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Abstract: This article presents a comparative study on the use of the Extended Kalman Filter
(EKF) to estimate the State of Charge (SOC) in lithium-ion batteries utilizing two distinct
modeling techniques. The first approach combines an Equivalent Electrical Circuit (ECM) with
the Coulomb Counting method, while the second integrates a simplified electrochemical model
based on the Rakhmatov-Vrudhula (RV) method with the ECM. Both approaches use an Open
Circuit Voltage (OCV) vs. SOC function derived from synthetic data obtained through low-
current charging and discharging experiments simulated in PyBaMM, a Python-based battery
modeling module. The parameters of the ECM and RV models are determined using high-
charge pulse discharges and constant discharge experiments, respectively. The performance
of each Extended Kalman Filter (EKF) configuration is evaluated using electric vehicle (EV)
discharge scenarios such as the Urban Dynamometer Driving Schedule (UDDS), the Highway
Fuel Economy Test (HWFET), and the US06 test standard, with errors quantified by the Root
Mean Square Error (RMSE) and Mean Absolute Error (MAE) metrics, using the SOC calculated
electrochemically from PyBaMM as a reference. This study aims to elucidate the accuracy
and reliability of each modeling approach, offering insights into their applicability for real-time
battery management systems.

Keywords: extended Kalman filter; battery modeling; state of charge; PyBaMM; analytical
models;

1. INTRODUCTION

As electric vehicles (EV) gain prominence and energy
storage systems become an integral part of modern energy
infrastructure, accurate estimation of the State of Charge
(SOC) of the electrochemical accumulators becomes a crit-
ical and increasingly important task, since an inaccurate
SOC can lead to reduced range of electric vehicles, inef-
ficient grid management, and potential safety risks (Liu
et al., 2019; Ali et al., 2019). The SOC directly influences
important operational decisions in Battery Management
Systems (BMS), such as charge/discharge control, range
prediction, and safety and diagnostic protocols (Sarda
et al., 2023). However, due to the inherent nonlinearities
in the dynamics of lithium-ion batteries, accurate SOC
estimation requires sophisticated algorithms that can ef-
fectively handle uncertainties in measurement parameters,
modeling, and noise (Meng et al., 2018).

⋆ This study was partially funded by CAPES/PROEX (Fund-
ing Code 001), CNPq (Process 130465/2023-2), and EMBRAPII
(Project BTDD-2202.0003).

Among the various techniques available for SOC estima-
tion, the Extended Kalman Filter (EKF) has the ability
to optimally combine measurement and modeling infor-
mation while taking system uncertainties into account,
making it particularly suitable for dynamic systems such as
batteries due to its recursive nature and adaptability, and
is widely used for SOC estimation (Aher et al., 2023; Zhang
et al., 2016; Chang et al., 2021). However, the effectiveness
of EKF-based SOC estimation depends on the choice of the
underlying battery model and the tuning of the filter noise
covariance parameters (Ma et al., 2022).

Battery models play a crucial role in the design of Kalman
Filters, providing the equations that describe the cell’s
dynamic behavior. A commonly employed modeling ap-
proach is to represent the electrical behavior through an
Equivalent Circuit Model (ECM) and calculate the SOC
by Coulomb Counting (CC), referred to here as CC-ECM.
The CC-ECM uses resistors and capacitors to reproduce
the cell’s behavior, and when combined with the Coulomb



Counting method, it provides an efficient approach for
SOC estimation (Taborelli and Onori, 2014).

This paper presents a SOC estimation method in which an
EKF based on a simplified electrochemical model, devel-
oped by Rakmatov-Vrudhula (RV) (Rakhmatov and Vrud-
hula, 2003, 2001) is used. The RV provides a simplified rep-
resentation of the cell’s internal electrochemical processes.
Thus, it can be combined with an equivalent electric circuit
to form the RV-ECM model, offering greater precision in
capturing the dynamics of the SOC at the cost of increased
computational complexity (Tavares et al., 2024).

In both models, CC-ECM and RV-ECM, the Open Circuit
Voltage (OCV, voc) versus SOC function is essential as
it links voltage characteristics directly to the SOC. This
function provides a calibration curve that improves the
EKF estimation process’s performance. However, the curve
voc(soc) exhibits hysteresis, which requires precise deter-
mination through low-current charge/discharge cycles (Yu
et al., 2018, 2022). Polynomial curve fitting was used as
the averaging strategy to mitigate the hysteresis effect.

Thus, this article presents a comparative study of two
different Kalman Filter configurations for SOC estimation:

(1) A filter using the ECM model with Coulomb Count-
ing (CC-ECM), with a similar formulation as in
Maletić et al. (2020).

(2) A filter using a simplified chemistry-based model
(RV) combined with the ECM (RV-ECM), which
represents the proposed approach.

To obtain the voc(soc) curve, ECM parameters, and RV
parameters, PyBaMM (Sulzer et al., 2020), a Python-
based cell modeling module, was used to simulate and
derive essential data:

• voc(soc) Curve: Determined from low-current charge
and discharge cycles with subsequent averaging of
both to account for hysteresis.

• ECM Parameters: Estimated using pulse discharge
tests and optimization.

• RV Parameters: Derived from a series of constant
discharge experiments.

Once these models are established, each Kalman Filter
configuration is evaluated using a standardized discharge
scenario, typical of EV applications. Performance is as-
sessed through the Root Mean-Square Error (RMSE) and
Mean Absolute Error (MAE) parameters, using the elec-
trochemically calculated SOC by PyBaMM as a reference.

The strengths and limitations of each Kalman Filter con-
figuration will be discussed, providing information on its
potential for BMS applications in real scenarios, using
a cell simulator such as PyBaMM to generate synthetic
data regarding ion concentration, voltage and temperature
from a measured current profile. PyBaMM stands out for
providing detailed and dynamic electrochemical models,
allowing for precise and relevant simulations for the de-
velopment and testing of battery management strategies
(Sulzer et al., 2020).

This paper is organized as follows: the cell models are
described in section 2, the simulation results and model
identification are presented in section 3, the filter formula-

tion is detailed in section 4, and the conclusion is described
in section 5.

2. CELL MODELING

This section covers the models used in SOC estimation,
the procedures to determine their parameters, and the
implementation of the EKF filters used in the compara-
tive study. First, the ECM and RV models are described,
followed by the approach to obtain the open-circuit voltage
versus SOC curve. The section concludes with an expla-
nation of the Kalman Filter configurations used in this
study.

2.1 CC-ECM Model

In this model, the electrical behavior of the cell is repre-
sented by an equivalent electric circuit (ECM) composed
of a network of resistors and capacitors, as illustrated in
Figure 1.
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Figure 1. Equivalent Electric Circuit Model with an RC
branch.

A configuration containing: a series resistor (R0) and a
parallel R1C1 branch (P) was used.

The terminal voltage of this equivalent circuit is given by

vb[k] = voc(soc[k])− ib[k]R0 −R1IP[k] (1)

considering a system evaluated at discrete time instants,
denoted by k, in which voc[k], ib[k], and IP[k] represent
the open-circuit voltage, cell current, and the polarization
current passing through the resistor R1, respectively.

The SOC obtained by Coulomb Counting is given by

socCC [k] = socCC [k − 1]− ηib[k]∆t

3600Qnom
, (2)

where η is the coulombic efficiency, Qnom is the nominal
cell capacity, and ∆t is the time step in seconds.

The state-space representation is:

x[k + 1] = ACCx[k] +BCCu[k] (3)

y[k] = hCC(x[k], ub[k]) = vb[k] (4)

where:

x =

[
IP
soc

]
, u[k] = ib[k],

ACC =

[
e−

∆t
R1C1 0
0 1

]
, BCC =

[
1− e−

∆t
R1C1

− η∆t
3600Qnom

]
,

hCC(x[k], u[k]) = voc(socCC [k])−R0u[k]−R1IP[k]



2.2 Simplified Diffusion Model

The RV model provides a simplified description of the
diffusion dynamics within the lithium-ion cell, leading to
a more accurate representation of SOC behavior. The set
(5)-(11) defines the mathematical formulation of the RV
model.

α =

∫ Lb

0

ib(τ)dτ + 2

∞∑
m=1

∫ Lb

0

ib(τ)e
−β2m2(Lb−τ)dτ (5)

σ(t) =

∫ t

0

ib(τ)dτ + 2

∞∑
m=1

∫ t

0

ib(τ)e
−β2m2(t−τ)dτ (6)

where α ∈ R≥0 is the total cell capacity in Coulombs
(C), β ∈ R≥0 is the diffusion parameter in s−1, ib is the
cell current in amperes (A), σ is the lost charge, also in
Coulombs, Lb is the battery discharge time, and m is the
summation index. Applying the Laplace transform to (6)
yields (7) (Tavares et al., 2024):

σ(s) =
1

s
+ 2

∞∑
m=1

1

s+ β2m2
(7)

The discrete-time model for the diffusion model is:

σd[k] = σd[k − 1] + ib[k]∆t (8)

σum[k] = e−β2m2∆tσum[k − 1]− e−β2m2∆t − 1

β2m2
ib[k],

m ∈ [1, 2, . . . ,M ]

(9)

σ[k] = σd[k] + 2

M∑
m=1

σum[k] (10)

The SOC is then given by:

socRV [k] = 100
α− σ[k]

α
% (11)

In state-space representation:

x[k + 1] = Adifx[k] +Bdifu[k] (12)

y[k] = socRV [k] (13)

where:

x =


σu1

σu2

...
σuM

σd

 , u[k] = ib[k],

Adif =


e−β2∆t 0 · · · 0 0

0 e−β222∆t · · · 0 0
...

...
. . .

...
...

0 0 · · · e−β2M2∆t 0
0 0 · · · 0 1

 ,

Bdif =



−
(
e−β2∆t − 1

)
β2

−
(
e−β222∆t − 1

)
β222
...

−
(
e−β2M2∆t − 1

)
β2M2

∆t


,

σ[k] = CRV


σu1[k]
σu2[k]

...
σuM [k]
σd[k]


and

CRV = [2 2 · · · 2 1]

2.3 Cell Model with Equivalent Electric Circuit and Simplified
Diffusion

Based on the discrete diffusion model obtained in 2.2, it is
possible to leverage the circuit equations developed in the
previous subsection by substituting the SOC calculation
method. Thus, the state-space representation of the cell
with RV-ECM is:

x[k + 1] = ARVx[k] +BRVu[k] (14)

y[k] = hRV(x[k], u[k]) = vb[k] (15)

where:

x =



IP
σu1

σu2

...
σuM

σd

 , u[k] = ib[k],

ARV =

[
e−

∆t
R1C1 [0]1×M+1

[0]M+1×1 Adif

]
,

BRV =

[
1− e−

∆t
R1C1 0

[0]M+1×1 Bdif

]
,

and



hRV(x[k], u[k]) = voc(socRV [k])−R0u[k]−R1IP[k].

2.4 Extended Kalman Filter Formulation

In this work, the SOC estimation of the cell is performed
using the Extended Kalman Filter (EKF). According to
the Kalman formulation, the addition of zero-mean Gaus-
sian noise in the state and output equations is also consid-
ered:

{
x[k + 1] = Ax[k] +Bu[k] +w[k]

y[k] = h(x[k], u[k]) + v[k]
(16)

The equations of the Extended Kalman Filter (EKF) are
illustrated from (17) to (22) (Zarchan and Musoff, 2001).

Prediction step:

x̂k|k−1 = Ax̂k−1|k−1 +Buk−1 (17)

Pk|k−1 = APk−1|k−1A
T +Q (18)

Update step:

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +R)−1 (19)

x̂k|k = x̂k|k−1 +Kk(y[k]− h(x̂k|k−1, uk)) (20)

Pk|k = (I−KkHk)Pk|k−1(I−KkHk)
T +KkRKT

k (21)

where A and B are the state transition and control input
matrices, h is the nonlinear measurement equation, vk and
wk are zero-mean Gaussian noises, Q, R, P, K, and H
are the process noise covariance, measurement noise co-
variance, error covariance, Kalman gain, and measurement
Jacobian matrices, respectively.

The observation matrix is obtained by linearizing the
output equation for each of the filters:

Hk =
∂h

∂x

∣∣∣
x= ˆsoc[k]

Hk CC =

[
−R1

dvoc
dsocCC

∣∣∣
socCC= ˆsoc[k]

]
(22)

for the CC-ECM model and:

Hk RV =

[
−R1

dvoc
dsocRV

(−CRV /α)
∣∣∣
socRV = ˆsoc[k]

]
(23)

for the RV-ECM model.

It should be noted that the matrices Q and R were tuned
offline using a genetic algorithm to minimize the RMSE
of the SOC estimation for each driving test profile. This
approach is inspired by the methods discussed in Powell
(2002). To enhance the speed of the SOC estimation, an er-
ror covariance inflation was employed (Plett, 2015). Addi-
tionally, the SOC value within the state vector was clipped
to remain within 5% of the valid range [0, 1], ensuring
that the SOC estimation remained physically realistic and
avoiding potential numerical instabilities (Plett, 2015).

3. PARAMETER ESTIMATION

Simulations were performed for an LG M50 21700 cell
(Chen et al., 2020), with the characteristics presented in

Table 1 using PyBaMM software. The aim was to generate
synthetic data for parameter identification and necessary
curves, which are detailed below.

Table 1. Specifications of the LG M50 21700
lithium-ion cell

Specification Value

Nominal Capacity 18.20 Wh
Nominal Voltage 3.63 V
Maximum Recharge Voltage 4.20 ± 0.05 V
Maximum Recharge Current 0.3C (1,455 mA)
Cut-off Voltage 2.50 V

Parameter Estimation of the RV Model The experiment
to obtain the parameters of the simplified diffusion model
is described below.

Constant Discharge Tests:

• The cell is discharged at various constant current
rates ranging from 0.1C to 1.5C until reaching a
voltage of 2.5V .

• Discharge duration data are recorded with 10 samples
per second.

Parameter Estimation:

The parameters of the RV model α and β are estimated
by solving the optimization problem (24) using a set of
constant currents I(1), . . . , I(N) until the cell is fully dis-
charged, obtaining a series of discharge duration measure-
ments L(1), . . . , L(N).

[
α̂, β̂

]
= argmin

α,β

(
1

N

N∑
k=1

(
ib[k]− Î[k|α, β]

)2)
(24)

subject to:

α ∈ R ≥ 0

β ∈ R ≥ 0

where Î[k] is given by

Î[k] =
α

L[k] + 2

m=M∑
m=1

1−e−β2m2L[k]

β2m2

(25)

In this work, the estimation of Î[k] was performed with
M = 10, a choice that provides an adequate approxima-
tion, as demonstrated by (Tavares et al., 2024; Rakhmatov
and Vrudhula, 2001, 2003).

3.1 The Open Circuit voltage

The experiment designed for obtaining data for the
voc(soc) curve is described below.

Procedure

(1) Recharge:
• The cell is charged to 4.2V with a constant
current of 0.7C.



• A constant voltage of 4.2V is applied until the
current drops below 50mA.

(2) Rest Period
• A rest period of 2 hours is applied to ensure
voltage relaxation.

(3) Discharge
• The cell is discharged to a voltage of 2.5V with
a current of 0.05C.

(4) Data Acquisition
• Voltage and current data are recorded through-
out the charge/discharge process at a rate of 10
samples per second.

(5) Curve Averaging
• For each charge and discharge curve, the SOC is
calculated either by Coulomb counting or by the
simplified electrochemical model. Subsequently,
polynomial regression with cross-validation is
performed to determine the optimal polynomial
degree that balances model accuracy and com-
plexity. The voc(soc) curve is obtained from the
average of the two polynomials fchg and fdhg,
which represent the charging and discharging
characteristics, respectively. This relationship is
mathematically expressed as follows:

voc(soc[k]) =
fchg(soc[k]) + fdhg(soc[k])

2
(26)

where the coefficients of the polynomials fchg and
fdhg are provided in Table 2.

3.2 Parameter Estimation of the ECM

The experiment to obtain the parameters of the equivalent
electric circuit is described below.

(1) Pulsed Discharge Test
• The cell is subjected to a series of 1.5C pulsed
discharges of 10 seconds each, followed by a rest
period of 90 seconds.

(2) Optimization Problem
• The ECM parameters (R0, Rp1, Cp1) are esti-
mated using an optimization algorithm formu-
lated as:

θ̂ = argmin
θ

(
1

N

N∑
k=1

(vb[k]− v̂b[k|θ])2
)

where:
· θ: Vector of ECM parameters.
· vb: Measured voltage.
· v̂b: Voltage predicted by the model.

(3) Constraints
• All parameters are constrained to be positive for
physical reasons.

• The optimization algorithm used was a genetic
algorithm.

3.3 Evaluation Scenario

For the performance evaluation of electric vehicles, stan-
dardized driving programs, such as the Urban Dynamome-
ter Driving Schedule (UDDS), the Highway Fuel Economy
Test (HWFET), and the US06 test standard, are essential
to simulate different driving conditions (Cai et al., 2017;
Szybist et al., 2021; Xu and Arjmandzadeh, 2023; Zafar

et al., 2024). The UDDS evaluates the EV’s performance
in city driving scenarios with low speeds and frequent
stops, focusing on energy consumption and emissions. The
HWFET simulates highway driving conditions at steady,
higher speeds. Finally, the US06 challenges EVs with high
speeds and rapid acceleration to verify safety and driv-
ability under demanding conditions. Each driving profile
speed is shown in Figure 2.

Figure 2. Speed profiles of the standardized driving pro-
grams for a single cycle.

In this study, the FASTSim (Future Automotive Systems
Technology Simulator) tool, in its Python version, was
used to simulate the dynamics of an electric vehicle and
obtain a power profile to generate synthetic data using Py-
BaMM. FASTSim, developed by the National Renewable
Energy Laboratory (NREL), simulates the efficiency and
energy consumption of electric, hybrid, and conventional
vehicles (Brooker et al., 2015). The model used for the
simulation was the Tesla Model S 75kWh from 2016,
available in the FASTSim library.

In addition, in practical vehicular applications, the cur-
rent switching ripples generated by power converters have
significant operational characteristics, as highlighted in
studies such as Uddin et al. (2016) and Mandrioli et al.
(2021). These ripples are crucial to account for because
they can impact system performance and measurement
accuracy. However, for the purposes of this study, such
effects have been disregarded. Instead, only measurement
noise was considered and the profile was assumed to be
Gaussian with a zero mean. Specifically, the standard devi-
ations were set at 5mA for the current measurements and
1mV for the voltage measurements. Figure 3 presents the
current profiles for each standard driving cycle, depicted
without measurement noise, for a single cycle. The EKF
tests were conducted across 30 repetitions of each cycle.



Figure 3. Current profiles of the standardized driving
programs for a single cycle.

3.4 Performance Metrics

The SOC estimated by each EKF configuration is com-
pared with the reference SOC calculated using PyBaMM,
which is given as a function of the lithium concentration
in the cell:

SOCref[k] =
cL[k]− cL0%

cL100% − cL0%

(27)

where cL[k] is the lithium concentration at time k and
cL0% and cL100% are the stoichiometric values when the
cell is fully discharged and fully charged, respectively.

Performance is evaluated using the following.

• Root Mean-Square Error (RMSE):

RMSE =

√√√√√√
N∑

k=1

( ˆsoc[k]− socref[k])
2

N

• Mean Absolute Error (MAE):

MAE =

N∑
k=1

| ˆsoc[k]− socref[k]|

N

4. RESULTS AND DISCUSSION

This section presents the results of the comparative study
covering the two EKF configurations: CC-ECM and RV-
ECM. The performance of the filters is compared with the
reference SOC calculated using the PyBaMM module. The
comparative study includes the discharge scenarios UDDS,
HWFET, and US06.

Figure 4. Constant current discharge test currents.

Figure 5. Results of the open-circuit voltage curve estima-
tion with SOCRV .

4.1 Parameter Estimation of the Models

RV Model Parameters The currents used in the esti-
mation of the α and β parameters of the diffusion model
are illustrated in Figure 4. The result of the optimization
problem addressed in Section 3.0.1 was: α = 1.8×104 and
β = 4.0082×10−1.

Open Circuit Voltage The obtained voc(soc) curves are
illustrated in Figure 5, while the coefficients of the iden-
tified polynomials are shown in Table 2. Observing the
figure, it is evident that the functions found to describe
the voc as a function of SOC are approximately between
the curves generated by simulation.

Table 2. Polynomial regression results

Method
Discharge Polynomial

Coefficients
Charge Polynomial

Coefficients

CC

[-1.0487e+01, 5.5438e+00,
1.1199e+01, 8.6900e+00,
1.0587e+00, -7.8774e+00,
-1.3852e+01, -1.2971e+01,
-3.3175e+00, 1.2498e+01,
2.4473e+01, 1.5491e+01,
-2.4639e+01, -5.1934e+01,
7.4590e+01, -3.4814e+01,
7.6625e+00, 2.8533e+00]

[-1.4748e+01, 5.8653e-02,
9.5053e+00, 1.3311e+01,
1.1642e+01, 5.3265e+00,
-3.9201e+00, -1.3329e+01,
-1.9142e+01, -1.7223e+01,
-4.7193e+00, 1.6597e+01,
3.5352e+01, 2.7492e+01,
-2.9637e+01, -8.5653e+01,
1.0677e+02, -4.5139e+01,
8.8086e+00, 2.8615e+00]

RV

[-1.0636e+01, 2.8851e+00,
9.4260e+00, 9.7769e+00,
5.3031e+00, -1.9579e+00,
-9.2907e+00, -1.3511e+01,
-1.1603e+01, -2.0664e+00,
1.2766e+01, 2.3900e+01,
1.5332e+01, -2.3669e+01,
-5.2732e+01, 7.3862e+01,
-3.3832e+01, 7.3348e+00,

2.8902e+00]

[-1.4879e+01, -2.2048e-01,
9.2853e+00, 1.3301e+01,
1.1914e+01, 5.8510e+00,
-3.2841e+00, -1.2824e+01,
-1.9063e+01, -1.7794e+01,
-5.9065e+00, 1.5321e+01,
3.5085e+01, 2.9279e+01,
-2.6984e+01, -8.8223e+01,
1.0580e+02, -4.3737e+01,
8.3965e+00, 2.9018e+00]



Figure 6. Sample current profile and resulting voltage for
identifying equivalent electric circuit parameters.

Table 3. Estimated parameters

Model Parameter Value

CC-ECM
R0 2.1801×10−2 Ω
R1 9.4739×10−3 Ω
C1 2.1118×103 F

RV-ECM
R0 2.4112×10−2 Ω
R1 2.6020×10−2 Ω
C1 5.1036×103 F

Figure 7. SOC estimation results for the UDDS standard.

Result of the Identification of ECM Parameters A pulsed
current profile, as depicted in Figure 6, was executed
to extract the model parameters shown in Table 3. The
voltage response reveals the diffusion process, evidenced by
its gradual increase following a brief discharge. Analyzing
the circuit parameters listed in the table reveals that they
are similar between the two different approaches used to
estimate the SOC.

4.2 Performance in the EV Discharge Scenario

Figures 7 and 8 present the SOC estimation results and
the corresponding error analysis for the two implemented
filters, showcasing the best performance which occurred
under the UDDS test. In these tests, the actual initial
SOC is 100%, while the initial condition of the filters was
zero for all states except for the SOC, which was 50%. In
Table 4, the error metrics for all tests can be observed. The
numbers in parentheses represent the percentage increase
in error relative to the corresponding metric of the other
model.

Based on the results presented in Table 4, the RV-ECM
filter outperforms the CC-ECM filter in SOC estimation.
This improvement may be attributed to the RV-ECM’s
ability to more accurately represent the underlying battery
chemistry, specially under the more challenging US06 test
standard, where the EV is subjected to high speeds and
rapid acceleration.

Figure 8. SOC estimation error graph for the UDDS
standard.

Table 4. Performance tests for CC-ECM and
RV-ECM models

Model Test RMSE (%) MAE (%)

RV-ECM
UDDS 1.1947 0.9106
HWFET 1.4077 1.1664
US06 1.6408 1.3002

CC-ECM
UDDS 1.2727(+6.5%) 0.9251(+1.6%)

HWFET 2.0071(+42.5%) 1.7327(+48.6%)

US06 2.6893(+63.9%) 2.2180(+70.6%)

4.3 Filter Limitations

The performance of both filters may vary depending on the
specific cell chemistries and usage conditions. Therefore,
further validations are needed for different driving cycles
and various temperature conditions to ensure robustness.
Furthermore, the selection of state and measurement co-
variance parameters in Kalman filters plays a critical role
in determining the accuracy of SOC estimation. Conse-
quently, it is essential to adjust these parameters appro-
priately for different application scenarios.

5. CONCLUSION

In this article, two Extended Kalman Filter configura-
tions for SOC estimation were compared: one using a
Coulomb Counting Electrical Circuit Model, and another
integrating a simplified electrochemical model with the
ECM. Additionally, the utility of PyBaMM in generating
synthetic data for simulating the internal behaviors of the
cell was confirmed, allowing for valuable insights to be
gained prior to conducting laboratory tests. This approach
can be particularly useful for minimizing the number of
experiments needed by focusing on the most promising
ones, thereby reducing the overall demand for laboratory
testing, which is often resource-intensive. Of the two EKF
configurations tested, the traditional EKF with Coulomb
Counting (CC-ECM) underperformed the model incorpo-
rating a simplified diffusion process (RV-ECM) in SOC
estimation, as indicated by the lower RMSE and MAE
error values under the tested EV discharge conditions.

These results suggest the need for further investigation
into the application of simplified electrochemical models
in real-time cell management systems to increase the
accuracy and reliability of estimates, including filter tuning
steps, evaluation of thermal effects, and aging, which affect
the performance of the filters. Additionally, the integration
of more advanced filtering techniques, such as the Adaptive
Extended Kalman Filter and the Particle Filter, may
offer improvements in estimation accuracy and robustness
against nonlinearities in cell behavior.



6. ACKNOWLEDGEMENTS

The authors thank the Center for Electrical Engineer-
ing and Informatics and Department of Electrical Engi-
neering, both from the Federal University of Campina
Grande, for providing the research infrastructure. The
authors also acknowledge the support provided by the
following companies and institutions: CPFL Energia, Fu-
eltech LTDA, ARPAC Industria de Aeronaves LTDA,
SKYVIDEO LTDA, Arrow Mobility S.A., eiON LTDA,
UE (Unidade EMBRAPII) de Sistemas Inteligentes de En-
ergia | IFSC, UE de Software e Automação | CEEI/UFCG,
and UE de Comunicações Avançadas | CPQD.
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Maletić, F., Hrgetić, M., and Deur, J. (2020). Dual non-
linear kalman filter-based soc and remaining capacity
estimation for an electric scooter li-nmc battery pack.
Energies, 13(3).

Mandrioli, R., Hammami, M., Viatkin, A., Barbone, R.,
Pontara, D., and Ricco, M. (2021). Phase and neutral
current ripple analysis in three-phase four-wire split-
capacitor grid converter for ev chargers. Electronics,
10(9).

Meng, J., Luo, G., Ricco, M., Swierczynski, M., Stroe,
D.I., and Teodorescu, R. (2018). Overview of lithium-ion
battery modeling methods for state-of-charge estimation
in electrical vehicles. Applied Sciences, 8(5).

Plett, G.L. (2015). Battery management systems, Volume
II: Equivalent-circuit methods. Artech House.

Powell, T.D. (2002). Automated tuning of an extended
kalman filter using the downhill simplex algorithm. J.
Guid. Control Dyn., 25(5), 901–908.

Rakhmatov, D. and Vrudhula, S. (2003). Energy man-
agement for battery-powered embedded systems. ACM
Trans Embed. Comput. Syst., 2(3), 277–324.

Rakhmatov, D.N. and Vrudhula, S.B. (2001). An ana-
lytical high-level battery model for use in energy man-
agement of portable electronic systems. In Conf. Rec.
IEEE/ICCAD, 488–493. IEEE.

Sarda, J., Patel, H., Popat, Y., Hui, K.L., and Sain, M.
(2023). Review of management system and state-of-
charge estimation methods for electric vehicles. World
Electric Vehicle Journal, 14(12).

Sulzer, V., Marquis, S.G., and Timms, R. (2020). Py-
BaMM: Python battery mathematical modelling. J.
Open Source Softw., 8(1), 8.

Szybist, J.P., Busch, S., McCormick, R.L., Pihl, J.A.,
Splitter, D.A., Ratcliff, M.A., Kolodziej, C.P., Storey,
J.M., Moses-DeBusk, M., Vuilleumier, D., Sjöberg, M.,
Sluder, C.S., Rockstroh, T., and Miles, P. (2021). What
fuel properties enable higher thermal efficiency in spark-
ignited engines? Prog. Energy Combust. Sci., 82, 100876.

Taborelli, C. and Onori, S. (2014). State of charge
estimation using extended kalman filters for battery
management system. In Conf. Rec. IEEE/IECV, 1–8.

Tavares, A.H.B.M., Luiz, S.O.D., Holzapfel, F., and Lima,
A.M.N. (2024). A model for a lithium-polymer battery
based on a lumped parameter representation of the
charge diffusion. J. Control Autom. Electr. Syst., 1–14.

Uddin, K., Moore, A.D., Barai, A., and Marco, J. (2016).
The effects of high frequency current ripple on electric
vehicle battery performance. Applied Energy, 178.

Xu, B. and Arjmandzadeh, Z. (2023). Parametric study on
thermal management system for the range of full (tesla
model s)/ compact-size (tesla model 3) electric vehicles.
Energy Convers. Manag., 278, 116753.

Yu, P., Wang, S., Yu, C., Shi, W., and Li, B. (2022).
Study of hysteresis voltage state dependence in lithium-
ion battery and a novel asymmetric hysteresis modeling.
Journal of Energy Storage, 51, 104492.

Yu, Q.Q., Xiong, R., Wang, L.Y., and Lin, C. (2018). A
comparative study on open circuit voltage models for
lithium-ion batteries. Chin. J. Mech. Eng., 31(1), 65.

Zafar, M.H., Khan, N.M., Houran, M.A., Mansoor, M.,
Akhtar, N., and Sanfilippo, F. (2024). A novel hybrid
deep learning model for accurate state of charge esti-
mation of li-ion batteries for electric vehicles under high
and low temperature. Energy, 292, 130584.

Zarchan, P. and Musoff, H. (2001). Fundamentals of
Kalman Filtering: A Practical Approach. Progress in as-
tronautics and aeronautics. American Institute of Aero-
nautics and Astronautics.

Zhang, X., Wang, Y., Yang, D., and Chen, Z. (2016). An
on-line estimation of battery pack parameters and state-
of-charge using dual filters based on pack model. Energy,
115, 219–229.

https://github.com/SavioAO/EKF-Battery-CC-RV
https://github.com/SavioAO/EKF-Battery-CC-RV

	Introduction
	Cell Modeling
	CC-ECM Model
	Simplified Diffusion Model
	Cell Model with Equivalent Electric Circuit and Simplified Diffusion
	Extended Kalman Filter Formulation

	Parameter Estimation
	The Open Circuit voltage
	Parameter Estimation of the ECM
	Evaluation Scenario
	Performance Metrics

	Results and Discussion
	Parameter Estimation of the Models
	Performance in the EV Discharge Scenario
	Filter Limitations

	Conclusion
	Acknowledgements
	Code availability

