
EasyChair Preprint
№ 9498

Computing (n x n) Matrices’ Algebra

Ishraga Mustafa Awad Allam

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 5, 2025

COMPUTING (N X N) MATRICES’ ALGEBRA

Ishraga Mustafa Awad Allam1

1 Information Technology & Network Administration, University of Khartoum,
Khartoum City, Khartoum, Sudan

ishragaallam@Gmail.com OR imallam@uofk.edu

ABSTRACT

Mathematics is in everything we find in life. Mathematics is on our mental thinking. From our daily digit
world of our lives nowadays: like cameras, televisions, computers and telephones to computing
mathematics can solve a lot of things without common mistakes. Matrices with open sizes can resolve a
large number of things; i.e., resolutions of games 3D, graphics, science, animations, economics,
encryption, geography, physics, constructions, signal processing and pattern recognition. In statistics,
matrices solving can calculate probabilities matrices like that of predictions, especially with large size
one. Matrix or Matrices are used in optic science to account for refraction and reflection. The results
obtained are satisfactory and reliable. They can be improved to solve simultaneous equations with n
variables, to solve many applications.

KEYWORDS

Mathematics, Applied Statistics, Matrices, Matrices’ Inverses, Algorithms, Matrices’ Determinants,
Matrices’ Transposes, Matrices’ Factorization & Linear Algebra

1. INTRODUCTION

Matrices have the following uses in our day-to-day life. Some of the uses of matrices in daily life are
mentioned below:

1. Encryption – A very common use of matrix in daily life is encryption. We use it to scramble data for
security purposes, and to encode and decode this data, we require matrices. There is a key that helps
encode and decode data which is generated by matrices.

2. Games especially 3D – One application of matrices is in games. We use it to alter the object, in 3d
space. They use the 3d matrix to 2d matrix to convert it into the different objects as per requirement.

3. Economics and Business -To study the trends of a business, shares, etc. and to create business
models etc.

4. Construction – Another common application of matrices in real life is the construction sector. Have
you seen some buildings that are straight but sometimes architects try to change the outer structure
of the building? This can be done with matrices. A matrix is made of rows and columns you can
change the number of rows and columns within a matrix. Matrices can help support various
historical structures.

5. Dance – contra dance – It is used to organize complicated group dances.
6. Animation – It can help make animations more precise and accurate.
7. Physics – Matrices are applied in the study of quantum mechanics, electrical circuits, and optics. It

helps in the calculation of battery power outputs, resistor conversion of electrical energy into
another useful energy. Therefore, matrices play a major role in calculations. Especially in solving
the problems using Kirchoff’s laws of voltage and current. Matrices are also useful in electrical
circuits and quantum physics. Moreover, matrices are used to solve AC network equations in
electrical circuits.

8. Geology – Matrices are used for taking seismic surveys. [1]

2. Matrices

A matrix is a list of numbers, letters or symbols, called elements, written as a rectangular array with
each element occupying a definite position, with the whole array enclosed by a bracket.

In many practical situations matrices provide a neat and concise way of storing information. What is
more, if the information in one matrix is related to that in another, it is often possible to process the data
and extract further information by the application of a few simple operations. [2]

 Matrices’ Algebra

Matrices’ Algebra for (n x n) Matrix is a C/C++ program, that can compute all linear Algebra for any
entered-input Matrix.
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <conio.h>
#define z 5 // Because of cofactors 4-Dimensions, the size is limited to 5. If RAM of computer is bigger,
//this number can be increased.
typedef float matrix[z][z];
matrix Mat, cofact, tran, inv, co[z][z], prod, Mat1, Mat2;
FILE *Fx; // To print all results also on a text file, called matrices.txt.
int i, j, k, n;
void SHOW(matrix S) {

int x, y;
printf("\n\r");
fprintf(Fx, "\n\r");
for(x = 0; x < n; x++) {

for(y = 0; y < n; y++) {
textcolor(y + 10);

cprintf(" %16.3f", S[x][y]);
fprintf(Fx, " %16.3f", S[x][y]);

}
printf("\n\r");
fprintf(Fx, "\n\r");
}

printf("\n\r");
fprintf(Fx, "\n\r");
}

The Show function is to display the contents of any Matrix on screen and also to a text file.
Here the for loops starts from 0, not leaving undesirable space empty, not like in [3]. I rectifier it.

2.1. Addition of Two Matrices
Each coefficient of the matrix A, is added to the corresponding on of matrix B. The resultant matrix is

prod which is a global matrix.[4]
void add(matrix A, matrix B) {

textcolor(15);
cprintf("\n\r Adding the TWO Matrices \n\r");
fprintf(Fx, "\n\r Adding the TWO Matrices \n\r");
for(i = 0; i < n; i++) {

for(j = 0; j < n; j++) {
prod[i][j] = A[i][j] + B[i][j];

}
}
SHOW(prod);

}

2.2. Subtraction of Two Matrices
Each coefficient of the matrix A, is subtracted from the corresponding on of matrix B. The resultant

matrix is prod which is a global matrix.
void sub(matrix A, matrix B) {

textcolor(14);
cprintf("\n\r Subtracting the TWO Matrices \n\r");
fprintf(Fx, "\n\r Subtracting the TWO Matrices \n\r");
for(i = 0; i < n; i++) {

for(j = 0; j < n; j++) {
prod[i][j] = A[i][j] - B[i][j];

}
}
SHOW(prod);

}

2.3. Multiplication of Two Matrices
Summing each coefficient of each row of the matrix A, is multiplied to the corresponding coefficient of

column one of matrix B. The resultant matrix is prod which is a global matrix.
void mult(matrix A, matrix B) {

textcolor(15);
cprintf("\n\r Multiplying the TWO Matrices \n\r");
fprintf(Fx, "\n\r Multiplying the TWO Matrices \n\r");

 for(i = 0; i < n; i++)

 for(j = 0; j < n; j++) {

 prod[i][j] = 0;

 for(a = 0; a < n; a++)

 prod[i][j] += A[i][a] * B[a][j];

 }

SHOW(prod);
}

2.4. Transpose of the Matrix
Each coefficient of matrix A is replaced with the corresponding coefficient of the interchange of the

number of column and row; i.e., the row becomes the column and vice versa. The resultant matrix is tran.
void transpose(matrix A) {

float tmp;
textcolor(14);
cprintf("\n\r The Transpose of the Matrix \n\r");
fprintf(Fx, "\n\r The Transpose of the Matrix \n\r");
for(i = 0; i < n; i++)

for(j = 0; j < n; j++) {
tmp = A[i][j];
A[i][j] = A[j][i];
A[j][i] = tmp;
}

SHOW(A);
}

2.5. Determinant of the Matrix
The function takes two variables, number of size of the matrix, and the matrix A. A Test is done on the

size of the matrix as if it is a 2 x 2 one or 3 x 3 or more than 3 x 3. If it is a more than 3 x 3 matrix, the
cofactors are inserted into a local 4-dimenisional variable, giving each coefficient of the matrix A, which
is a local one, its corresponding cofactor matrix, by eliminating those along row and column of the
coefficient. After that the function calls itself with the cofactors of the first row of the cofactor matrix but

with a size less that that of the mother’s one by one. It keeps calling [5] until the size is 3. The return
resultant of the function is a local variable which with each call this value is pushed into a stack, It keeps
calling until the size is 3, calculate it [6] and starts popping back from the stack. Also the value gets
negative if the number of cofactor is dividable by 2. A python program is also available on [3] with the
same algorithm. It gives the determinants with very large sizes.

(i). n = 2

[8], [9] and [7].

(ii)/ n = 3

[7]

(iii) n > 3

[8]. [9] and [7]

double det(int b, matrix M) {

matrix C[z][z];
double determinant, d, M1, M2, M3;
int c = 0, p, q, x, y;

if(b == 2) determinant = (M[0][0] * M[1][1]) - (M[0][1] * M[1][0]); // [10]
 else if(b == 3) {

 M1 = (M[0][0] * (M[1][1] * M[2][2] - M[2][1] * M[1][2]));
M2 = (M[1][0] * (M[0][1] * M[2][2] - M[2][1] * M[0][2]));
M3 = (M[2][0] * (M[0][1] * M[1][2] - M[1][1] * M[0][2]));
determinant = M1 - M2 + M3;

}
else if(b >= 4) {
for(x = 0; x < b; x++)

for(y = 0; y < b; y++) {
p = 0;
for(i = 0; i < b, i != x; i++) { // [14]
q = 0;
for(j = 0; j < b, j != y; j++) {

C[x][y][p][q] = M[i][j];
cprintf("\n\r COEFFICIENTS of cofactoring : [%d] [%d] [%d] [%d] :%16.8lf", x, y, p, q, C[x][y][p][q]);

q = q + 1;
}

p = p + 1;
}

}
determinant = 0;
for(i = 0; i < b; i++) {

c = c + 1;
d = det(b - 1, C[i][0]); // [11] and [12]
if(fmod(c, 2) == 0) d = -d; // [3]
determinant = determinant + (M[i][0] * d);
}

}
//free(C);
return determinant;

}

2.6. Cofactors of the Matrix
A Cofactor, in mathematics, is used to find the inverse of the matrix, adjoined. The Cofactor is the

number you get when you remove the column and row of a designated element in a matrix, which is just a
numerical grid in the form of rectangle or a square.
The cofactor is always preceded by a positive (+) or negative (-) sign.[13]

Again like that of the determinant, but with the Test of the size of the matrix, this can be 2.

void cof(matrix A) {

int p, q, x, y;
double d;
if(n == 2) {

cofact[0][0] = A[1][1];
cofact[0][1] = -A[0][1];
cofact[1][0] = -A[1][0];
cofact[1][1] = A[0][0];
}

else {
for(x = 0; x < n; x++) {

for(y = 0; y < n; y++) {
p = 0;
for(i = 0; i < n, i != x; i++) {

q = 0;
for(j 0; j < n, j != y; j++) {

co[x][y][p][q] = A[i][j];
cprintf("\n\r COEFFICIENTS of cofactoring : %d by %d : %16.8f", p, q, o[x][y][p][q]);

q = q + 1;
}

p = p + 1;
}

d = pow(-1, (x + y)) * det(n - 1, co[x][y]);

cofact[x][y] = d;
}

}
}

//free(co);
}

2.7. Inverse of the Matrix
As the determinant is calculated and the cofactors, it had became easier to calculate the inverse of the

matrix A. The cofactors are given by calling the previous function cof(A).
void inverse(matrix A) {

cof(A);
transpose(cofact);
textcolor(14);
cprintf("\n\r The Inverse of the Matrix \n\r");
fprintf(Fx, "\n\r The Inverse of the Matrix \n\r");
for(i = 0; i < n; i++) {

for(j = 0; j < n; j++) {
inv[i][j] = (1 / det(n, A)) * cofact[i][j];
//cprintf("\n\r The Inverse of the matrix is %d %d %16.8lf", i, j, inv[i][j]);
}

printf("\n\r");
}

SHOW(inv);
}

2.8. Factorization of the Matrix
Initiatively the resultant is filled with zeros The idea is that a counter is used to keep count each time a

value between 2 and 1000 is tried to be dividable by the coefficient of the matrix A.
Each row coefficients are checked. If the counter, reach n, number of size, then it is used as a factor and

all coefficients are divided by this counter number, which is between 2 and 1000.
The limit of the range for factors, 1000, can be set to much larger value.
If there is more than one factor, then they are multiplied with each one.
A similar procedure is done for coefficients of the same column.
A python3 version of this code with the same algorithm. [14].

void factors(matrix M) {
float res;
int f, g;

for(i = 0; i < n; i++)
for(j = 0; j < n; j++)

prod[i][j] = 0;
for(i = 0; i < n; i++) {

res = 1;
for(k = 1000; k >= 2; k--) {

f = 0;
g = 0;
for(j = 0; j< n, fmod(M[i][j], k) == 0; j++)

f = f + 1;
if(f == n) {
for(j = 0; j < n; j++)

M[i][j] = M[i][j] / k;
res = res * k;
}

for(j = 0; j< n, fmod(M[j][i], k) == 0; j++)
g = g + 1;

if(g == n) {
for(j = 0; j < n; j++)

M[j][i] = M[j][i] / k;

res = res * k;
}

}
prod[i][i] = res;

}
SHOW(prod);

}

3. Results

The logical of the procedures is correct, but the C program does not give accurate results. If a python
program with the same logic, gives right results. [3] and [13]. Even with large n; i.e., the determinants for
a matrix with n = 12, the identity one, gives the result of one. I did try the inverse of the matrix, to solve n
variables simultaneous equations but did not work for me [15]. I was using Anaconda python version 3.7.
More research need to be done.

4. Conclusion

Matrices, squared ones (n x n) can be computed by this study and may we obtain a finer results. I do
hope this can make life, better. Easy procedures can be seen to resolve, big finer results. Determinants can
be used to solve these equations (Cramer's rule), although other methods of solution are computationally
much more efficient. Determinants are used for defining the characteristic polynomial of a matrix, whose
roots are the eigenvalues. In geometry, the signed n-dimensional volume of a n-
dimensional parallelepiped is expressed by a determinant. This is used in calculus with exterior
differential forms and the Jacobian determinant, in particular for changes of variables in multiple
integrals.

Acknowledgements

For Dr. Mohamed ElAmin ElTom; with sincere gratitude and appreciation:
I am so incredibly fortunate to have the benefit from his invaluable guidance, support and continual

advice, without which this work would not have seen the light.
I am greatly indebted to Prof. Sharma from India, and Prof. Joseph A. Jervase, from South Sudan and

who works at Oman.
Also my gratitude is extended to my family with all my heart and love, especially my late father.

References
[1] https://www.embibe.com/exams/where-are-matrices-used-in-daily-life/

[2] H. M. Kenwood & G. M. Staley (1984), Mathematics An Integrated Approach, Macmillan Education Limited,
ISBN: 0-333-24581-4.

[3] Ishraga Allam (2022), n x n matrices’ determinant, My python3 program to compute Matrices (n x n)
determinants. DOI: 10.13140/RG.2.2.12920.52483,
https://www.researchgate.net/publication/357512465_n_x_n_Matrices'_determinant

[4] Ishraga Allam(2022), Solution to n variables Simultaneous Equations, DOI: 10.13140/RG.2.2.26358.27201,
https://www.researchgate.net/publication/360912075_Solution_to_n_variables_Simultaneous_Equations

[5] Matrix(mathematics) https://en.wikipedia.org/wiki/Matrix_(mathematics)

[6] Determinant of A Matrix, https://www.mathsisfun.com/algebra/matrix-
determinant.html#:~:text=The%20determinant%20helps%20us%20find,linear%20equations%2C%20calculus
%20and%20more.Leendert Ammeraal (1986), C for Programmers, John Wiley & Sons Ltd., ISBN: 0 471
91128 3.

[7] L. Bostock, S. Chandler & C. Rourke, Further Pure Mathematics, Stanley Thomes (Publishers) 1984. ISBN: 0-

85950-103-5.

[8] G. Hailey, Linear Algebra, Addison Wesley, 1961. Chapters: 1, 4 and 5.

[9] B. Nobbler and I. Daniel, Applied Linear Algebra, Chapters: 2 and 3.

[10] H. Schneider & G. P. Baker, Matrices and Linear Algebra, Holy Rinehart, 1968. Chapters: 1 and 2.

[11] Bjarne Stroustrup, AT&T, The C++ Programming Language, Addison-Wesley Longman Inc. (1997), Third
Edition. ISBN: 0-201-88954-4.

[12] Michael A. Smith, Object-Oriented Software in C++, Chapman & Hall (1993), First Edition, ISBN: 0 412
55380 5.

[13] https://byjus.com/cofactor-
formula/#:~:text=A%20Cofactor%2C%20in%20mathematics%2C%20is,of%20rectangle%20or%20a%20squar
e.

[14] Ishraga Allam (2022), Factorizing an n x n matrix, My python3 program to compute Matrices (n x n) factor
vector and the resultant matrix. DOI: 10.13140/RG.2.2.19631.41128
https://www.researchgate.net/publication/357517251_Factorizing_an_n_xn_matrix

[15] Determinant of A Matrix, https://www.mathsisfun.com/algebra/matrix-
determinant.html#:~:text=The%20determinant%20helps%20us%20find,linear%20equations%2C%20calculus
%20and%20more.Leendert Ammeraal (1986), C for Programmers, John Wiley & Sons Ltd., ISBN: 0 471
91128 3.

[16] Ishraga Allam (2019): Computing (n x n) Matrices Algebra.

DOI: 10.13140/RG.2.2.23727.46249

https://www.researchgate.net/publication/350194651_Computing_n_x_nMatrices'_Algebra

Authors

Master in Computer and Mathematics Sciences:
 Joint Honour on Computer and Statistics Sciences.

