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Abstract 

Graph Anomaly Detection (GAD) has applications across social networks, financial systems, 
and cyber security. Traditional GAD methods, particularly energy-based models (EBMs), 
detect abnormal patterns within graph structures but require extensive training data, 
limiting their use on smaller graphs. This paper proposes a novel approach integrating 
transfer learning with EBMs to improve anomaly detection performance on graphs with 
limited data. The model pre-trains on large source graphs and transfers knowledge to target 
graphs with less data, achieving higher accuracy and computational efficiency. We present a 
rigorous mathematical foundation and provide detailed experimental results, including 
performance metrics, across five tables. 
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1. Introduction 

Graph anomaly detection is vital for identifying irregular patterns in networks, from social 
media to financial fraud. EBMs are probabilistic models that assign an energy value to each 
graph structure: higher values indicate potential anomalies. While effective, EBMs require 
extensive training data specific to each graph. This limitation is addressed by using transfer 
learning, where the model pre-trains on a large graph dataset and adapts to smaller, target-
specific graphs, making it possible to detect anomalies more accurately and efficiently with 
minimal data. 

This paper develops the methodology for integrating transfer learning with EBMs and 
presents a detailed mathematical formulation, experimental setup, and performance 
evaluation. 

2. Mathematical Formulation 

2.1 Graph Representation 

 

2.2 Energy-Based Model (EBM) 

 



2.3 Transfer Learning in GAD 

 

3. Experimental Setup 

3.1 Datasets 

Experiments were conducted on three datasets: 

1. Dataset A: A social network graph with 10,000 nodes. 
2. Dataset B: A financial transaction graph with 2,500 nodes. 
3. Dataset C: A communication network graph with 1,500 nodes. 

Each dataset includes labeled anomalies to evaluate detection accuracy. 



3.2 Evaluation Metrics 

The model's performance is measured using accuracy, F1-score, and inference time. 
Additionally, Transfer Learning Improvement (TLI) quantifies the performance gain: 

 

4. Results and Analysis 

4.1 Energy Score Distribution 

Table 1 compares the mean and variance of energy scores assigned to normal and 
anomalous nodes across datasets. A larger variance in anomalous scores indicates that 
anomalies are distinguishable from normal nodes. 

 

Explanation: This table shows that anomalous nodes consistently have higher energy scores 
with greater variance, supporting the EBM’s ability to distinguish between normal and 
anomalous patterns. 

4.2 Performance of Transfer Learning 

Table 2 shows the model's performance with and without transfer learning. The transfer 
learning-enhanced model achieves higher accuracy and F1-score across all datasets. 

 

Explanation: Transfer learning consistently improves model performance, highlighting the 
benefits of knowledge transfer from larger, pre-trained graphs to smaller graphs. 



4.3 Transfer Learning Improvement (TLI) 

Table 3 calculates the TLI metric, quantifying the relative improvement in accuracy due to 
transfer learning. 

 

Explanation: TLI values confirm significant improvements across all datasets, with the 
highest improvement observed in Dataset B due to transfer learning. 

4.4 Computational Efficiency 

Table 4 compares the inference time of the baseline and transfer learning models. 

Explanation: The transfer learning model achieves lower inference times, likely due to 
better feature representations learned during pre-training, leading to faster anomaly 
detection. 

4.5 Sensitivity Analysis on Regularization Parameter α 

Table 5 presents a sensitivity analysis on the regularization parameter α, affecting the trade-
off between EBM and transfer learning objectives. 

 



Explanation: Optimal performance across datasets is achieved with α=0.5. Higher values 
may overly constrain transfer learning, while lower values reduce model robustness. 

5. Conclusion and Future Work 

This paper introduced a transfer learning framework to enhance graph anomaly detection in 
energy-based models. By transferring knowledge from large graphs, our approach achieves 
improved anomaly detection accuracy and efficiency. Future work will extend this 
framework to dynamic and real-time anomaly detection applications, exploring additional 
transfer learning strategies to support a broader range of graph types. 
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