversal
method.

Overall, MARP proposes to solve the problem of finding
specific opinions on reviews using topic keywords and Lexico-
Syntactic Patterns. Our technical contribution includes the
following:
• A complete framework to find opinion about specific

topic using Lexico-Syntactic patterns and keywords.
• An overhaul of Lexico-Syntactic Pattern for flexible pat-

tern matching, including a the definition of Expandable
Lexico-Syntactic Pattern (ELSP) and a similarity mea-
surement for such patterns.

• A semi-automated ELSP expansion approach.
• A Near-Matching algorithm for matching of ELSP on

text.
Moreover, we have conducted two experiments to compare

the sensitivity and effectiveness to a baseline approach. We
have also asked developers of three apps to evaluate MARP ’s
usefulness comparing to SURF’s.

The rest of this paper is organized as following: Section II
discusses the motivation for our work. Section III describes
the ELSP definition and modeling. Section IV describes the
techniques used in MARP . Section V and Section VI evaluate
our approach. Finally, we discuss the related work in Section
VII, then threats to validity in Section VIII. Section IX
concludes our paper and discusses future work.

II. MOTIVATING EXAMPLE

To build a system that could provide developers opinions
with the flexibility of both topic and intention, we have tried
different state-of-the-art tools and techniques. From them, we
have concluded that intentions in reviews could be inferred
by their linguistic patterns [10] such as the case of DECA.
In DECA, the linguistic pattern would be hard-coded into
a code snip-set that travels and checks the Parse Tree of a
sentence to see if its features fit the pattern. However, in
our experiments using the data described in Section V, the
recall rate seems to be low (particularly in requests with the
recall of 40.2%). Further observation showed that, even though
the patterns themselves are correct, the variations in the way
people write reviews made their sentence structures vastly
different. For example: “fix the sync problem please” is not
recognized as a problem discovery by DECA, but “please
fix the sync problem” is even though these two sentences
are the same to human reader in term of intention. Further
investigation revealed that those two sentences have vastly
different Parse Trees structures. With just one word “please”
placed in a different location, the Parse Tree technique was
not able to match a pattern for the former sentence. In another
more complex example, “I would like to have ads removed
please” is recognized as a request by DECA, while “I would
like to remove ads please” is not. In this case, not only the
word “ads” and “remove” switched their positions, but the
latter also did not contain “have”. This slight variant of the
same sentence again prevented the Parse Tree technique to
match the correct pattern.

In the two examples above, we have seen that the smallest
difference in the way users write their review could lead to
a drastic change in the structure of the Parse Tree, making
matching by Parse Tree ineffective. Theoretically, this problem
could be solved by adding more slightly changed linguistic
patterns to fit with all the variants users can make. However,
given the messy nature of reviews [32] and the flexibility of
English, those variants could be too many to manually address.

Last but not least, our experiment showed that DECA takes a
significant amount of time (Table II) to classify a large number
of reviews. This was because of the computational power
needed to traverse Parse Trees. If there are more patterns
to compare, this processing time can take much longer. We
believe that developers or analysts in charge of millions of
reviews may need a faster solution.

Therefore, we need a new method that is not only flexible
in classifying intention from reviews, but also is able to adapt
to the way users write them. Moreover, the new method needs



to be reasonable in classifying speed. Therefore, we propose
our Expandable Linguistic Model as a solution.

III. EXPANDABLE LEXICO-SEMANTIC MODEL

A. Expandable Lexico-Semantic Pattern (ELSP)

Let’s examine the example ”I would like to have ads
removed please” . This sentence can be matched with this
linguistic pattern: “[someone] would like to have [some-
thing] removed”. In our observation, words such as “would”,
“like”, “to”, “have” and “removed” are fixed structural words
(i.e. they serve as indicators of the structure of a pattern)
that, when go together in a specific order (e.g. “have to”
and “to have” describe different intentions), often indicate an
intention, while the placeholders (i.e. [someone], [something])
are content to be filled in. Further observation from our
dataset and Panichella et al. ’s linguistic pattern set, we also
discovered that these fixed words can include stop words,
functional words, connectors (e.g. in, from, etc), intensifiers
(e.g. more, most, too, few, etc), negations (e.g. not, never),
question words (e.g. who, what, how, when, why). Moreover,
domain/app specific words also play an important role in
describing user intentions as well. For example, “boring”,
“repetitive”, “additive” may help indicate intentions for com-
plaints or praising a feature of game apps, but are unlikely to
be a common occurrence in a music player app, while “crash”,
“fix”, “add” usually give the same meaning across all mobile
apps.

With these observations, we believe that the subsequences
of fixed structural words play a crucial role in describing a
linguistic pattern, and it is advisable that each sub-category or
even each app/domain should have different common patterns
based on how there users use the subsequences of fixed words
to describe their ideas.

Furthermore, as they are subsequences of words, it is
feasible to discover more similar subsequences from the app
data starting from a set of initial patterns by comparing their
set of sub-sequences using JACCARD similarity. Example of
the matching result can be shown in figure 1 (we set max
length of a subsequence at 2 for a simple calculation)
φi : Lexico-Syntactic Patterns i
ξi : A set of fixed word subsequences belong to φi

patternSim(φ1, φ2) =
|ξ1 ∩ ξ2|
|ξ1 ∪ ξ2|

(1)

However, the newly discovered patterns are still susceptible
to the difficulty of parsing trees in messy mobile app reviews.
Therefore, instead of parsing the reviews, we use the same
JACCARD similarity to match our pattern with review text.
This way, even if users did not put their punctuations correctly,
their expressions can still be matched, and slight variation
of the way they write their sentences would not prevent the
matcher from discovering them.

Another concern is that our mined sequences may
not be grammatically correct, which would make the
matched sequences incomprehensible, even meaningless (e.g.
“[someone] have to” is not a complete phrase/sentence, and
offers no meaning). In a Parse Tree approach, this was not
a concern, as the tree would include the dependencies that
make the matched sequence coherent. However, as discussed
before, the Parse Tree approach is not flexible and slow.
Therefore, to balance out between grammar coherency and
pattern flexibility, we only mine patterns from sequences
that are considered phrases or sentences by the Parse Tree
technique. This means, before the mining start, we only need
to run a Parser one time on the original data to filter out
incomprehensible sequences. After that, the matching will be
done on sequences, not the tree. This would provide a side
benefit of significantly faster matching time despite of having
to match more patterns (The expanded patterns can be larger
than the original set) because there is no need for the matching
algorithm to create and traverse the trees. This side benefit can
also be vital if the analyst needs to analyze millions of reviews
(experiment in Section V-D).

Finally, in review text, to the best of our knowledge, it is
not yet feasible to correctly determine vague concepts such as
[something], or [someone], or [feature], or [do] (as a vague
description of a verb) that are complete and relevant to the idea
users are trying to express in text. The Parse Tree approach
would treat these placeholders as POS tags and annotations
of the tree nodes and would recognize them when it traverses
by. Therefore, to capture the content inside placeholders of
a pattern, we create compositions of Part-of-Speech (POS)
tags that we called Content Fragments. They are combinations
of different Penn Treebank[22] POS tags and fixed words
(e.g. connectors like to, from, or and) that would represent
object compositions (e.g. “sync problem” is an object), or
action compositions(e.g. “synced to music” is an action).
Our approach is more heuristic-based since we do not try to
analyze the tree for reasons stated above. A group of POS
tags, if abides by the common English rules to be a verb
group, noun group, will be considered as one by our approach.
The rules are deducted by our team from several English
grammar learning sources [1, 8]. Figure 1 and Figure 2 show
two example of how we group POS tags together to create
new compositions. Note that, in this solution, we do not try
to capture dependencies (e.g. some independent parts of the
Parse Tree that would qualify as the objectives of a statement),
since it is not necessary as long as we can match the pattern to
the text. Moreover, a parse tree might not be reliable enough
to show their dependencies if users write the reviews without
punctuation or spell the words incorrectly, which is often the
case of mobile app reviews [33].

To formalize this new concept, we call the new linguistic
patterns as: Expandable Lexico-Syntactic Patterns (ELSP)
(Definition III-A). Note that this is not the same as Lexico-
Semantic Patterns defined by Jacobs et al. [18], since we focus
on the syntactic structures, not the semantic components.

Definition 1: Expandable Lexico-Syntactic Pattern (ELSP)



Fig. 1: Example of converting text sequences to ELSP and comparing their similarity (sub-sequence max length = 2)

Please fix the sync problem

please fix the\DT sync\NN problem\NN

please fix [OBJECT]

Fix the sync problem please

fix the\DT sync\NN problem\NN please

fix [OBJECT] please

Tagger & MARK Lemmatizer

ELSP converter

Tagger & MARK Lemmatizer

ELSP converter

50% matched

ELSP similarity

Fig. 2: Example of converting text sequences to ELSP and comparing their similarity (sub-sequence max length = 2)

I would like to have ads removed please

i\PRP would like to have ads\NN remove please

[OBJECT] would like to have [OBJECT] remove please

I would like to remove ads please

i\PRP would like to remove ads\NN please

[OBJECT] would like to remove [OBJECT] please

Tagger & MARK Lemmatizer

ELSP converter

Tagger & MARK Lemmatizer

ELSP converter

76% matched

ELSP similarity

is a sequence of Content Fragment Tokens and Lexico-
Syntactic Tokens (LST), that is: [1] grammatically sufficient;
[2] often indicates the same intentions to all text sequences it
represents; and [3] has a similar intention as other ELSP that
have similar subsequences of Lexico-Syntactic Tokens.

Definition 2: Content Fragment token is a composition of
consecutive Part-Of-Speech (POS) tags and connector words
(e.g. and, or, than, with, to) to describe an OBJECT (object
composition), or an ACTION (action composition) .

Definition 3: Lexico-Syntactic Tokens (LST) are words that
indicate the syntactic structure of a text sequence. The list
of LST includes: connectors (e.g. and, or, than, with, to),
intensifiers (e.g. more, much, less, many), WH (e.g. who,
what, when, where), negations (e.g. not, never), and domain
specific words (e.g. able, unable, freeze, force close, etc).

B. ELSP modeling

In this subsection, we describe step-by-step in detail how
ELSP are obtained and utilized from review text, including:
ELSP conversion, ELSP Expansion, and ELSP Near Matching.

1) ELSP conversion: To convert text sequences to ELSP,
first, the module applies our composition heuristics to the
sequences of POS tags and connector words (e.g. and, to,
from, or, etc). This is to identify the Content Fragments and
convert the whole text sequence into a sequence of tokens.

In the next step MARP uses Stanford Parser to extract
templates that are annotated as phrases or sentence. This will
create a database Sstruct containing the ELSP templates that
were determined as grammatically sufficient. In the ELSP
matching step, Sstruct is used to determine if a text sequence
is grammatically sufficient by comparing its ELSP with this
database. This step is OPTIONAL as it can be done on any

dataset that has similar writings to mobile reviews. The more
grammatically sound that dataset is, the more commonsense
Sstruct should be.

Lastly, we capture any sub-sequence of tokens from user
data that also appeared in Sstruct.

2) ELSP Expansion: In this section, we describe in detail
how MARP expands a set of initial seeding pattern (Si) into
a bigger set of patterns (Sf ) similar to them from data. The
process has three steps:

First, we use Stanford Parser to identify the phrases (sen-
tences or parts of sentence that have the annotation of phrase)
in the chosen data. This means that the more carefully written
data (with correct punctuations and correct spelling), the more
correct the phrases would be identified.

Secondly, for each phrase or sentence, MARP identifies
the LSTs and Content Fragments with the ELSP Conversion
technique discussed above to produce their ELSP templates.

Lastly, MARP compare the ELSP templates from the second
step with each of the patterns in Si. If their similarity passes
a certain threshold (chosen by user), they will be included in
the final result set Sf as expanded patterns.

3) ELSP Near Matching: A “sentence” extracted from
messy review text can sometime actually be composed of mul-
tiple actual sentences that were not punctuated correctly, which
would result in two possible scenarios: Parse Tree does not
represent the correct individual sentences and their structures;
and multiple word sequences in that incorrect sentence would
correctly represent our intention of interest. Moreover, a slight
variation in the way user writes their opinion would make the
matching using the tree annotations comparison less accurate
and would negate possible matches.

Therefore, in our approach, we do not employ Parse Trees



1function nearMatch
2Input: SELSP is a set of ELSP
3Sstruct is a set of ELSP conforming a sufficient grammar structure
4W is an array of words representing a sentence
5ω threshold of ELSP similarity
6Output: SF the set of sequences of words that matched
7SF = ∅
8for (s = 0; s <W .length; s++)
9for (int e = W .length − 1; e > s; e−−)
10α = TextNormalizer.convert2ELSP(s,e,W )
11if(α ∈ Sstruct)
12for each γ ∈ SELSP

13if (patternSim(α,γ) >= ω)
14SF .add(getSequence(s,e,W ))
15break;
16return SF ;

Fig. 3: Matching ELSP with the Near-Matching algorithm

in the process of matching with the ELSP set. Instead, we try
to find the sequences of words that are likely to match the
ELSP set. For a sequence to have the ”likeliness” to match
an ELSP, it has to conform two conditions: [1] It has to be
grammatically sufficient (i.e. a typical phrase or a sentence,
not an incomplete sequence such as “I think this feature is”);
[2] Its ELSP form needs to be similar to the ELSP of interest.

In detail as shown in Algorithm figure 3, we need the input
of SELSP , Sstruct, W , and ω. In which, SELSP is the set
of ELSP of an intention of interest obtained either manually
or from the ELSP Expansion process; Sstruct is a set of
grammatically sufficient ELSP templates that was mined from
the data in the preprocessing step; W is the sequence of words
representing a sentence of interest from a mobile review; ω
is a threshold of similarity for how much the ELSP form of
a text sequence need to be similar to an ELSP in SELSP . In
the algorithm, for each sequences within W (with the minimal
length of 2 words), if its ELSP form belongs to Sstruct and
similar to at least one ELSP in SELSP , then we add that
sequence to the matched set.

Note that, in this algorithm, we find all matched sequences,
not just determining if the original sequence is matched or not.
Therefore, the output would be all the sequences in W that
conform our two conditions mentioned above.

IV. OPINION EXTRACTION WITH MARP

Definition 4: User Opinion of a topic is a fragment of a
review that matches to a linguistic pattern of an intention and
contains at least one keyword of that topic.

A. Overview of MARP

Opinion extraction for reviews has been discussed by Vu et
al. and Panichella et al. in their previous publications. In
their work, respectively, they define an opinion as a group
of keywords or a sentence belong to a topic and a intention.
Both of them have their strong sides: MARK is able to find
customized topic that developers want to know about, while
SURF can classify a sentence into one of the 12 major topics.
However, SURF is limited to a few predefined topics and
intentions, while MARK could not classify intention at all.
In our evaluation in Setion VI, both could not answer the
specific questions that were asked by app developers. In this

Fig. 4: Overview of MARP
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section, we propose MARP as a robust approach to solve both
problems, and to give developers what they desire to know
about the opinions from their users. Furthermore, we hereby
redefine User Opinion as in Definition 4.

As shown in Figure 4, MARP have two different use cases:
Pattern Expansion and Opinion Extraction. The input for each
task module can be modified outside of the framework to di-
rectly affect the results. Modifiable inputs includes: Dictionary
files, Linguistic patterns, topic domain context-independent
words. These inputs are included as artifacts for this paper,
with the domain/functional words we used for reviews.1

The output for Pattern Expander is a list of expanded ELSPs,
while the output of Opinion Extractor is list of reviews with
highlighted opinion text and their intention. An example of
this output can be found in Table III.

B. Preprocessing

App reviews are often messy [32]. Therefore, it is necessary
to preprocess review text before moving further to other text
mining phases. We tries to correct the commonly misspelled
words in review using the mapper provided by MARK [34].
After that, MARP splits the review by sentences. In each
sentence, it reduces words into their root form using a root and
variation irregular dictionary inferred from Wordnet 3.0 [24]
and from MARK’s keywords. When creating this dictionary,
we took out all irregular words (words that do not form their

1ARTIFACT: bit.ly/2UHEO6j



tenses using regular/established patterns, e.g. “begin, began,
begun”) from Wordnet 3.0 and app specific words obtained
from MARK that did not appear in any dictionary (e.g. “noob”
and “noobies”, or “meme” and “memes”). This dictionary
also indicates the correct POS tags of those words in their root
form. For words that are regular and not app specific, we use
MARK’s custom stemmer to reduce them to their root forms
and assign POS tag to them by Stanford POStagger [8]. During
each steps, the process keeps track of the original positions
of corrected/stemmed words in the original sentence. This is
necessary in case users of MARP want to identify/highlight
the analyzed text on the actual review later.

1) Topic Word Expansion: In Topic Word Expansion mod-
ule, we use MARK framework proposed by Vu et al. to expand
the given topic words into similar words using their vector
representation[20]. The goal of this module is to expand the
vocabulary of a certain set of topic keywords provided by
users. This new vocabulary will then be used in the next
module as a input for extraction of opinions about that topic.

2) ELSP extraction: Originally suggested by Vu et al. ’s
idea of extracting phrase template[33] for faster mapping
of phrases, we expanded the concept of phrases into our
concept of ELSP. Within Preprocessor module, if enabled,
the phrases are originally extracted using Stanford phrasal
extraction [8], before converted into an ELSP by creating
Content Fragments. Users can also add more ELSPs for their
domain of interest, enabling the capturing of heuristic patterns
for specific domains. More detail is discussed in Section III.

Despite of the slow performance for ELSP extraction be-
cause of Parse Tree traversing, this process is only needed to
be done once for any dataset or any group of similar datasets.
The extracted patterns can be used on other datasets of the
same domain, such as user reviews for mobile apps.

These patterns can be used as input for the optional Pattern
Expansion module to find more patterns of a certain intention.

Once the user of MARP has the desired patterns, they can
start the Near-Matching module, which takes input of user
reviews, ELSP and topic keywords to find text clauses that fit
such ELSPs and contain at least one topic keyword. More on
how ELSP are matched using our Near-Matching technique is
discussed in Section III-B3.

C. Opinion Extraction

After preprocessing, MARP requires user to clarify a topic
by inputing a set of keywords belong to that topic. This step
can both be done manually or automatically with MARK to
give users freedom of choice over their topic. After choosing
the topic, user should choose the intention they need for the
analysis. MARP provides a default list of intentions including
request, and complaint. User can also choose to use their
own intention patterns to find a specific expression they are
interested in and further expand them with ELSP Expanssion.

The process of extracting opinions is straight forward:
MARP simply finds all the sequences of words that match with
the provided ELSP patterns, then filter them by possession of
keywords in the topic.

V. COMPARING PERFORMANCE WITH STATE-OF-THE-ART
METHODS

In this section, we compare MARP with DECA and SURF
as a baseline to demonstrate the sensitivity, and effectiveness.
Firstly, we describe the datasets we collected and labeled.
Secondly, we compare MARP with DECA for classification
power of two intentions. Lastly, we compare the running time
of two approaches and discuss how it is relevant to analytics.

A. Truth-sets for comparison

1) SURF truth-set: In the evaluations, we will compare
with DECA for classification power as SURF is currently
the state-of-the-art tool and their authors have confirmed with
us that the linguistic classification module it uses is actually
DECA. Therefore, we choose to use their dataset of 1,390
sentences to evaluate2. However, upon inspecting the dataset,
we have found some inconsistencies that could affect the
classsification results of both tools. For example, sentence
“Please fix the bugs!!”(ID: 16378) is labeled as Problem
Discovery but “Please fix this ASAP.”(ID: 3820) is labeled
as Information Giving. Further inspection found more similar
inconsistencies (12% inconsistency). We believe this may
affect the results from DECA. Therefore, we have decided
to re-label this dataset.

We also have decided to rename the label of ”Problem
Discovery” to ”Complaint”, and ”Feature Request” to ”Re-
quest”. This is because we believe user reviews present the
perspective of users, not of developers, thus, anything that
annoyed users would be seen as a problem [21]. Moreover,
the requests from users can also be about other aspects of the
app, not just features (e.g. content, rewards, attention, etc).
Furthermore, the linguistic patterns provided by the authors of
DECA also focused on general requests and complaints more
than just problem discovery nor feature request. Therefore, if
not classified by the more general concept of complaints and
request, it may not be correctly classified by both tools. Lastly,
Information Giving label is largely vague, as any informative
piece of text can be labeled as Information Giving, even if it
is a Request or Complaint. Other labels remained the same.

In the re-labelling process, we have 3 authors sitting to-
gether to discuss on each sentence’s intention, then vote. We
count a vote of any less than three members is a disagreement.
The inter-rater agreement is 0.96 (almost perfect agreement),
measured by Cohens kappa coefficient [31]. We only had
different opinions over vague meaning sentences such as “My
only problem is not being able to stop”. In this sentence, the
user could refer to either excitement over the app or a bug that
prevent stopping the app. Two authors agreed that this sentence
describes a complaint, and one author did not. In many other
cases, we identify a sentence to be both a complaint and a
request, such as the case of ”Good app but wont let me get
wifi please make it on a tablet”. The previous label for this
one was a problem discovery. In the end, the truth-set contains

2www.ifi.uzh.ch/en/seal/people/panichella/tools/SURF.html



Fig. 5: Perfomance (f-score) of MARP on classifying Complaint
intentions two truth-sets by different thresholds of ELSP similarity
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558 complaints, 316 requests, in which 104 are both complaint
and request. There are 620 sentences were labeled as neither.

After re-labelling this dataset, DECA seems to perform
better than before, with higher precision and recall rates,
ultimately leading to a slightly higher F-score (F-score of 0.69
comparing to 0.68 before for complaints and 0.38 comparing
to 0.36 before for requests). We have concluded that our rela-
beling process has improved the performance of the dataset.

2) MGT3 truth-set: SURF truth-set has only sentences that
were extracted by their authors. This may not be represen-
tative of what the actual data may look like. The real data
should be full reviews, not sentences, and are often very
messy [32]. While SURF is a good baseline comparision with
previous tool, we still need another truth-set for the real world
application. Therefore, we have contacted developers from
AMANOTES to request a full set of reviews from Magic Tiles
3 (MGT3) for the whole year of 2017. We repeated the same
labeling process one each review and reached an inter-rater
agreement of 0.94 (Almost perfect agreement). Overall, the
number of labeled reviews was 12,343 reviews, in which, 895
contains complaints, 378 contains requests, 82 contains both.

B. Similarity Threshold Evaluation

As an approach based on similarity measures, we need to
test MARP ’s sensitivities with different thresholds to deter-
mine which threshold is suitable for classification. Therefore,
for this experiment, we apply different thresholds with an
increment of 0.1 each step for both Complaint and Request
intentions on both SURF truth-set and MGT3 truth-set. While
we do aware that expanding patterns can be done multiple
times, with each expansion’s result being the input for the next
expansion, resulting in a larger set of ELSP, we do not consider
this case. This is because in a normal working scenario, we
expect developers only need to expand their linguistic patterns
into ELSP from their data with just one step for convenient.

The average F-score for each threshold are shown in Figure
5 and Figure 6. These results suggest that the threshold 0.5
seems to yield highest F-score for our truth-sets. Therefore,
we used this threshold for all other experiments.

C. RQ1: How does MARP perform comparing to a similar
state-of-the-art tool?

To evaluate sensitivity and effectiveness of our tool, we
designed our tests to answer the research question: How

Fig. 6: Perfomance (f-score) of MARP on classifying Request inten-
tions two truth-sets by different thresholds of ELSP similarity
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does MARP perform comparing to DECA[10] in classification
power with Expanded Linguistic Patterns?

In this experiment, we used the 65 Feature Request and
Problem Discovery linguistic patterns from DECA as input
for MARP to recognize Complaints and Requests. MARP ex-
panded this patterns set based on data one time before classi-
fication. In this evaluation, we calculated recall, precision and
F-score for both tools on SURF truth-set and MGT3 truth-set.
There was no human intervention in this entire test.

The results are shown in table I. Overall, MARP seems
to have better results than DECA in all aspects. This means
that our ELSP approach captured more patterns than the old
approach, and matched with more correct results. One inter-
esting note is that given the differences in nature of the two
truth sets, we can see DECA gives different results for each
(i.e. in SURF truth-set, DECA works better with Complaints,
while in MGT3 truth-set, it works better with Requests). This
is expected, as DECA uses one linguistic pattern sets for both
data, and given that users could express themselves differently
on each dataset, their patterns may not perform similarly. This
confirms our initial hypothesis that manually labeled linguistic
patterns will suffer from various ways of user’s expression.
Meanwhile, MARP works consistently on both truth sets, as
it relies on the data to expand its patterns.

TABLE I: Comparison between ALPACA and DECA over
classification of Requests and Complaints

Complaint Request
ALPACA DECA ALPACA DECA

SURF truth-set Precision 73.5% 74.0% 76.1% 36.1%
Recall 66.4% 63.8% 80.7% 40.2%
F-score 69.8% 68.5% 78.3% 38.0%

MGT3 truth-set Precision 68.9% 51.6% 62.4% 52.9%
Recall 59.0% 21.1% 73.3% 53.8%
F-score 63.6% 30.0% 67.4% 53.3%

D. RQ2: How efficient is MARP comparing to a similar state-
of-the-art tool?

As we analyzed in Section II, DECA uses Parse Trees to
match a pattern to a sentence, which could take a long time to
run for a big dataset. For requirement analytics who need to
work with millions of reviews to find out what user opinions
are, that approach may not be the most efficient. That was
one of the main reasons for MARP to approach it from the
sequence matching perspective.



However, the authors of this paper are aware that if the
processing time of DECA is not significantly long, then it
may not be a problem at all. Therefore, in this experiment, we
compare DECA and MARP running time on several datasets
to see if both tools are reasonable in term of processing time.

We used 5 different datasets on this experience: SURF
truth-set, MGT3 truth-set, Tankraid, Face Dance, and MARK’s
dataset. Tankraid (1648 reviews) and Face Dance (5094 re-
views) are reviews provided by their respective developers for
the entire year of 2017. MARK’s dataset is the dataset of 3
millions reviews from VU et al. .

In this experiment, we use the same computer (Dell Opti-
Plex 7050 3.6GHz Core i7 16GB RAM with 5200rpm HDD)
to run each dataset on both tools. To make sure there is no bias,
we count both the preprocessing time and the classification
time of our tool, since DECA also runs from preprocessing to
classification. Please note that after preprocessing one time,
our tool only need to run the classification step for any
intention, which is significantly faster than running back from
the beginning. Table II shows the results of our experiment.

On average, MARP can process about 2821 reviews per
minute, while DECA can work 127 reviews per minute. This
translates to MARP running with an average of 22.2 times
faster than DECA on almost all datasets. Regretfully, to our
best effort, we could not finish our experiment with MARK
dataset on DECA as it was taking an unreasonably long time
and we could not be sure if there was problem occurred.
Moreover, if the average reviews processed per minute holds
true for this dataset, it could take around 6.5 days for DECA
to finish. We believe a faster computer with an SSD can speed
up this process. However, in real world applications, analytics
may not have a fast enough computer to process millions of
reviews with this approach in a reasonable amount of time.

In our conclusion, our new approach of matching ELSPs
over text sequences gives a better, more consistent result (table
I) in a significantly shorter time than the old approach of
traversing through Parse Trees.

VI. EVALUATION OF USEFULNESS FROM APP DEVELOPERS

SURF has done an excellent job of evaluating its usefulness
with developers of real apps. Even though MARP is addressing
a different problem (finding opinions based on user-defined
topics and intentions), it still makes sense that we need to
evaluate if actual developers think this is useful. Moreover,
since both tools approach finding opinions differently, we need
to compare their approaches from app developers’ view to see
which one is preferable.

A. Data collection

Over the month of December 2017, We had sent out an
participation invitation email to the app developers of 250
selected apps from Google Play. Our selection criteria for this
evaluation consists of new apps in 2017 with less than 50k
reviews (according to AppBrain [2]) as they are usually new
and small apps with a small team. We believe it would be cost
ineffective for them to hire a professional team of customer

support employees or specialized analysts, thus, they would
benefit the most from opinion mining tools. Our invitation
email explains this research and how it can help them to
understand their customers better through app reviews. In our
original plan, to participate in our experiment, they would
need to: [1] write to us of what they want to know from their
reviews; [2] send use the reviews they have from the app stores
for the time duration they want to investigate; [3] receive two
reports from two anonymous tools (SURF and MARP ); [4]
complete a survey about the usefulness of each.

However, to our best effort in contacting the developers,
only 3 app developers were interested and sent their data(Face
Dance Challenge - 5,094 reviews; Tankraid - 1,648 reviews;
Magic Tiles 3 - 12.343 reviews) along with the kind of user
opinions they want to know. Therefore, instead of having them
to fill in a survey, we designed two one-on-one interviews
with a questionnaire for each of them to understand more
about their needs and their evaluation after we sent them the
reports. The first interview was over email, which had only
one questions: what do you want to know from user reviews?
We sent follow up emails to clarify that they understood the
question to identify the topics and intentions that they wanted.
The second interview happened after we sent them two reports
from two tools. This interview is intended to evaluate both
results and identify their preference. To eliminate bias, we
packed the results of both tools in two similar excel files and
did not disclose to them which tool we used. MARP also high-
lighted the review fragments that matched with the opinions,
while SURF highlighted the sentences. In our questionnaire
for evaluating the reports, we never mentioned which one was
from our tool until after the interview. Our questionnaire and
the reports are included in the artifact.

We also agreed to not share the personal identity of the
developers who participate in our interviews, and only refer
to them as representative of their companies/apps.

B. RQ3: Do developers think MARP is useful?

Overall, all three developers thought MARP was useful and
helped them find what they wanted. Followings are individual
reports from each developer:

1) Magic Tiles 3: Magic Tiles 3 is a piano tapping game
developed by AMANOTE for both Android and iPhone. The
app has between 50 millions to 100 millions downloads on
Google Play alone.

During our email interview, we have learned that the de-
veloper wanted to know about three things at that point: how
do user receive the music and songs, and do they have any
suggestion? What do they report about the new Battle Mode?
and do they compare Magic Tiles 3 to their main competitor,
Piano Tiles 2? After more discussion, we also realized that
they want to know about mostly feature requests and bug
reports to improve their app.

With this interview, we prepared three topics in the report:
songs and music, game mode, and piano tiles 2. We used
MARP to find the keywords for those topics and ran them
on their reviews, the whole process took about 15 minutes



TABLE II: Time required for classification using MARP and DECA on different datasets (in minutes and hours)

SURF Tankraid Face Dance MGT3 MARK dataset
1,390 reviews 1,648 reviews 5,094 reviews 12,343 reviews 3 millions reviews

ALPACA 31s 32s 2m 1s 4m 32s 18h 15m

DECA 13m 14m 41m 1h 18m >2d (not finished)

including finding the keywords (The example report can be
found in Table III). With the same amount of text on the same
computer, SURF took 93 minutes in total.

The developers had responded that they liked both reports.
However, there are queries about the app that they wanted but
could not get from SURF reports, but got from our reports.
SURF gave them the information they think is useful, while
MARP gave them the information they asked for. In other
word, both are useful to the developers.

TABLE III: Example report for Magic Tiles 3

Review Intention Topic
This game is cool but you should add more
game modes

Request Game
mode

Please add battle with friend facebook ..
Dnt battle random

Request Game
mode

Can u add some hindi music in it. It will
be awesome

Request Song and
music

This is really good but it needs some pop-
ular songs

Request Song and
music

Song does not sync with my Samsung s8+.
When fixed, will re-rate.

complaint Song and
music

Touching tiles is not synced to music! It’s
just background music! This is a FAKE,
KNOCKOFF of Piano Tiles 2!

complaint Piano
Tiles 2

2) Face Dance Challenge: Face Dance Challenge is a
relatively new app surfaced in the third quarter of 2017. With
the unique idea of adjusting face to music and emojis, the app
has become viral on social media and soon became one of the
top ranking apps late year 2017.

At first, the developers simply wanted to know what users
want to upgrade in the game (i.e. feature requests), therefore,
we ran MARP without topic on their reviews. The results were
various in topic, and we had received positive feedback from
them, including a more specific topic about the ”social” aspect
of the game. Combining these feedbacks, in the final report,
we decided to choose three topics to explore: Face detection
and camera, Social, and in-app-purchase.

Including exploring the topics, MARP took 15 minutes
to run through 5,095 English reviews to produce the report.
SURF took 52 minutes for the same task. Examples of our
report is shown is table IV.

After reading and comparing the two reports, the developers
of Face Dance Challenge have given us the following feed-
back: Both reports are useful to what they do, however, they
would prefer to read our report because of the detailed sum-
mary of opinion in the case they have to read more reviews.
When revealed that our report can offer more topics they
can define, they immediately asked for the topic ”upgrade”,
which was not covered by both tools in the reports. After

TABLE IV: Example report of Face Dance Challenge

Review Intention Topic
Can it be played by two people in one
camera? Cause I would like to try this
with my girlfriend

Request Face
Detection
and Camera

This is so cool.But please make the con-
trols of the face easier.But this is still fun
so much..

Request Face
Detection
and Camera

Try to just stare and do nothing while the
game is on, you’ll still get perfect scores
without moving your face. -the game’s face
recognition is not accurate.

complaint Face
Detection
and Camera

It’s fun and all but when you try to save
your video onto your gallery and then you
close the app, the video wont save and will
just say error occurred. I tried sharing it
to facebook or something or sending the
video to my friends and the file will say
it’s corrupted.

complaint Social

more clarification, we had concluded that this topic is simply
”feature request”, and MARP can simply list all of which
without any topic keyword.

The developers also made a suggestion, which is to list the
results by versions. For now, MARP and SURF both do not
have this functionality, as we plan to add it into MARP later.

3) Tank Raid Online: Tank Raid Online is an online mul-
tiplayer game developed by Wolffun Game in which people
can play as tanks. The additive nature of the game resulted in
5 millions downloads by the end of 2017.

When contacted, its developers only showed interest
for anything that is bug (bug report). Therefore, we ran
MARP specifically for complaint without any topic and re-
ported it back to them. They have verified to us that the
founded bugs were consistent with what they had found by
themselves. To further elaborate the results, we had extracted
the topic from this finding and classified them into three main
topics: Control, Battle and Match Making, In-app-purchase.

Both tool took the same amount of time to generate the
reports, which was about 15 minutes. The example report by
MARP can be seen in table V.

After carefully comparing two reports, developers of Tank
Raid thought both are useful to them. However, they liked the
report with highlighted opinions (MARP ) better and expressed
that they would even pay to use a tool like that with the ability
to choose topics of their interest. In conclusion, MARP is
necessary to them.

VII. RELATED WORK

There is a number of empirical and exploratory studies on
the importance of app’s reviews in app development process.



TABLE V: Example report of Tank Raid Online

Review Intention Topic

You should add a pause button Request Control

Need a fixated joystick Request Control

I’ve noticed a glitch when you die,when you
are respawning you are still able to shoot
someone and thus kill them.When you hold
down the shoot button and you die you
can continue shooting

complaint Control

Please add tower mode....i will give 5 star
for it....please...

Request Battle and
Match
Making

Omgeee!! Good online tank game Nice
game But it should have a group or team
battle And a guild for guild battles...

Request Battle and
Match
Making

In the middle of battle, the screen loading
and back to the home menu without
reason. I lost all my money in pay battle

complaint Battle and
Match
Making

In [30], Vasa et al. made an exploratory study about
how users input their reviews on app stores and what could
affect the way they write reviews. Later, Hoon et al. [15]
analyzed nearly 8 millions reviews on Apple AppStore to
discover several statistical characteristics to suggest developers
constantly watching for the changes in user’s expectations to
adapt their apps. Again on Apple App Store, an emprical
study about user’s feedback was made by Pagano et al. [26].
Similarly, Khalid et al. suggest that there are at least 12 types
of complaints about iOS apps [19]. They explored various
aspects that influent user reviews such as time of release, topics
and several properties including quality and constructiveness
to understand their impacts on apps. Palomba et al. had
conducted a study [27] of whether user reviews really are
taken into account by developers in app development. Bailey et
al. [3] investigated in the feedback loops of iOS reviews and
their behaviors.

Other than reviews, price and rating of apps can also
affect how people provide their feedbacks, as suggested in
[17] by Iacob et al. Meanwhile, Bavota et al.[4] studied the
relationship between API changes and their faulty level with
app ratings. Recently, Martin et al. [23] reported the sampling
bias researchers might encounter when mining information
from app reviews.

There were several works focusing on mining useful in-
formation from user’s reviews, such as one from Chandy et
al. [6] who proposed a classification model for spamming
reviews on Apple AppStore using a simple latent model.
Another team, Carreno et al. [12] extract changes or additional
requirements for new versions automatically using information
retrieval techniques. Guzman et al. [14]. extracts features from
app reviews in form of collocations and summarizes them
with Latent Dirichlet Allocation (LDA)[5] and their sentiment.
Scalabrino et al. developed a CLAP[29] to help categorizing
reviews by their information.

Some other works resulted in complete tool set or prototypes
such as Wiscom [11] or MARA[16], or AR-Miner [7]. Chen
et al. propose a computational framework to extract and rank

informative reviews at sentence level. They adopt the semi-
supervised algorithm Expectation Maximization for Naive
Bayes (EMNB)[25] to classify between informative and non-
informative reviews. To rank the reviews, they use a ranking
schema based on the meta-data of reviews and suggest the
most informative ones. Gao et al. also provided INFAR[13]
to analyze app reviews from multiple analysis dimensions.
Later on, MARK [34] proposed a keyword based approach to
discovering topics and trends using their semantic meaning.

The most closely related work to MARP would be SURF
from Panichella et al. This work helps developers find both
intention and topic from reviews. However, their underlying
method for SURF has some severe limitations: slow speed of
intention classification and inability to expand topic without
modifying the tool. Moreover, since the intention classification
part was based on DECA[28], the classification power is
limited to the cost of labeling linguistic patterns by human.
Our work addresses all of these problem by introducing a
new definition of Expandable Lexico-Semantic Pattern that
can be expanded automatically and be matched without the
cost of traveling Parse Trees. Moreover, we use MARK
approach to topic from keywords to let user define their topic
using keywords. In other words, MARP framework provides
an unbounded, flexible, and robust environment for opinions
discovering on user reviews.

VIII. THREATS TO VALIDITY

The dataset is a threat to the validity of our evaluation, as
our data may not be representative enough to draw conclusion
over millions of reviews and apps. However, we have min-
imized this threat by providing two different truth-sets with
different characteristics: one is from a previous publication,
and one is the unaltered review set of an app for an entire
year. We also offer the truth-sets as an artifact of this paper
for any interested researcher to replicate our experiments.

IX. CONCLUSION

In this paper, we have discussed the need of app developers
to find user opinions about specific topics and intentions of
interest. Subsequently, we introduced MARP as a tool for
solving this problem. We also proposed a novel definition
of the new Expandable Lexico-Syntactic Patterns, along its
characteristics of being able to represent intentions and to
compute a similarity measurement to each other.

Finally, we have evaluated our approach on multiple aspects:
Evaluation of similarity threshold for ELSPs; comparing to
DECA in term of sensitivity, effectiveness, and efficiency;
and conducting three case studies with real app developers
to compare usefulness to SURF. Our evaluation has shown
that MARP is not only faster, more sensitive than previous
state-of-the-art tools but also is useful to developers.

For future work, we are planning to add more default
intention patterns to the tool, and to explore the relationship
between order and similarity of LSTs inside a pattern.
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