
EasyChair Preprint
№ 15288

SDN-Based Load Balancing to Achieve Energy
Efficiency in Enterprise Networks

Shabana Muhammad, Karrar Muhammad and
Muhammad Imran Majid

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 23, 2024

1

SDN-based load balancing to achieve energy

efficiency in enterprise networks

Shabana Muhammad

Department of Electrical Engineering,

IoBM
 Karachi, Pakistan

shabana.sm23@gmail.com

Karrar Muhammad Bhutto

Department of Electrical Engineering,

IoBM
Karachi, Pakistan

karrarmuhammadbhutto@gmail.com

Dr. M. Imran Majid

Department of Electrical Engineering,

IoBM

Karachi, Pakistan
imran.majid@iobm.edu.pk

Abstract— Due to a lack of proper traffic management

framework traditional networks suffer from underutilization

of devices and network congestion. High power

consumption and the carbon footprint of traditional

networks is another major problem. Here equivalent

distribution of resources using load balancing and network

power management are essential to optimizing network

resource usage and performance. The software-defined

network (SDN) is a promising solution for network

administrators to address these issues. Software-defined

network-based load balancing and energy awareness for

enterprise networks and explore how these both correlate is

discussed in this paper. The main objective is to minimize

energy consumption and optimize resource usage through

proper load distribution. Round-robin and hashing static

load balancing techniques are used for the analysis. TCP and

UDP protocols are used to generate traffic and evaluate

network performance. Using the Iperf tool, transfer (KB),

jitter (ms), and packet loss (%) parameters of traffic flow

parameters are observed. Average RTT decreased by 53.2%

with round robin and 12.8% with hash-based and overall

jitter by 0.9% CPU utilization (%CPU) is evaluated for

energy consumption before and after load balancing. Results

show better performance of round-robin load balancing.

Even distribution of load via round-robin reduces %CPU

and also idle time (<90%).
Keywords— Software-defined network (SDN), Energy

awareness, Load balancing, SDN control plane, Controller

policies

I. INTRODUCTION

Networking and communication demands of current
networks, including the Internet of Things (IoT), enterprises,
education backbone, and data centers, have varying software
and hardware requirements. A growing number of
heterogeneous devices, connections, and applications with
varying configuration requirements increase the complexity
of such networks, as shown in “Fig. 1” [1]. New devices and
connections also change existing infrastructure, network
functionality, bandwidth requirements, network traffic
patterns, and end-user experience, increasing network
complexity and data processing. One solution to these
challenges is enhancing network adaptability to meet
dynamic demands. Furthermore, IoT networks are
constrained by security, scalability, and energy efficiency
challenges. Currently, software-defined network (SDN)
technology addresses these technical problems of traditional
networks. The decoupling of data and control layers enables
programmability and enhances network functionality and

resource management using protocols. With the
virtualization feature in software-defined networks, multiple
network layers are possible without changing the physical
structure, adjusting network performance based on real-time
statistics. Traffic management techniques further help satisfy
the quality of service [2].

SDN networking framework also promises to address

issues related to high energy requirements. Current networks

are environmentally and economically inefficient due to

higher CO2 emissions and operating costs. One study

estimates that the information, communication, and

technology sector is responsible for 2-4% of global

greenhouse gas emissions [3]. Hence, researchers and

network administrators strive for a trade-off between

energy-efficient network operations and performance.

Dynamic traffic management and energy-aware routing

algorithms enable SDN to save energy [2].

Fig. 1. SDN-based IoT Architecture, and connectivity layout for

application in Education Sector [1].

II. LITERATURE REVIEW

A. Software Defined Network (SDN)

SDN infrastructure provides a centralized control of the

network, where control and data lie on separate layers. The

control layer is responsible for path flow decisions and the

data plane decides transmission of packets. The separation

of the control plane and data forwarding plane and logical

centralized control of network devices have attracted a huge

research interest in SDN. SDN improves resource

management by separating data and control layers.

Software-based programmability and flexible control of

network devices have promoted SDN deployment in diverse

mailto:karrarmuhammadbhutto@gmail.com

2

platforms ranging from radio networks to data centers and

educational institutes [4], [5].

1) SDN Control plane

SDN architecture transformation from the traditional

network rests on four key features, including decoupling of

the control and the data plane, centralized controller, open

interfaces between network elements in control and data

planes, and network programmability [6]. The control plane

consists of one or multiple controllers and many distributed

components called switches.

The controller is software with logically centralized

control of the entire network and is independent of the

physical hardware. It is responsible for managing all

network events, such as deciding, installing, removing, and

modifying packet forwarding and routing rules and

instructing switches [7]. Controller programs these

distributed devices using northbound and southbound

OpenFlow interfaces, as shown in “Fig. 2”. Switches lie in

the data plane and only perform packet forwarding

functions, which are decided by the centralized controller.

With programmable interfaces, the controller can enhance

its functionalities, authorize some applications to manage

network tasks, and set control constraints on network

devices [8].
The controller sets rules for traffic segregation,

distribution, routing, scheduling, and forwarding. With these
features, the controller can forward all traffic to specific links
and devices and put others in off mode using load-balancing
techniques, which minimizes energy consumption. The
controller can also decide routing path optimization based on
the energy levels of each node [9].

Fig. 2. A simplified view of SDN architecture [6].

2) SDN Control Plane Classification

 SDN control plane is classified as physically

centralized, physically distributed, logically centralized,

and logically distributed, as shown in “Fig. 3”. These

classifications have specific drawbacks and advantages.

Physically centralized architectures have a single

controller that manages the whole network. It suffers

from scalability and reliability issues and struggles to

ensure performance as network size grows. Physically

distributed architectures address scalability, reliability,

single point of failure, and performance. Logically

centralized architectures consist of a main controller and

backup controllers. The main controller has the decision-

making authority in the network. Backup controllers take

over the network charge and manage resources in case of

failure of the main controller. Logically centralized

infrastructure works best for intra-domain management

of networks. However, logically centralized controllers

fail to manage heterogeneous networks. Logically

distributed control extends compatibility for

heterogeneous architectures, such as IoT and backbone

networks [10].

Fig. 3. SDN Control Plane Classification

3) Controller Customization Policies in SDN

Customization policies in an SDN controller aim to

improve network quality of service performance, enhance

security, and reduce network complexity, data processing,

and overall operating costs. Customization policies for the

SDN controllers that improve performance include

application awareness, identity awareness, security

awareness, and energy awareness [11], [12], [13], [14], as

shown in “Fig.4”. These are discussed in detail as follows.

Fig. 4. Controller customization policies in SDN.

a) Application Awareness

 Since different applications have different

bandwidth, latency, and other quality of service

requirements, network operators map and manage traffic

and performance specific to these requirements. Traffic is

differentiated according to traffic identifiers, such as

application name, application category, device class, and

media type. The controller manages traffic flow based on

bandwidth, latency, and specific traffic identifiers [11],

[12].

b) Identity Awareness

 The controller manages traffic based on a person (or

a machine) that takes part in a specific communication.

Network infrastructures with identity awareness

accommodate network users based on pre-defined

privileges. The chief purpose of assigning privileges is to

ensure security or quality of service for each user

category. Traffic identifiers may include personal ID,

name, or groups [13].

c) Security Awareness

 Security awareness establishes access constraints on

communications between end users or devices to prevent

network intrusion and security attacks. Security

awareness-based architectures can establish an alternative

path, route traffic to specific routes to prevent traffic

congestion and detect DDoS attacks. Traffic management

and security policies are specified in the network

controller [14].

3

d) Energy Awareness

An SDN controller with an energy awareness policy

adjusts network energy consumption to be proportionate to

the traffic load. For instance, the controller can switch off

some low-load network devices and preserve energy

resources for other devices and applications. It is a

sustainable solution for rapidly advancing technologies like

cloud computing where energy consumption increases with

more users and data processing. The energy-saving

approach optimizes network performance and reduces

operating costs [15].

B. Controller Policies for Energy Awareness

High energy consumption and load imbalance are among

the major problems as the network grows in complexity.

Network complexity increases energy consumption and

overall network operating costs, and both these constraints

lead to significant design and network optimization

challenges.

SDN presents an opportunity to optimize network

energy and balance load simultaneously. Shortest-path

criteria for routing network traffic achieve energy efficiency

by minimizing the engagement time of nodes and end-to-

end delay [16].

Assefa and Özkasap [17] divide energy awareness

policies into software-based and hardware-based categories.

They further classify these broad categories into sub-

categories. Software-based energy-saving approaches

include traffic awareness, end system awareness, and rule

placement. Traffic-aware policies tweak network elasticity,

topology awareness, active/inactive time, and queuing

engineering. End system awareness is achieved by utilizing

system resources efficiently via relieving underutilized

servers and engaging only some limited servers for the

tasks. Rule placement refers to setting up rules to minimize

memory utilization and the number of active links.

Hardware-based policies optimize the power consumption

of network devices (especially forwarding switches) through

specific configurations and minimize information storage

requirements.

Some research attempts find that changing device

configuration parameters like the number, type, and location

of forwarding entries and the number of tables used for

these entries can alter data storage requirements and

consequently total power consumption [18].

Neama et al. [19] propose an Energy Efficient Integral

Routing (EEIR) algorithm to optimize energy consumption.

EEIR algorithm optimizes the number of active links and

switches of unnecessary links while maintaining route

feasibility for network demands. Their results highlight the

potential of EEIR in saving power up to 44.42%. Meeting

traffic demands with a minimum number of active links

reduces energy consumption and saves energy by up to 60%

in another study [20]. They use traffic engineering to

minimize overall power consumption.

He et al. [21] present a joint approach to save energy and

balance load in data centers. They manage network traffic

and balance load with the maximum available bandwidth

multipath routing technique. They save energy by

scheduling traffic flows and minimizing active switches and

links. Galán-Jiménez et al. [22] address energy efficiency

and load balancing in IP/SDN hybrid networks using Hybrid

Spreading Load Algorithm (HSLA). Their algorithm

balances network traffic and power consumption by

minimizing link usage.

C. Load Balancing in SDN

SDN paradigm introduces network scalability to

accommodate a growing number of users and devices with

programmability in controllers. However, large-scale

networks also generate huge data, which leads to controller

overloading. Network overloading or load imbalance is a

major problem in networking. Network overloading and

improper load distribution can exhaust the network,

compromise network performance, and even introduce

delay.

To address these problems, load balancers or load

balancing policies are fused into the network management

plane. Load balancing enhances adjustability in the SDN

network to distribute workload efficiently. With load

balancing policies, the network adapts to changing traffic

patterns and flows, prevents network overloading, and

optimizes resource allocation. The main purpose of a load

balancer is to boost network performance, maintain stability,

build fault tolerance, and incorporate adjustability for future

modifications [23].

a) Types of Load Balancing Algorithms

There are primarily two load-balancing algorithms in

software-defined networks: static and dynamic. Some

research studies and experiments have attempted to combine

the best features of static and dynamic and devised a hybrid

load-balancing algorithm [24].

 Static Load Balancing

The static algorithm divides traffic load within the servers

equally. It is suitable for networks with low load variation

and the algorithm is aware of available resources.

 Dynamic Load Balancing

The dynamic algorithm searches for servers with low loads

and engages them accordingly. It is based on the system’s

real-time statistics and network traffic to adjust the load.

The network load is distributed based on the current traffic

pattern.

 Hybrid Load Balancing

Hybrid load balancing addresses shortcomings of static and

dynamic algorithms and combines their best features to

manage and distribute traffic flow efficiently and improve

network performance.

D. Performance Evaluation Metrics

The literature review highlights that traffic engineering

substantially affects overall network energy consumption

[20], [21], [22]. For instance, underutilized or

overburdened network resources have varying energy

requirements. Uneven load distribution can affect network

performance. Thus, we evaluate the correlation of proper

load balancing on energy efficiency. Our objective is to

identify whether optimal resource utilization can minimize

energy consumption. The effect of load distribution is

analyzed using round-trip time (RTT), transfer, bitrate,

jitter, and packet loss parameters. CPU utilization statistics

are used to analyze and gauge overall energy consumption.

4

III. METHODOLOGY

An SDN-based enterprise network is created in Mininet

emulator 2.3.1b4, installed in Ubuntu 20.04 LTE VM Box.

Mininet’s CLI is used to develop manual topologies and

analyze two network architectures. The first architecture

consists of two hosts (h1, h2) with IP addresses ‘10.0.0.1’

and ‘10.0.0.2’ connected to two distributed switches (S1,

S2) and a controller with IP address ‘127.0.0.1’ at port 6633

(see Fig. 5). Later, the network is scaled up by connecting a

third switch (S3), which helps evaluate the impact on load

balancing and energy consumption (see Fig. 6). The load

balancer class is inherited from ryu-manager 4.34 to

configure the RYU as a load balancing server. RYU

controls the entire network framework and manages packet

flow based on pre-defined policies or dynamic traffic

patterns. Switches are configured to communicate with the

controller for packet flow using the default features of

OpenFlow 1.3. RTT is observed to evaluate the

communication connection status between hosts. The

"Iperf" tool is used to create TCP/UDP traffic flows and

monitor network performance in a client/server model using

performance metrics, i.e., transfer, bitrate, jitter (ms), and

packet loss (%). Lastly, CPU utilization is analyzed to

observe energy consumption using round-robin and hash-

based load-balancing techniques.

Fig. 5. Architecture with two hosts, switches, and a controller.

Fig. 6. Architecture with two hosts, three switches, and a controller.

IV. RESULTS AND DISCUSSION

A. Round trip time evaluation before and after load

balancing

Load balancing improves network response time and reduce

latency. RTT and ping time are evaluated to check network

response time using the ‘ping’ command. RTT is the total

time taken by a packet from sender to receiver and vice

versa. Ping displays four values of RTT: minimum, average,

maximum, and median deviation. Average RTT values for 4

random packet samples is analyzed, as given in Table 1 and

Table 2. “Equation 1” and “Equation 2” are used to

measure efficiency in RTT response before and after load

balancing. Results show that the average RTT for 60 packets

decreases by 53.2% with round robin and 12.8% with the

hash-based approach for the first architecture model.

However, average RTT increases in both load-balancing

techniques by 2.8% and 16.8% for the second model. Zero

packets are lost in all cases. Given a confidence level of

95%, the confidence interval for all cases is less than 1.

TABLE 1 AVERAGE RTT BEFORE LB

TABLE 2 AVERAGE RTT AFTER LB

%decrease = {(Avg. RTT before LB-Avg. RTT after LB)/ Avg. RTT
before LB} *100 (1)

%increase = {(Avg. RTT after LB-Avg. RTT before LB)/ Avg. RTT after

LB} *100 (2)

B. Analysing TCP and UDP outputs before and after load

balancing

The impact of load balancing in an SDN-based enterprise

network is evaluated using TCP and UDP protocols. The

throughput was slightly lower due to the overhead from

load-balancing logic and flow rule installation, including

round-robin and hash-based approaches. Throughput was

higher without load balancing but at the cost of uneven

traffic distribution, as some paths are underutilized while

others handle more load. The ultimate choice of using a

load-balancing technique is a tradeoff between various

performance parameters. Table 3 and Table 4 show TCP

traffic flow before and after load balancing. Table 5 and

Table 6 show UDP traffic flows. UDP traffic statistics show

load balancing slightly reduced jitter (0.9%). Overall, TCP

bitrate is higher in round-robin compared to hash-based load

balancing, whereas UDP performance remains unchanged.

Furthermore, TCP has better performance in terms of lower

packet delay and packet loss than UDP in both load-

balancing approaches.

TABLE 3 TCP OUTPUT BEFORE LOAD BALANCING

5

TABLE 4 TCP OUTPUT AFTER LOAD BALANCING

TABLE 5 UDP OUTPUT BEFORE LOAD BALANCING

TABLE 6 UDP OUTPUT AFTER LOAD BALANCING

C. CPU energy consumption

Network devices and servers consume power while

operating, computing, and storing information. The chief

performance goal is to utilize these resources resourcefully

in their active operating state, otherwise, idle state power

consumption is a waste. Energy consumption is evaluated

based on the information that the CPU is the core

component to estimate the overall power consumption of a

server, CPU utilization and energy consumption are linearly

linked, and servers consume 60-70% of their peak power in

an idle state [25] [26]. The main objective is to minimize

CPU utilization (%CPU) and idle time (id). If id>90%, CPU

capacity is underutilized. Load balancing helps make a

tradeoff between CPU utilization and id to minimize overall

power consumption. %CPU is evaluated using Mininet CLI

using the command ‘top -p $(pgrep ovs-

vswitchd)’. Table 7 and Table 8 show CPU statistics

before and after load balancing. CPU utilization is lower and

stable after load balancing. Similarly, the id statistic in the

round-robin is lower than the hash-based technique.

TABLE 7 CPU UTILIZATION BEFORE LB

TABLE 8 CPU UTILIZATION AFTER LB

V. CONCLUSION

In this paper, traffic management issues and the high

energy consumption of traditional networks are addressed

using the SDN framework. Round-robin and hash-based

techniques were used to manage traffic among network

devices and evaluate the impact of load balancing on energy

efficiency. Simulation results using TCP and UDP traffic

flow highlight that efficient load balancing can minimize

energy consumption and network congestion without packet

loss. Overall, results show round robin has better

performance than the hash-based load balancing technique.

REFERENCES

[1] M.I. Majid et al., “NFV and Secure Cognitive SDN for
Educational Backbone Network Deployment: Cognitive
Enabled Routing in SDN”, Published in Spectrum and
Power Allocation in Cognitive Radio Systems, K.
Suriyan, R. Dhaya, R. Nagarajan, and A. Karthick, IGI
Global, 2024, ch.10, pp. 300.

[2] B. G. Assefa and Ö. Özkasap, “A Survey of Energy
Efficiency in SDN: Software-based Methods and
Optimization Models”, Journal of Network and
Computer Applications, vol. 137, pp.127–143, 2019,
https://doi.org/10.1016/j.jnca.2019.04.001

[3] I. Godlovitch, A. Louguet, D. Baischew, M. Wissner,
and A. Pirlot. “Environmental impact of electronic
communications”. Study for BEREC. Accessed: June
29, 2024. [Online]. Available:
https://www.berec.europa.eu/sites/default/files/files/doc
ument_register_store/2022/3/BoR%20%2822%29%203
4_External%20Sustainability%20Study%20on%20Envi
ronmental%20impact%20of%20EC.pdf

[4] A. Hodaei and S. Babaie, “A Survey on Traffic
Management in Software-Defined Networks:
Challenges, Effective Approaches, and Potential
Measures”, Wireless Personal Communications,
vol.118, pp.1507–1534, 2021.

[5] F. Bannour, S. Souihi, and A. Mellouk, “Software-
defined networking”. Published in Extending Sdn
Control to large-scale networks, vol. 2. London,
Hoboken, NJ: ISTE Ltd; John Wiley & Sons, Inc, 2022.

[6] O. David, P. Thornley, and M. Bagheri, "Software
Defined Networking (SDN) for Campus Networks,
WAN, and Datacenter," International Conference on
Smart Applications, Communications and Networking
(SmartNets), Istanbul, Turkiye, 2023, pp. 1-8,
doi:10.1109/SmartNets58706.2023.10215722.

[7] O. Padon, N. Immerman, A. Karbyshev, O. Lahav, M.
Sagiv, and S. Shoham, “Decentralizing SDN Policies”,
in Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages, 2015, pp. 663-676.

[8] J. Xie, D. Guoa, Z. Hua, T. Qua, and P. Lv, “Control
plane of software defined networks: A survey”,
Computer Communications, pp. 1-10, 2015.

[9] M.F. Tuysu, Z. K. Ankarali, and D. Gözüpek, “A
survey on energy efficiency in software defined
networks”, Computer Networks, vol. 113, pp.188-204,
2017.

[10] F. Bannour, S. Souihi, and A. Mellouk, Software-
defined networking. volume 2: Extending Sdn Control
to large-scale networks Vol 2. London, Hoboken, NJ:
ISTE Ltd; John Wiley & Sons, Inc, 2022.

[11] M. H. Al-Bowarab, N. A. Zakaria, and Z.Zainal-Abidin,
“Load Balancing Algorithms in Software Defined

6

Network”, International Journal of Recent Technology
and Engineering (IJRTE), vol.7, 2019.

[12] F.N. Nife and Z. Kotulski, “Application-Aware
Firewall Mechanism for Software Defined Networks”,
Journal of Networking System Management, vol. 28,
pp.605-626, 2020.

[13] L. Polčák, L. Caldarola, A. Choukir, D. Cuda, M.
Dondero, D. Ficara, B. Frankova, M. Holkovic, R.
Muccifora, and A. Trifilo, “High-Level Policies in
SDN”, in E-Business and Telecommunications: 12th
International Conference, Colmar, France, 2016,
doi:10.1007/978-3-319-30222-5_2

[14] V. Varadharajan, K. Karmakar, U. Tupakula and M.
Hitchens, "A Policy-Based Security Architecture for
Software-Defined Networks," IEEE Transactions on
Information Forensics and Security, vol. 14 (4), pp.
897-912, April 2019, doi: 10.1109/TIFS.2018.2868220

[15] V. Verma and M. Jain, “Energy-efficient Techniques in
SDN: Software, Hardware, and Hybrid Approaches”,
Philippine Journal of Science, vol. 153(1), pp.1-22,
February 2024.

[16] Rego, A., Sendra, S., Jimenez, J. M., & Lloret, J.
“OSPF routing protocol performance in Software
Defined Networks”, in Fourth International Conference
on Software Defined Systems (SDS), 2017,
doi:10.1109/sds.2017.7939153

[17] B. G. Assefa and Ö. Özkasap, “A survey of energy
efficiency in SDN: Software-based methods and
optimization models”, Journal of Network and
Computer Applications, vol. 137, pp. 127–143, 2019.

[18] R. Gandotra and Levi Perigo, “Comparing Energy
Efficiencies of SDN Hardware Based on Forwarding
Configurations”, in 29th International Conference on
Computer Communications and Networks (ICCCN),
2020, doi: 10.1109/ICCCN49398.2020.9209678

[19] G. N. Neama and M. K. Awad, “An Energy Efficient
Integral Routing Algorithm for Software-Defined
Networks”, in IEEE 86th Vehicular Technology
Conference (VTC-Fall), 2017
doi:10.1109/vtcfall.2017.8288351

[20] A. Fernández-Fernández, C. Cervell´o-Pastor, and L.
Ochoa-Aday, “Achiveing Energy Efficiency: An
Enrgy-Aware Approach in SDN”, in IEEE 59th Global
Communications Conference, 2016,
doi:10.1109/GLOCOM.2016.7841561

[21] Y. He, Z. Lu, J. Lei, S. Deng, and X. Gao, “Joint
optimization of energy saving and load balancing for
data center networks based on software defined
networks”, Concurrency and Computation: Practice
and Experience, vol.33(9), 2020, doi:10.1002/cpe.6134

[22] J. Galán-Jiménez, M. Polverini, F.G. Lavacca, J. L.
Herrera, and J. Berrocal, “Joint energy efficiency and
load balancing optimization in hybrid IP/SDN
networks”, Annals of Telecommunications, vol. 78, pp.
13-31, 2023.

[23] L. Peterson, C. Cascone, B. O’Connor, T. Vachuska,
and B. Davie, “Software-Defined Networks: A Systems
Approach”, Systems Approach LLC, 2021, pp. 194.

[24] A. Ghosh and T. Manoranjitham, “A study on load
balancing techniques in SDN”, Journal of Engineering
and Technology, vol. 7, pp.174-177, 2018.

[25] F. Armenta-Cano, A. Tchernykh, J. M. Cortés-
Mendoza, R. Yahyapour, A. Y. Drozdov, P. Bouvry, D.
Kliazovich, and A. Avetisyan, “Heterogeneous Job
Consolidation for Power Aware Scheduling with
Quality of Service”, in RuSCDays'15 - The Russian
Supercomputing Days, 2015.

[26] T. V. Duy, Y. Sato, and Y. Inoguchi, “Performance
evaluation of a Green Scheduling Algorithm for energy
savings in Cloud computing”, IEEE International
Symposium on Parallel & Distributed Processing,
Workshops and Phd Forum (IPDPSW), 2010,
doi:10.1109/IPDPSW.2010.5470908.

https://www.researchgate.net/profile/Libor-Polcak?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://ieeexplore.ieee.org/xpl/conhome/9205796/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9205796/proceeding
https://doi.org/10.1109/ICCCN49398.2020.9209678

