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Abstract— Due to a lack of proper traffic management 

framework traditional networks suffer from underutilization 

of devices and network congestion. High power 

consumption and the carbon footprint of traditional 

networks is another major problem. Here equivalent 

distribution of resources using load balancing and network 

power management are essential to optimizing network 

resource usage and performance.  The software-defined 

network (SDN) is a promising solution for network 

administrators to address these issues. Software-defined 

network-based load balancing and energy awareness for 

enterprise networks and explore how these both correlate is 

discussed in this paper. The main objective is to minimize 

energy consumption and optimize resource usage through 

proper load distribution. Round-robin and hashing static 

load balancing techniques are used for the analysis. TCP and 

UDP protocols are used to generate traffic and evaluate 

network performance. Using the Iperf tool, transfer (KB), 

jitter (ms), and packet loss (%) parameters of traffic flow 

parameters are observed. Average RTT decreased by 53.2% 

with round robin and 12.8% with hash-based and overall 

jitter by 0.9% CPU utilization (%CPU) is evaluated for 

energy consumption before and after load balancing. Results 

show better performance of round-robin load balancing. 

Even distribution of load via round-robin reduces %CPU 

and also idle time (<90%).    
Keywords— Software-defined network (SDN), Energy 

awareness, Load balancing, SDN control plane, Controller 

policies 

I. INTRODUCTION 

Networking and communication demands of current 
networks, including the Internet of Things (IoT), enterprises, 
education backbone, and data centers, have varying software 
and hardware requirements. A growing number of 
heterogeneous devices, connections, and applications with 
varying configuration requirements increase the complexity 
of such networks, as shown in “Fig. 1” [1]. New devices and 
connections also change existing infrastructure, network 
functionality, bandwidth requirements, network traffic 
patterns, and end-user experience, increasing network 
complexity and data processing. One solution to these 
challenges is enhancing network adaptability to meet 
dynamic demands. Furthermore, IoT networks are 
constrained by security, scalability, and energy efficiency 
challenges. Currently, software-defined network (SDN) 
technology addresses these technical problems of traditional 
networks. The decoupling of data and control layers enables 
programmability and enhances network functionality and 

resource management using protocols. With the 
virtualization feature in software-defined networks, multiple 
network layers are possible without changing the physical 
structure, adjusting network performance based on real-time 
statistics. Traffic management techniques further help satisfy 
the quality of service [2]. 

SDN networking framework also promises to address 

issues related to high energy requirements. Current networks 

are environmentally and economically inefficient due to 

higher CO2 emissions and operating costs. One study 

estimates that the information, communication, and 

technology sector is responsible for 2-4% of global 

greenhouse gas emissions [3]. Hence, researchers and 

network administrators strive for a trade-off between 

energy-efficient network operations and performance. 

Dynamic traffic management and energy-aware routing 

algorithms enable SDN to save energy [2].  

 

 
Fig. 1. SDN-based IoT Architecture, and connectivity layout for 

application in Education Sector [1]. 

II. LITERATURE REVIEW 

A. Software Defined Network (SDN)  

SDN infrastructure provides a centralized control of the 

network, where control and data lie on separate layers. The 

control layer is responsible for path flow decisions and the 

data plane decides transmission of packets. The separation 

of the control plane and data forwarding plane and logical 

centralized control of network devices have attracted a huge 

research interest in SDN. SDN improves resource 

management by separating data and control layers. 

Software-based programmability and flexible control of 

network devices have promoted SDN deployment in diverse 
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platforms ranging from radio networks to data centers and 

educational institutes [4], [5].  

1) SDN Control plane  

SDN architecture transformation from the traditional 

network rests on four key features, including decoupling of 

the control and the data plane, centralized controller, open 

interfaces between network elements in control and data 

planes, and network programmability [6]. The control plane 

consists of one or multiple controllers and many distributed 

components called switches.  

The controller is software with logically centralized 

control of the entire network and is independent of the 

physical hardware.  It is responsible for managing all 

network events, such as deciding, installing, removing, and 

modifying packet forwarding and routing rules and 

instructing switches [7]. Controller programs these 

distributed devices using northbound and southbound 

OpenFlow interfaces, as shown in “Fig. 2”. Switches lie in 

the data plane and only perform packet forwarding 

functions, which are decided by the centralized controller. 

With programmable interfaces, the controller can enhance 

its functionalities, authorize some applications to manage 

network tasks, and set control constraints on network 

devices [8].   
The controller sets rules for traffic segregation, 

distribution, routing, scheduling, and forwarding. With these 
features, the controller can forward all traffic to specific links 
and devices and put others in off mode using load-balancing 
techniques, which minimizes energy consumption. The 
controller can also decide routing path optimization based on 
the energy levels of each node [9]. 

 

Fig. 2. A simplified view of SDN architecture [6]. 

2) SDN Control Plane Classification 

 SDN control plane is classified as physically 

centralized, physically distributed, logically centralized, 

and logically distributed, as shown in “Fig. 3”. These 

classifications have specific drawbacks and advantages. 

Physically centralized architectures have a single 

controller that manages the whole network. It suffers 

from scalability and reliability issues and struggles to 

ensure performance as network size grows. Physically 

distributed architectures address scalability, reliability, 

single point of failure, and performance. Logically 

centralized architectures consist of a main controller and 

backup controllers. The main controller has the decision-

making authority in the network. Backup controllers take 

over the network charge and manage resources in case of 

failure of the main controller. Logically centralized 

infrastructure works best for intra-domain management 

of networks. However, logically centralized controllers 

fail to manage heterogeneous networks. Logically 

distributed control extends compatibility for 

heterogeneous architectures, such as IoT and backbone 

networks [10]. 

 
Fig. 3. SDN Control Plane Classification 

3) Controller Customization Policies in SDN 

Customization policies in an SDN controller aim to 

improve network quality of service performance, enhance 

security, and reduce network complexity, data processing, 

and overall operating costs. Customization policies for the 

SDN controllers that improve performance include 

application awareness, identity awareness, security 

awareness, and energy awareness [11], [12], [13], [14], as 

shown in “Fig.4”. These are discussed in detail as follows.  

 
Fig. 4. Controller customization policies in SDN. 

a) Application Awareness  

 Since different applications have different 

bandwidth, latency, and other quality of service 

requirements, network operators map and manage traffic 

and performance specific to these requirements. Traffic is 

differentiated according to traffic identifiers, such as 

application name, application category, device class, and 

media type. The controller manages traffic flow based on 

bandwidth, latency, and specific traffic identifiers [11], 

[12].   

b) Identity Awareness  

 The controller manages traffic based on a person (or 

a machine) that takes part in a specific communication. 

Network infrastructures with identity awareness 

accommodate network users based on pre-defined 

privileges. The chief purpose of assigning privileges is to 

ensure security or quality of service for each user 

category. Traffic identifiers may include personal ID, 

name, or groups [13].   

c) Security Awareness  

 Security awareness establishes access constraints on 

communications between end users or devices to prevent 

network intrusion and security attacks. Security 

awareness-based architectures can establish an alternative 

path, route traffic to specific routes to prevent traffic 

congestion and detect DDoS attacks. Traffic management 

and security policies are specified in the network 

controller [14]. 
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d) Energy Awareness  

An SDN controller with an energy awareness policy 

adjusts network energy consumption to be proportionate to 

the traffic load. For instance, the controller can switch off 

some low-load network devices and preserve energy 

resources for other devices and applications. It is a 

sustainable solution for rapidly advancing technologies like 

cloud computing where energy consumption increases with 

more users and data processing. The energy-saving 

approach optimizes network performance and reduces 

operating costs [15]. 

B. Controller Policies for Energy Awareness  

High energy consumption and load imbalance are among 

the major problems as the network grows in complexity. 

Network complexity increases energy consumption and 

overall network operating costs, and both these constraints 

lead to significant design and network optimization 

challenges.  

SDN presents an opportunity to optimize network 

energy and balance load simultaneously. Shortest-path 

criteria for routing network traffic achieve energy efficiency 

by minimizing the engagement time of nodes and end-to-

end delay [16].  

Assefa and Özkasap [17] divide energy awareness 

policies into software-based and hardware-based categories. 

They further classify these broad categories into sub-

categories. Software-based energy-saving approaches 

include traffic awareness, end system awareness, and rule 

placement. Traffic-aware policies tweak network elasticity, 

topology awareness, active/inactive time, and queuing 

engineering. End system awareness is achieved by utilizing 

system resources efficiently via relieving underutilized 

servers and engaging only some limited servers for the 

tasks. Rule placement refers to setting up rules to minimize 

memory utilization and the number of active links. 

Hardware-based policies optimize the power consumption 

of network devices (especially forwarding switches) through 

specific configurations and minimize information storage 

requirements.  

Some research attempts find that changing device 

configuration parameters like the number, type, and location 

of forwarding entries and the number of tables used for 

these entries can alter data storage requirements and 

consequently total power consumption [18].  

Neama et al. [19] propose an Energy Efficient Integral 

Routing (EEIR) algorithm to optimize energy consumption. 

EEIR algorithm optimizes the number of active links and 

switches of unnecessary links while maintaining route 

feasibility for network demands. Their results highlight the 

potential of EEIR in saving power up to 44.42%. Meeting 

traffic demands with a minimum number of active links 

reduces energy consumption and saves energy by up to 60% 

in another study [20]. They use traffic engineering to 

minimize overall power consumption.   

He et al. [21] present a joint approach to save energy and 

balance load in data centers. They manage network traffic 

and balance load with the maximum available bandwidth 

multipath routing technique. They save energy by 

scheduling traffic flows and minimizing active switches and 

links. Galán-Jiménez et al. [22] address energy efficiency 

and load balancing in IP/SDN hybrid networks using Hybrid 

Spreading Load Algorithm (HSLA). Their algorithm 

balances network traffic and power consumption by 

minimizing link usage.  

C. Load Balancing in SDN 

SDN paradigm introduces network scalability to 

accommodate a growing number of users and devices with 

programmability in controllers. However, large-scale 

networks also generate huge data, which leads to controller 

overloading. Network overloading or load imbalance is a 

major problem in networking. Network overloading and 

improper load distribution can exhaust the network, 

compromise network performance, and even introduce 

delay.  

To address these problems, load balancers or load 

balancing policies are fused into the network management 

plane. Load balancing enhances adjustability in the SDN 

network to distribute workload efficiently. With load 

balancing policies, the network adapts to changing traffic 

patterns and flows, prevents network overloading, and 

optimizes resource allocation. The main purpose of a load 

balancer is to boost network performance, maintain stability, 

build fault tolerance, and incorporate adjustability for future 

modifications [23].  

a) Types of Load Balancing Algorithms  

There are primarily two load-balancing algorithms in 

software-defined networks: static and dynamic. Some 

research studies and experiments have attempted to combine 

the best features of static and dynamic and devised a hybrid 

load-balancing algorithm [24].   

 Static Load Balancing  

The static algorithm divides traffic load within the servers 

equally. It is suitable for networks with low load variation 

and the algorithm is aware of available resources.  

 Dynamic Load Balancing  

The dynamic algorithm searches for servers with low loads 

and engages them accordingly. It is based on the system’s 

real-time statistics and network traffic to adjust the load. 

The network load is distributed based on the current traffic 

pattern.   

 Hybrid Load Balancing  

Hybrid load balancing addresses shortcomings of static and 

dynamic algorithms and combines their best features to 

manage and distribute traffic flow efficiently and improve 

network performance.  

D. Performance Evaluation Metrics 

The literature review highlights that traffic engineering 

substantially affects overall network energy consumption 

[20], [21], [22].   For instance, underutilized or 

overburdened network resources have varying energy 

requirements. Uneven load distribution can affect network 

performance. Thus, we evaluate the correlation of proper 

load balancing on energy efficiency. Our objective is to 

identify whether optimal resource utilization can minimize 

energy consumption. The effect of load distribution is 

analyzed using round-trip time (RTT), transfer, bitrate, 

jitter, and packet loss parameters. CPU utilization statistics 

are used to analyze and gauge overall energy consumption.  
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III. METHODOLOGY 

An SDN-based enterprise network is created in Mininet 

emulator 2.3.1b4, installed in Ubuntu 20.04 LTE VM Box. 

Mininet’s CLI is used to develop manual topologies and 

analyze two network architectures. The first architecture 

consists of two hosts (h1, h2) with IP addresses ‘10.0.0.1’ 

and ‘10.0.0.2’ connected to two distributed switches (S1, 

S2) and a controller with IP address ‘127.0.0.1’ at port 6633 

(see Fig. 5). Later, the network is scaled up by connecting a 

third switch (S3), which helps evaluate the impact on load 

balancing and energy consumption (see Fig. 6). The load 

balancer class is inherited from ryu-manager 4.34 to 

configure the RYU as a load balancing server.  RYU 

controls the entire network framework and manages packet 

flow based on pre-defined policies or dynamic traffic 

patterns. Switches are configured to communicate with the 

controller for packet flow using the default features of 

OpenFlow 1.3. RTT is observed to evaluate the 

communication connection status between hosts. The 

"Iperf" tool is used to create TCP/UDP traffic flows and 

monitor network performance in a client/server model using 

performance metrics, i.e., transfer, bitrate, jitter (ms), and 

packet loss (%). Lastly, CPU utilization is analyzed to 

observe energy consumption using round-robin and hash-

based load-balancing techniques. 

 
Fig. 5. Architecture with two hosts, switches, and a controller.  

 

Fig. 6. Architecture with two hosts, three switches, and a controller.  

IV. RESULTS AND DISCUSSION 

A. Round trip time evaluation before and after load 

balancing  

Load balancing improves network response time and reduce 

latency. RTT and ping time are evaluated to check network 

response time using the ‘ping’ command. RTT is the total 

time taken by a packet from sender to receiver and vice 

versa. Ping displays four values of RTT: minimum, average, 

maximum, and median deviation. Average RTT values for 4 

random packet samples is analyzed, as given in Table 1 and 

Table 2.  “Equation 1” and “Equation 2” are used to 

measure efficiency in RTT response before and after load 

balancing. Results show that the average RTT for 60 packets 

decreases by 53.2% with round robin and 12.8% with the 

hash-based approach for the first architecture model. 

However, average RTT increases in both load-balancing 

techniques by 2.8% and 16.8% for the second model. Zero 

packets are lost in all cases. Given a confidence level of 

95%, the confidence interval for all cases is less than 1. 

 
TABLE 1 AVERAGE RTT BEFORE LB 

 

TABLE 2 AVERAGE RTT AFTER LB 

 
 

%decrease = {(Avg. RTT before LB-Avg. RTT after LB)/ Avg. RTT 
before LB} *100          (1) 

%increase = {(Avg. RTT after LB-Avg. RTT before LB)/ Avg. RTT after 

LB} *100          (2) 

B. Analysing TCP and UDP outputs before and after load 

balancing  

The impact of load balancing in an SDN-based enterprise 

network is evaluated using TCP and UDP protocols. The 

throughput was slightly lower due to the overhead from 

load-balancing logic and flow rule installation, including 

round-robin and hash-based approaches. Throughput was 

higher without load balancing but at the cost of uneven 

traffic distribution, as some paths are underutilized while 

others handle more load. The ultimate choice of using a 

load-balancing technique is a tradeoff between various 

performance parameters.  Table 3 and Table 4 show TCP 

traffic flow before and after load balancing. Table 5 and 

Table 6 show UDP traffic flows. UDP traffic statistics show 

load balancing slightly reduced jitter (0.9%). Overall, TCP 

bitrate is higher in round-robin compared to hash-based load 

balancing, whereas UDP performance remains unchanged. 

Furthermore, TCP has better performance in terms of lower 

packet delay and packet loss than UDP in both load-

balancing approaches.   

TABLE 3 TCP OUTPUT BEFORE LOAD BALANCING 
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TABLE 4 TCP OUTPUT AFTER LOAD BALANCING 

 

TABLE 5 UDP OUTPUT BEFORE LOAD BALANCING  

 

TABLE 6 UDP OUTPUT AFTER LOAD BALANCING  

 

C. CPU energy consumption  

Network devices and servers consume power while 

operating, computing, and storing information.  The chief 

performance goal is to utilize these resources resourcefully 

in their active operating state, otherwise, idle state power 

consumption is a waste. Energy consumption is evaluated 

based on the information that the CPU is the core 

component to estimate the overall power consumption of a 

server, CPU utilization and energy consumption are linearly 

linked, and servers consume 60-70% of their peak power in 

an idle state [25] [26]. The main objective is to minimize 

CPU utilization (%CPU) and idle time (id). If id>90%, CPU 

capacity is underutilized. Load balancing helps make a 

tradeoff between CPU utilization and id to minimize overall 

power consumption. %CPU is evaluated using Mininet CLI 

using the command ‘top -p $(pgrep ovs-

vswitchd)’. Table 7 and Table 8 show CPU statistics 

before and after load balancing. CPU utilization is lower and 

stable after load balancing. Similarly, the id statistic in the 

round-robin is lower than the hash-based technique.   

 
TABLE 7 CPU UTILIZATION BEFORE LB  

 
 
 
 
 

TABLE 8 CPU UTILIZATION AFTER LB 

 

V. CONCLUSION  

In this paper, traffic management issues and the high 

energy consumption of traditional networks are addressed 

using the SDN framework. Round-robin and hash-based 

techniques were used to manage traffic among network 

devices and evaluate the impact of load balancing on energy 

efficiency.  Simulation results using TCP and UDP traffic 

flow highlight that efficient load balancing can minimize 

energy consumption and network congestion without packet 

loss. Overall, results show round robin has better 

performance than the hash-based load balancing technique.  
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