
EasyChair Preprint
№ 15402

A Comparative Study of CNN-Based Feature
Extraction and Machine Learning Classifiers for
Identification of Tyre Defect

Festus Orowho and Olufunke Vincent

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 10, 2024



 

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

A comparative study of CNN-based feature 

extraction and machine learning classifiers for 

identification of tyre defect 
 

Orowho, Festus Oghenekaro 

Africa Centre of Excellence on Technology Enhanced Learning, 

National Open University, 

Abuja, Nigeria. 

ace22110013@noun.edu.ng 

 

Vincent, Rebecca Olufunke 

Department of Computer Science, 

Federal University of Agriculture Abeokuta, 

Ogun State, Nigeria  
vincentor@funaab.edu.ng 

Abstract—Tyres play a crucial aspect in road safety and 

vehicle dynamics, as they provide an interface between the 

vehicle and the road, hence they are very susceptible to fatigue 

damage during service. In order not to further affect the service 

life of tyres and automobile safety, tyre manufacturing 

industries require efficient and accurate methods of detecting 

defects in tyres during the production process to ensure that 

defective tyres do not find their way to the market. In this study, 

we explore the performance of transfer learning using a pre-

trained convolutional neural network (CNN) which includes 

ResNet-50 and VGG-19 for feature extraction, combined with 

other machine learning algorithms that include Random-forest, 

Logistic regression, and Support Vector Machine (SVM), for the 

final classification of the tyre defects. The performance of each 

of the combined CNN and traditional machine learning 

algorithms which include ResNet50 + LR, ResNet50 + RF, 

ResNet50 + SVM, VGG19 + LR, VGG19 + RF, and VGG19 + 

SVM, are evaluated and compared to other tyre defect 

classification result in which they combined the algorithm HOG 

+ SVM, LBP + SVM, and HOG + LBP + SVM. The study 

concludes that VGG19 + LR and VGG19 + SVM methods show 

promising results for tyre defect detection as they optimise 

feature representation and classification accuracy. 

Keywords— convolutional neural network; tyre defect 

classification; machine learning; deep learning, transfer learning. 

I. INTRODUCTION 

In the European Union, over 1.3 million road accidents 
occur yearly resulting in over 40,000 deaths [1]. According 
to the World Health Organization, 40% of the deaths and 
people who are disabled from road accidents each year are 
caused by tyre failures [2], hence to ensure high-quality 
products, it is necessary to finalise quality inspection during 
the production stages [3] so that defective tyres do not find 
their way to the market, to avoid tyre related accident or 
financial loss from restitution which is estimated at over 100 
million dollars per year [4].  

During the mass production of tyres, it is difficult to 
conduct the final quality inspection before they are placed on 
the market due to the visual and qualitative inspection aspects 
of the production process which involves high mechanical 
repetition, and strength and is often carried out in a poor 
working environment that is not healthy. As a result of the 
tedious nature of this manual method of inspection, the 
process tends to be very inaccurate and some tyres that have 
nominal features may have associated hidden material and 

geometric defects caused by incorrect production 
management systems as the rubber material ages, it leads to 
non-uniformity on tyre-road interaction and reduction in the 
service life of the tyre as a result of accelerated fatigue 
damage [5] – [7]. This fatigue damage arises from the fact 
that while tyres are in service, the polymer-based materials 
used in the production of the tyre tend to undergo a rise in 
internal temperature and periodic deformation as a result of 
kinetic energy built up inside the tyre which is converted into 
thermal energy that increases the internal temperature of the 
tyre, causing temperature rise that usually led to the 
acceleration of the ageing of the rubber material [8]. 

Like other component defects in automobiles, tyres are 
susceptible to defects that can compromise the integrity and 
safety of vehicles, therefore timely detection and repair are 
crucial for maintaining road safety and preventing potential 
accidents. Some of the common tyre defects include Bubble 
and blisters which may arise during production or Bulges 
caused by impact damage and potholes during service, 
another defect is Sidewall damage caused by impact, and also 
tread wear which may occur from improper inflation, 
misalignment, or suspension issues. Other common defects 
may include punctures, cuts, and gashes on the tyre surface 
from a sharp object, Bead damage, Belt Separation, Tyre Ply 
Separation, and Inner Liner damage [9] – [12]. Currently, 
most tyre manufacturer uses traditional tyre defect detection 
methods carried out manually by x-ray imaging which tend 
to be inefficient, posing a great challenge during defect 
detection at the production stage [13], and researchers have 
conducted various experiments to find a more reliable way to 
improve the operation by using deep learning to automate the 
process of defect detection [13] – [17].  

In a study by Weyssenhoff et al. [10], they analysed 
selected tyre defects and the causes that may arise during the 
manufacturing process, they noted that defects relating to 
non-uniformities are mainly a result of excessive overlaps, 
improper positioning of carcass strips, steel and cap plies, as 
well as the incorrect formation of tread material. The authors 
further stated that these non-uniformity defects are practically 
impossible to detect with human sensory detection methods, 
and this increase the risks of having defective tyres on the 
road. Hence, the process of tyre inspection during production 
needs to be optimised by minimising the need for human 
intervention which may also be associated with errors while 
conducting a visual inspection, and one promising approach 
that is currently being experimented with by researchers for 



 

 

predictive modelling is by the use of artificial neural 
networks. 

In this study, the performance of transfer learning using a 
pre-trained convolutional neural network (CNN) [18] – [23] 
which includes ResNet-50 and VGG-19 for feature extraction 
[24], combined with other machine learning algorithms that 
include Random-forest (RF), Logistic regression (LR), and 
Support Vector Machine (SVM) was inquired for the final 
identification and classification of a good and defective tyre.  

The rest of this paper is arranged as follows. Section 2 
presents the related works, while Section 3 presents the 
methodology employed to do this work. Section 4 shows the 
evaluation of the performance of the models, while Section 5 
offers the discussion. Finally, Section 6 concludes the paper. 

 

II. RELATED WORKS 

Over the years, studies on tyre defect detection have 
become significant. Several experiments have been 
conducted on optimising inspection and quality control of 
tyres during production and while they are in service [25]. 
Some of the investigations include the incorporation of an 
algorithm that is based on Fourier transform on a real-time X-
ray system for defects detection [26], and holographic non-
destructive testing in which the material to be tested is 
subjected to stress that is uniformly distributed across its 
surface, to study the behaviour using holographic 
interferometry to spot the defect which is then visualised in 
the form of inferences superimposed on the surface of the 
material [27] – [29].  

Zhang et al. [15] conducted a study using edge-detection 
approaches for defect detection in tyres. In their research, a 
curvelet-based improved Canny edge detection scheme was 
implemented to detect defective edges in tyre laser 
shearography images by identifying the point of discontinuity 
in the tyre images. The authors noted that it is difficult to 
design a general edge detection algorithm that performs well 
in many contexts and captures the requirements of subsequent 
processing stages, however, their findings suggest that their 
method outperforms the conventional Canny, Sobel, and LoG 
edge detection methods in detecting accuracy of the edge of 
interference fringe. 

The past decades have recorded remarkable successes in 
the use of representation learning for object recognition and 
classification [30], [31], and this has induced increased 
research in the use of CNN methods for the optimisation of 
quality control. Wang et al. [32] conducted a study in which 
they proposed a tyre detection method based on a fully 
convolutional network (FCN), taking advantage of the 
powerful self-learning and segmentation capability of FCN to 
overcome the deficiency of the traditional tyre defect 
detection. Their experiment simplified the full convolution 
segmentation network into binary classification and pixel-
wise prediction models and combined different scale features 
to refine the defection results. They then compared VGGNet 
with the configurations and depths of VGG11, VGG13, and 
VGG16, used a two-dimensional interpolation strategy for 
obtaining the enlarged feature map, and compared the results 
of their experiments with traditional methods. They obtained 
results that showed that their approach provides more 
applicability to many types of defects than the traditional 
method. 

In an experiment conducted by Kuric et al. [5], the authors 
proposed a method that processes tyre sidewall data 
comprising both visual and geometric data characterising the 
surface of the tyre. In their study, the authors utilised 12 Mpx 
monochrome industrial cameras to obtain visual 
characteristics of the tyre sidewall. They identified the 
geometry and abnormalities of the tyre sidewall by a laser 
sensor. They further used an unsupervised clustering method, 
followed by the classification of defects using the VGG-16 
neural network, and obtained over 94% defect-recognition 
accuracy, when this approach was used for the classification 
of abnormalities of tyre sidewall. 

Li et al. [4], proposed a TyreNet model that used an end-
to-end method for automatic tyre defect detection and used a 
model that focused on learning the features of the good tyre 
images rather than defective images. Their experiment used 
the X-ray image output of the tyre from X-ray machines as 
their original dataset. During data preprocessing, the authors 
processed 120,000 images consisting of 100,000 good tyres 
and 20,000 defectives into a total of 480,000 sub-images, and 
to improve the image recognition quality, they further cut the 
image size from (3,456, 22,000) to several sub-images with 
size (900, 900). Their final result showed that their proposed 
TyreNet method with ResNet-50 backbone outperformed the 
other methods (SSD512, YOLOv3, and Faster R-CNN) they 
compared with their work. 

In recent times, methods that involve a combination of 
ANNs with other machine learning algorithms have been 
applied by researchers to optimise the performance of deep 
learning, and also domain adaptation methods have been used 
for solving cross-domain defect detection problems [13], 
[33]. Lin [34] experimented to improve the traditional 
ShuffleNet for tyre crack detection. The author then 
compared their findings with five methods including 
GoogLeNet, traditional ShuffleNet, VGGNet, ResNet, and 
improved ShuffleNet through tyre database verification. 
Their results showed that the improved Shufflenet method 
achieved the highest accuracy of 94.7%, compared to 
GoogleNet, Traditional Shufflenet, VGGNet, and ResNet.  

In another experiment conducted by Liu et al [34], they 
studied tyre appearance defect detection using a method that 
combines a histogram of oriented gradients (HOG) and local 
binary pattern (LBP) features. In their experiment, they 
constructed a tyre image dataset to provide defective and 
normal tyre images, histogram of oriented gradients and local 
binary pattern features of tyre images were extracted 
respectively and used to train the support vector machine 
(SVM) classifier to get the prediction probability values for 
feature fusion and then compared the result of combining the 
algorithm HOG + SVM, LBP + SVM, and HOG + LBP + 
SVM. Their experimental results showed that HOG + SVM 
has an accuracy of 70%, LBP + SVM have an accuracy of 
82%, and HOG + LBP + SVM provides the highest accuracy 
of 84%. Zheng et al [35] attempted to address problems 
associated with intelligent tyre defect detection using an end-
to-end saliency detection network by proposing a novel two-
stage convolutional neural network and an end-to-end 
residual U-structure (HLU2-Net) for tyre defect detection.  

Literature suggests that deep learning-based methods 
have demonstrated promising results in tyre defect detection. 
However, the performance of these models depends very 
much on the availability of large training data, whereas, the 
availability of defective tyre data sets is limited. Also, though 



 

 

the previous works suggest that deep learning algorithms may 
be more suitable as the basic method for virtual defect 
detection of tyres, the works have not yet achieved the 
application-level requirements. Motivated by previous works 
on the identification of tyre defects using deep learning 
methods, the authors conduct this study to compare the 
performance of pre-trained CNN combined with various 
traditional ML algorithms for visual tyre defect detection. 

III. METHODOLOGY 

In this study, we explored the performance of transfer 
learning using a pre-trained convolutional neural network 
(CNN) for feature extraction, combined with other machine 
learning algorithms for the final classification of tyre defects. 
This hybrid approach allows us to leverage the deep feature 
representations extracted by ResNet50 and VGG19 [24] 
while also capitalising on the strengths of traditional machine 
learning algorithms (SVM, RF, and LR) for robust predictive 
modelling. The features extracted by these CNNs 
respectively were combined with the other ML algorithms by 
exploring various fusion techniques to effectively integrate 
the features. We then fine-tune the hyperparameters and 
conduct cross-validation to optimise the model performance. 

A. Theoretical Framework 

An artificial neural network (ANN) is a computational 
model that is inspired by how the human brain is structured, 
and also how it functions. It consists of a network of 
interconnected artificial neurons that operate in tandem to 
learn and recognise patterns [29]. These neurons are 
organised into layers and learn to perform specific tasks by 
adjusting the strength of connections between neurons based 
on input data. Each neuron consists of connections of nodes 
which receive the inputs (x), weight (w) for the corresponding 
signals, and the bias (b). The connection of these neurons is 
associated with weight and applies an activation function (f) 
to its input. ANNs process data through feedforward 
propagation, where inputs move from the input layer through 
the hidden layers to the output layer, and training is carried 
out by backpropagation, which involves adjusting the 
weights and biases to minimise the loss function. The neuron 
can be described with a transfer function according to (1) 
below. 

 𝑦 = 𝑓(𝑤𝑇𝑥 + 𝑏)                         (1)  

During its operation, each neuron receives signals from 
other neurons, processes the input signals, and outputs a 
processed signal to other neurons. One of the earliest and 
most influential ANNs is the perceptron, proposed by Frank 
Rosenblatt in 1958 [37]. It is a single-layer neural network 
that can classify linearly separable input data by adjusting the 
weights of its inputs. However, the perceptron has a limited 
ability to handle more complex input data, leading to the 
development of multi-layer neural networks [38], such as the 
convolutional neural network (CNN). ANNs usually require 
large amounts of training datasets, where the input data is fed 
into the network and the network learns by modifying its 
parameters to minimise the error between the predicted 
output (y) and the correct output (d), via a process known as 
backpropagation [39], which involves propagating the error 
signal back through the network to adjust the weights and 
biases of the neurons [40].  

For a neural network that consists of two input nodes 
(𝑥1𝑎𝑛𝑑 𝑥2) and two output nodes (𝑦1𝑎𝑛𝑑 𝑦2), with a hidden 
layer and an activation function (φ). To obtain the output 
error, first, we calculate the weighted sum (w) of the hidden 
node using the equation 𝑣 = 𝑤𝑥 + 𝑏 and calculate the output 
(y) by putting the weighted sum into the activation function 
(φ ) as expressed by the equation 𝑦 = φ(𝑣) = φ(𝑤𝑥 + 𝑏). 
To train the neural network using the back-propagation 
algorithm, the hidden layer errors (e) are determined from the 
expressed as 𝑒𝑛 = 𝑑𝑛 − 𝑦𝑛,  and the delta rule (δ) is applied, 
given as δ𝑛 = φ′(𝑣𝑛)𝑒𝑛 . Where φ′  is the derivative of the 
activation function. In the back-propagation algorithm, the 
error of the node is obtained from the weighted sum of the 
back-propagation deltas of the output layer. This is expressed 
as follows 

𝑒1
1= 𝑤11

2 δ1 + 𝑤21
2 δ2  (2) 

𝑒2
1= 𝑤12

2 δ1 + 𝑤22
2 δ2  (3) 

Combining (2) and (3), we obtain (4) 

[
𝑒1

1

𝑒2
1] = 𝑊2

𝑇 [
δ2

δ2
]  (4) 

This backward process is repeated for all hidden layers to 
calculate the deltas, and train the neural network with the 
learning rate 𝛼  (where 0 < 𝛼 ≤ 1  ). Training the neural 
network using the backpropagation algorithm requires the 
following steps [39]. 

Step 1: Initialize the weights with the required values. 

Step 2: Enter the input from the training data {input, 
correct output} and obtain the neural network’s output.  

Step 3: Calculate the layer’s error, and the delta, δ, of the 
output nodes. 

  𝑒 = 𝑑 − 𝑦 

  δ = φ′(𝑣)𝑒 

Step 4: Propagate the output node delta, δ, backwards, and 
calculate the deltas of the immediate next (left) nodes. 

  e(𝑘) =  𝑊𝑇  δ 

  δ(𝑘) =  φ′(𝑣𝑘)𝑒𝑘 

Step 5: Repeat Step 4 until it reaches the hidden layer that 
is on the immediate right of the input layer. 

Step 6: Adjust the weights according to the learning rule: 

  ∆𝑊𝑖𝑗 = 𝛼δ𝑖𝑥𝑗 

  𝑊𝑖𝑗 ← 𝑊𝑖𝑗 +  ∆𝑊𝑖𝑗 

Step 7: Repeat Steps 2-6 for every training data point. 

Step 8: Repeat Steps 2-6 until the neural network is 
appropriately trained. 

 

B. Research Design 
 
The study starts with data collection followed by the data 

preparation stage which involves data Pre-processing which 
is crucial for data quality enhancement, and includes image 
resizing, normalization and splitting data into training sets 
and validation sets to create a consistent and reliable dataset. 
The next stage is Feature extraction carried out to extract 



 

 

essential features from the images using the ResNet50 and 
VGG19 pre-trained CNN respectively to capture critical 
patterns and structures. This was followed by a Model 
Training operation where the extracted features were used to 
train a range of ML algorithms, including LR, RF, and SVM, 
and each of the algorithms was carefully tuned and trained to 
optimise their performance. The final stage is the model 
evaluation stage, where various metrics and validation 
techniques are used to assess the performance of the 
models.  Figure 1 below depicts the project's workflow, with 
an illustration of the key stages of the process.  

 

 
1) Data description: The data used for this study was 

obtained from the Mendeley defective tyre dataset, which can 
be found here 
https://data.mendeley.com/datasets/bn7ch8tvyp/1. It 
consisting of 1854 digital images was used in this experiment 
to analyze the condition of tyres. The images of the tyres were 
meticulously labelled and categorized into 'defective' and 'in 
good condition' classes. 

 

 

While performing exploratory data analysis, we observed 

the data was collected across various vehicle categories to 

ensure high-quality imagery, and the dataset contains 1028 

images of defective tyres and 828 images of good tyres. The 

nature of the defects include irregular tread wear, bulges, 

cracks, cuts and punctures, tread separation, tread-

deformation, and blowout [10]. 

2) System Architecture: The study uses ResNet50 and 
VGG19 pre-trained models for feature extraction and 
machine learning algorithms like LR, RF, and SVM for 
predictive analysis. ResNet50 extracts 51,200 features, while 
VGG19 captures localised and fundamental features at 8,192. 
ResNet50 is ideal for high-accuracy tasks and computational 
resources, while VGG19 balances accuracy and efficiency for 
real-time processing or resource limitations. 

a) ResNet50: This is a deep convolutional neural 

network architecture with 50 layers, utilising residual 

connections to address vanishing gradient problems during 

training. It uses a fixed-size input image, convolutional 

layers, and 16 residual blocks. ResNet-50 uses Global 

Average Pooling (GAP) to reduce spatial dimensions and has 

a fully connected layer with many neurons for classification 

tasks. These connections make training deep networks easier 

and improve gradient flow during backpropagation. It also 

has a final output layer that computes class probabilities for 

image classification tasks [41]. 

 

b) VGG19: This is a deep convolutional neural 

network architecture used for image classification, which is 

part of the VGG series developed by the University of 

Oxford. It consists of 19 layers, including 16 convolutional 

and three fully connected layers, with a filter size of 3 × 3 

[41]. 

 

IV. PRESENTATION OF RESULTS 

In this section, we evaluated the performance of 
ResNet50 + LR, ResNet50 + RF, ResNet50 + SVM, VGG19 
+ LR, VGG19 + RF, and VGG19 + SVM respectively. Table 
1 contains the confusion matrix results, which show that the 
number of tyres correctly classified by ResNet50 + LR as 
defective and good respectively are 176 and 130, while the 
wrongly classified cases as defective and good respectively 
are 36 and 30. The number of tyres correctly classified by 
ResNet50 + RF as defective and good are 182 and 112, while 
the cases wrongly classified as defective and good 
respectively are 54 and 24. The number of tyres correctly 
classified by ResNet50 + SVM as defective and good 
respectively are 170 and 127, while the cases wrongly 
classified as defective and good respectively are 39 and 36. 
The numbers of tyres correctly classified by VGG19 + LR as 
defective and good are 179 and 139 respectively, while 27 

 
Figure 1: Pipeline Overview 

 

 
Figure 2: Defective tyre images (left) and good tyre 

images (right) 
 

 
Figure3:ResNet50 Architecture 

 

 
 

Figure 4: VGG19 Architecture 
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cases were classified respectively as defective and good. The 
number of cases correctly classified by VGG19 + RF 
defective and good are 178 and 130 respectively, while the 
number of cases wrongly classified as defective and good 
respectively are 36 and 28. Finally, the number of cases 
classified by VGG19 + SVM as defective and good 
respectively are 180 and 138, while the number of cases 
wrongly classified as defective and good are 28 and 26. 

TABLE 1: CONFUSION MATRIX RESULTS 

Models TP FP TN FN 

ResNet50 + LR 176 36 130 30 

ResNet50 + RF 182 54 112 24 

ResNet50 + SVM 170 39 127 36 

VGG19 + LR 179 27 139 27 

VGG19 + RF 178 36 130 28 

VGG19 + SVM 180 28 138 26 

 
Table 1 shows that for the models in which the traditional 

ML algorithms were combined with ResNet50, ResNet50 + 
RF had the highest cases of TP, while ResNet50 + SVM had 
the lowest cases. For the numbers of TN obtained, Resnet50 
+ RF had the lowest while ResNe50 + LR had the highest. 
Meanwhile, ResNet50 + RF had the highest cases of FP and 
also the lowest cases of FN. 

V. DISCUSSION 

The application of deep learning for the identification and 
classification of good and defective tyres was explored in this 
study. The performance of transfer learning using pre-trained 
CNN that includes ResNet-50 and VGG-19 for feature 
extraction, combined with RF, LR, and SVM for the final 
classification was explored. Table 2 and 3 provide a summary 
of the training and validation Accuracy (Acc), Precision 
(Preci), Recall and F1-score (F1) for the different machine 
learning models used in this study, with each combining a 
specific feature extractor (ResNet50 or VGG19) with one of 
three classifiers (LR, RF, or SVM). 

A. Training Result For The Machine Learning Algorithms 

From Table 2 below, we observed that VGG19 + SVM 
outperforms all the other models in their accuracy, precision, 
recall, and F1 score. The highest accuracy was obtained by 
VGG19 + SVM at 97.24%, followed by VGG19 + RF with 
an accuracy of 95.1%. The lowest accuracy was obtained by 
ResNet50 + SVM at 90.36%. This indicates that the VGG19 
features, when processed with SVM, are highly effective at 
classifying the data during the training phase, while Resnet50 
+ SVM performance at the training phase is lowest compared 
to all the other models. 

TABLE 2: TRAINING RESULT FOR THE MACHINE 

LEARNING ALGORITHMS 

Models 
Acc 

(%) 

Preci 

(%) 

Recall 

(%) 

F1 

(%) 

ResNet50 + LR 94.47 94.48 94.47 94.46 

ResNet50 + RF 92.39 92.71 92.39 92.33 

ResNet50+SVM 90.36 90.36 90.36 90.36 

VGG19 + LR 94 94.03 94 94.01 

VGG19 + RF 95.01 95.02 95.01 95.01 

VGG19 + SVM 97.24 97.25 97.24 97.24 

B. Validation Results For The Machine Learning 

Algorithms: 

Table 3 indicates that VGG19 + LR achieved the highest 
performance with accuracy, precision, recall and F1-score of 
85.48%. VGG19 + SVM also maintain high performance 
with an accuracy and recall of 85.48%, and a precision and 
F1-score of 85.47% respectively. However, when we 
compared the results of Tables 2 and 3, we found that some 
level of consistency exists in the performance of the models 
between training and validation, indicating that overfitting 
was effectively managed. Furthermore, the results show that 
all the models exhibited a slight decrease in performance 
when moving from training to validation, which is a common 
trend due to the model's adaptation to the training dataset. 
Finally, the results in Figure 17 indicate that the chosen 
combinations have a good balance between accuracy, 
precision, recall, and F1-score. 

 

TABLE 3: VALIDATION RESULT FOR THE MACHINE 

LEARNING ALGORITHMS 

Models 
Acc 

(%) 

Preci 

(%) 

Recall 

(%) 
F1 (%) 

ResNet50 + LR 82.26 82.23 82.26 82.22 

ResNet50 + RF 79.03 79.45 79.03 78.7 

ResNet50 + SVM 79.84 79.81 79.84 79.82 

VGG19 + LR 85.48 85.48 85.48 85.48 

VGG19 + RF 82.8 82.78 82.8 82.75 

VGG19 + SVM 85.48 85.47 85.48 85.47 

 

C. Benchmarking Of Our Experimental Result With The 

Result Obtained By Liu et al. [12].  

In the experiment conducted by Liu et al. [12] on tyre 
appearance defect detection, they combined histogram of 
oriented gradients (HOG) and local binary pattern (LBP) 
features with other algorithms HOG + SVM, LBP + SVM, 
and HOG + LBP + SVM, their experimental results showed 
that HOG + SVM have an accuracy of 70%, LBP + SVM 
have an accuracy of 82%, while HOG + LBP + SVM have 
the highest accuracy of 84%. 

 

 

 
Figure 5: Benchmark of the accuracy of different models 

 



 

 

However, when we compared the result of their study 
with the findings of our experiment as shown in Figure 5 
above, it was observed that VGG19+LR and VGG19 +SVM 
achieved a slightly higher accuracy of 1.48% above their 
model HOB+LBP+SVM which has the highest accuracy. 
This inferred that both the VGG19+LR and VGG19 +SVM 
methods achieved a slight improvement in the performance 
for visual tyre defect classification when compared to the 
approach used in the study conducted by Liu et al. [12]. 

VI. CONCLUSION 

The results of our experiment as shown in Table 3 
indicated that combining VGG19 with LR, and RF 
respectively, consistently outperforms the other models. The 
ResNet50 + LR model also performs well on the training 
data. VGG19 + SVM shows the highest accuracy, precision, 
recall, and F1 score among all the combinations, with an 
impressive accuracy of 97.24%. 

This indicates that the VGG19 features, when processed 
with SVM, are highly effective at classifying the data during 
the training phase. For all the models, we observed that for 
the TP, the ResNet50 + RF model stands out with the highest 
instances of 182, followed closely by VGG19 + RF and 
VGG19 + SVM models. For the FP, VGG19 + LR model has 
the lowest instance 27, followed by VGG19 + SVM which 
has 28 instances. The number of instances of TN for "VGG19 
+ LR" was 139, closely followed by "VGG19 + SVM" which 
had 138 instances. Finally, for the FN, ResNet50 + RF had 
the lowest instance of 24, closely followed by “VGG19 + 
SVM” which has 26 instances. 

Hence, the study indicates that the VGG19 feature 
extractor, combined with LR and SVM respectively, provides 
a promising solution to the problem associated with 
automating tyre quality control processes, and aims to 
advance the state-of-the-art defect detection systems during 
tyre production, thereby contributing to the general safety and 
efficiency of the automobile industry. 

This study was limited to the classification of tyres into 
good and defective based on the identified surface defect. 
However, the immediate next research steps should be to 
explore the identification of internal defects and the time to 
failure of tyres in operations.  
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