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the CLIP model is trained by providing (photo, text) data pairs, where text
corresponds to the oxidant which was used to synthesize the result seen in the
given photo. Conventional image classifiers simultaneously train a visual feature
extractor and a linear classifier to predict the class label, while the CLIP model
simultaneously trains a visual feature encoder and a text encoder to predict suit-
able (photo, text) pairs. Encoded oxidizer namings (latents) during training are
encouraged to match synthesis result image latents as much as possible by mini-
mizing pairs of their the dot products. The minimized values locate on the main
diagonal of this resulting matrix. The used architecture in our experimentation
can be seen in Fig. 1.

Fig. 1. CLIP training

During inference the text encoder simulates a zero-shot linear classifier by
embedding the oxidizer class names of the graphene images dataset and classifies
the graphene synthesis results by their corresponding oxidizers. The image latent
vector is scalar multiplied with each of the possible naming latent vectors and the
smallest value of all obtained is selected. Then an oxidizer naming, which latent
vector provided this smallest value in product with image latent, is selected and
passed as an output. This process is illustrated by Fig. 2.

Due to the property of learning from the natural textual description of an
image, the CLIP model requires less data to achieve the same accuracy result
compared to conventional computer vision classification models. These require a
larger volume of training material corresponding to the distribution of use. This
is relevant as the available amount of graphene data is very limited.

The CLIP model and its ability to embed textual input is also used in models
for generating images from text: DALL-E 2, Stable Diffusion [18, 22]. It is this
use case that is relevant to the purpose of this paper. Other use cases of the
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Fig. 7. Frechet Inception Distance scores
Fig. 8. Frechet Inception Distance score
percentages

Fig. 9. Generated samples (resolution 128 x 128)

Conclusion

The novel text2image usage to encode chemical formulas for chemical images gen-
eration was proposed and successfully implemented. The results demonstrated
the image generation part to be working more sufficient than graphene synthe-
sis results classification. The encoder model assigns similar probabilities to all
guess variants of the class. Furthermore, the diffusion model (generator) gener-
ates images similar to what would be expected, but these images are not detailed
enough, lacking resolution. However, based on the tasks of text2image, these two
models can be adapted to predict the results of graphene synthesis reactions.
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On the other hand, for the development of a high-quality image prediction
tool, there remain a number of tasks related to the adaptation of the CLIP model
and the generative diffuser.
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