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Abstract. This paper considers the problem of finding strategies that
satisfy a mixture of sure and threshold objectives in Markov decision pro-
cesses. We focus on a single ω-regular objective expressed as parity that
must be surely met while satisfying n reachability objectives towards sink
states with some probability thresholds too. We consider three variants
of the problem: (a) strict and (b) non-strict thresholds on all reachability
objectives, and (c) maximizing the thresholds with respect to a lexico-
graphic order. We show that (a) and (c) can be reduced to solving parity
games, and (b) can be solved in EXPTIME. Strategy complexities as well
as algorithms are provided for all cases.

Keywords: MDPs · Parity · Reachability · Multi-objective

1 Introduction

Markov decision processes (MDPs) [6,35] are prominent models for strategic
planning and decision making in face of stochastic uncertainty. An important,
yet intricate, problem is to determine if and how a combination of multiple
properties, or objectives, is realizable in a given MDP. As objectives may be
conflicting, it does not suffice to analyze each of them independently [20,37,4].
Instead, trade-offs between the objectives have to be taken into account. In
this paper, we combine objectives of different nature: Sure objectives must be
fulfilled on all possible executions of the MDP, even on those with probability 0.
Thus, sure objectives do not depend on the exact transition probabilities; in fact,
they can be analyzed by replacing the probabilities with an adversary. Threshold
objectives, on the other hand, have to be satisfied with some probability of at least
(or greater than) a given constant. Various combinations of sure and threshold
objectives have been investigated in prior work [23,1,13,8,22,7]. Here, we focus
on MDPs with a single sure ω-regular objective expressed as a parity condition
together with n reachability threshold objectives towards sink states.
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Fig. 1. An MDP with Act = {a, b, pair1, pair2, ∗}, target sets F1 , F2 , and parity
condition ρ assigning 0 to the sinks and 1 to the non-sinks. Right: The Pareto frontier.

Running example In a game show a contestant plays a gamble to win either a
bike, a surfboard, or both prizes. The gamble is as follows: The contestant must
choose one out of two pairs of 6-sided dice. Each pair consists of a green and a
red die. The four dice are all different; each of their faces shows either the bike,
the board, both bike and board, or the symbol ⟳ (“repeat”):

pair1 red : 3×⟳, 1× both, 2× bike green : 6× board
pair2 red : 3×⟳, 1× both, 2× board green : 2× both, 2× bike, 2× board

After committing to a pair of dice, the contestant rolls one die from their pair.
The green die immediately ends the gamble with the resulting prize(s). The red
die either ends the gamble or, in case of ⟳, allows the contestant to roll again
(the same die or the other one). However, since the show is broadcast on live
TV, there is an additional rule: The gamble may not be prolonged indefinitely,
i.e., the contestant may try the red die at most an arbitrary, but a priori fixed
number of times. Clearly, optimal strategies depend on how much the contestant
prefers one prize over the other. The MDP in Figure 1 models this gamble. Prizes
are encoded as reachability of sinks (F1 =̂ bike, F2 =̂ board); the additional
constraint is a sure parity condition.

This paper We study the following three problems: Given a finite MDP, de-
cide if it is possible to satisfy a sure parity objective and, at the same time, n
sink reachability objectives with (a) all strict, or (b) all non-strict probability
thresholds. In addition, we consider the problem (c) of checking existence of a
lexicographically maximal achievable threshold vector w.r.t. a given linear order
on the reachability objectives. In all cases, we are also interested in computing
witnessing strategies if they exist. These problems are challenging, both com-
putationally and conceptually. Already for two reachability objectives (without
any sure objective) the set of achievable thresholds —the Pareto frontier— is
a convex polytope with superpolynomially many vertices in general [25]. The
problems we study are more general than this and add further subtleties: While
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Table 1. Some existing and our new (in bold) results on multi-objective MDPs.

Sure objective Probabilistic objective(s) Complexity Memory Reference

1 sure parity - NP ∩ coNP finite [24]
1 sure parity 1 threshold parity NP ∩ coNP infinite [8]
1 sure parity n almost-sure parity NP ∩ coNP infinite [7]
n sure parity n almost-sure parity PNP(= ∆P

2) infinite [7]
1 sure parity 1 threshold reach NP ∩ coNP finite [8]
- n threshold sink reach PTIME finite [25]
1 sure parity n strict threshold sink reach (a) NP ∩ coNP finite [Thm. 1]
1 sure parity n threshold sink reach (c) EXPTIME finite [Thm. 3]
- lexicographic Streett PTIME finite [17]
1 sure parity lexicographic sink reach (b) NP ∩ coNP finite [Thm. 2]

it is easy to show that the thresholds in the interior of the Pareto frontier are
satisfiable with any sure parity objective (Section 3), identifying exactly which
points on the boundary of the frontier are achievable is quite involved (Section 5).

Contributions Our three main results are summarized in bold in Table 1.
(a) Checking if a sure parity objective and n strict sink reachability thresholds
are achievable simultaneously is in NP ∩ coNP (Section 3). This is done via a
reduction to parity games, admitting a quasi-polynomial algorithm [14].

(c) We propose an algorithm that finds a strategy ensuring a sure parity
objective while also maximizing the probability of reaching n sinks w.r.t. a lex-
icographic order (Section 4). It relies on a concept we call projection, a notion
also used in prior work [25,4,17]. Our algorithm solves polynomially many parity
games in sequence, hence the problem is (again) in NP ∩ coNP.

(b) We present an algorithm for finding a strategy satisfying a sure parity ob-
jective and n sink reachability objectives with non-strict thresholds (Section 5).
Our algorithm alternates between computing Pareto frontiers, making projec-
tions, and pruning states not satisfying the sure parity objective; to our knowl-
edge, this idea is new. Its time complexity is exponential in the size of the MDP,
as it relies on computing exact Pareto frontiers.

We also treat strategy complexity for each case. Our results are a further step
towards a solution for general combinations of sure and probabilistic objectives.
An extended version of the results with detailed proofs can be found in [9].

Related work Previous research [7] on mixtures of sure and probabilistic ob-
jectives focused on qualitative thresholds, i.e., >0 and =1. Here, we also allow
quantitative thresholds strictly between 0 and 1. We rely on some results of [8]
that studied combining one sure parity and one threshold parity objective. This
problem was shown to be in NP ∩ coNP, via a reduction to parity games with
weights that can be solved in quasi-polynomial time [38]. The main difference
to [8] is that we consider multiple reachability threshold objectives. The setting
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of one sure parity and one almost-sure parity has been further studied in [22]
where it was shown that the restriction to finite memory strategies is still in
NP ∩ coNP for MDPs, and coNP-complete for stochastic games.

The seminal paper [25] shows that computing the Pareto frontier for a mix-
ture of either reachability or ω-regular objectives can be reduced to solving linear
programs. An efficient technique, value iteration, is exploited by tools such as
PRISM [33], Storm [30], and MultiGain [12]. The work [19] considers MDPs with
two different kinds of stochastic mean-payoff objectives, and supports computing
the Pareto frontier. Percentile queries, multiple threshold constraints that must
each be satisfied with some probability, were studied in [36]. In [10,29], multiple
reachability conditions associated to the expected or accumulated cost to reach
a target are considered.

Lexicographic optimization is a widely employed principle in multi-objective
decision making [34,40]. The idea is that a strategy should prioritize a primary
objective while still doing best possible for a secondary objective, etc. The work
of [17] imposes a lexicographic order on multiple, possibly conflicting, reachabil-
ity, safety and ω-regular objectives. Reinforcement learning with lexicographic ω-
regular conditions is studied in [28]. To the best of our knowledge, lexicographic
optimization in MDPs together with a sure condition has not been studied yet.

Other approaches have been considered. Combinations of parity and mean-
payoff [1], and parity and weighted games [38] have been studied in prior work.
An alternative way to combining objectives is strategy logic (SL) [16], an ex-
tension of CTL that can express formulas involving the change of strategies. A
probabilistic SL has been defined in [2].

2 Preliminaries

We write N = {1, 2, 3, . . .} and N0 = N∪ {0}. For n ∈ N, we let [n] = {1, . . . , n},
and [n]0 = [n] ∪ {0}. Vectors v ∈ Rn are written in bold. For v ∈ [0, 1]n and
i ∈ [n], we denote by vi the i-th component of v. Given v,u ∈ Rn, their dot
product is defined as v · u =

∑
i∈[n] vi · ui. The symbol ei ∈ {0, 1}n is the unit

vector where the i-th component is 1 and all others are 0. The componentwise
order on Rn is denoted with ≤. Given a finite set A, a (probability) distribution
on A is a function f : A → [0, 1] such that

∑
a∈A f(a) = 1. D(A) denotes the set

of all distributions on A. We define the support supp(f) = {a ∈ A | f(a) > 0}.

2.1 MDPs, Strategies, and Objectives

A Markov decision process (MDP) is a tuple Γ = (S,Act,P) where S ̸= ∅ is a
countable set of states, Act ̸= ∅ is a finite set of actions, and P : S ×Act× S →
[0, 1] is a transition probability function satisfying

∑
s′∈S P(s, a, s′) ∈ {0, 1} for

all s ∈ S, a ∈ Act . If the sum is 1 for a state-action pair s, a, then a is enabled
at s. We write Act(s) for the set of all actions enabled at s, and require that
Act(s) ̸= ∅. An MDP Γ is called finite if S is finite. A state s ∈ S is called a sink
if for all a ∈ Act(s) we have P(s, a, s) = 1. For technical convenience we assume
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|Act(s)| = 1 for all sinks s ∈ S. Note that we may consider the same MDP with
different initial states since the latter is not fixed in our definition. See Figure 1
for a finite example MDP.

A (discrete-time) Markov chain (MC) is an MDP with |Act| = 1. We omit
Act from the definition of MC and just write M = (S,P). We also identify P
with a function of type S × S → [0, 1].

A strategy for an MDP Γ is a state machine σ = (Q, qι, δ, o) where Q is
a countable set of memory modes, qι ∈ Q is the initial mode, δ : Q × S → Q
is a transition function, and o : Q × S → D(Act) is an output function with
supp(o(q, s)) ⊆ Act(s) for all q ∈ Q, s ∈ S. σ is called finite-memory if |Q| < ∞,
memoryless if |Q| = 1, and deterministic if |supp(o(q, s))| = 1 for all q ∈ Q, s ∈ S.

Given an MDP Γ = (S,Act,P) with strategy σ = (Q, qι, δ, o), we define
the induced MC Γ [σ] = (S × Q,Pσ) where Pσ((s, q), (s′, q′)) = P(s, o(q, s), s′)
if δ(q, s) = q′, and otherwise Pσ((s, q), (s′, q′)) = 0. In the following, we only
consider finite MDPs, but when considering an infinite-memory strategy, the re-
sulting MC is countably infinite. In the context of algorithms, we always assume
that the probabilities in the given MDPs, strategies, and probability thresholds
are rational numbers encoded as numerator-denominator pairs in binary.

Given an MC M = (S,P) with a distinguished initial state s ∈ S, we consider
the σ-algebra F generated by the cylinder sets {πSω | π ∈ S∗} and the associated
probability measure PrMs : F → [0, 1] which is uniquely defined by requiring that
for all π = s0 . . . sk ∈ S+, k ≥ 0, we have PrMs (πSω) =

∏k−1
i=0 P(si, si+1) if

s0 = s, and PrMs (πSω) = 0 if s0 ̸= s. See, e.g. [5, Chapter 10] for more details.
The sets in F are called measurable. Further, we define PathsMs = {s0s1 . . . ∈
Sω | s0 = s ∧ ∀i ≥ 0: P(si, si+1) > 0}.

An objective for an MDP Γ is a measurable1 set of paths Ω ⊆ Sω. A reach-
ability objective for Γ is of the form ♢F = {π ∈ Sω | ∃k ≥ 0: π(k) ∈ F} where
F ⊆ S. Bounded reachability objectives have the form ♢≤BF = {π ∈ Sω | ∃k ∈
[B]0 : π(k) ∈ F}, for some B ∈ N0. A parity objective for Γ is defined via a
priority function ρ : S → [k]0, where k ∈ N0. For π ∈ Sω, let inf(π) = {s ∈
S | ∀i ≥ 0: ∃j ≥ i : π(j) = s} be the set of states visited infinitely often on π.
Then the parity objective defined by ρ is {π ∈ Sω | max ρ(inf(π)) is even}. In
the following, we identify the function ρ with the objective it defines.

2.2 Multi-Objectives and Pareto Frontiers

A multi-objective (MO) formula for MDP Γ is a syntactic object φ =
∧n

i=1 atomi

with atomi ∈ {S(Ω), Pr∼p(Ω) | Ω an objective for Γ,∼ ∈ {>,≥}, p ∈ [0, 1]}.
An MC M with a distinguished initial state s satisfies a threshold constraint
Pr∼p(Ω) if PrMs (Ω) ∼ p, a sure constraint S(Ω) if PathsMs ⊆ Ω, and it satisfies
the formula φ (in symbols: s |=M φ) if it satisfies atomi for all i ∈ [n]. For an
MDP Γ with strategy σ we write s, σ |=Γ φ if s |=Γ [σ] φ, and s |=Γ φ if s, σ |=Γ φ
for some strategy σ for Γ . In this paper, we only consider formulas of the form
1 Measurability is actually only important for probabilistic objectives, not for sure

objectives. However, all concrete objectives considered in this paper are measurable.
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S(ρ) ∧ Pr∼p1
(♢F1) ∧ . . . ∧ Pr∼pn

(♢Fn), i.e., conjunctions of one sure parity and
n ≥ 1 reachability objectives, either all with strict or non-strict thresholds.

We now define Pareto frontiers. Given an MO formula φ for MDP Γ contain-
ing n threshold constraints Pr∼p1

(Ω1), . . . , Pr∼pn
(Ωn) (in this order), we write

φ(p1, . . . , pn) = φ(p) to emphasize the dependency of φ on the threshold vector
p ∈ [0, 1]n. We also write φ(x) without further qualifying x to indicate that the
thresholds are variables x = (x1, . . . , xn). We define the set of achievable thresh-
old vectors as Ach(Γ, s, φ(x)) = {p ∈ [0, 1]n | s |=Γ φ(p)} ⊆ [0, 1]n. Note that
Ach(Γ, s, φ(x)) is downward-closed as ∼ ∈ {≥, >}, and convex since a convex
combination c · p+ (1−c) · p′, c ∈ (0, 1), of achievable threshold vectors p,p′ is
achieved by a strategy that plays the strategy for p with probability c and the
one for p′ with probability 1−c, see, e.g. [25]. Given a set of vectors X, we define
gen(X), the subspace generated by X, as the intersection of all subspaces of Rn

containing X. It is the smallest subspace containing X. For the next definition
recall that the boundary ∂X of a set X ⊆ [0, 1]n is defined as X \ intX, where
X is the closure of X and intX is the interior, i.e., the largest open subset of X.

Definition 1 (Pareto frontier). Let Γ = (S,Act,P) be an MDP, φ(x) an
MO formula for Γ , and s ∈ S. We define Pareto(Γ, s, φ(x)) = ∂Ach(Γ, s, φ(x)).

The above definition is similar to the one from [3]; other authors define the Pareto
frontier in a slightly different way, e.g., as the ≤-maxima of Ach(Γ, s, φ(x)) [26].

The Pareto frontier is the boundary of a convex polytope of dimension at
most n [25]. Such a polytope P has faces of lower dimension, from 0 (a vertex)
to n − 1. These faces are defined as follows: given a hyperplane H intersecting
P , the polytope H ∩ P is a face of P iff P lies fully on one of the two closed
half-spaces defined by H. When considering the polytope associated to a Pareto
frontier (and by generalization the Pareto frontier itself), we can freely separate
points between those strictly in the interior, those on the border, and those in
the exterior. In what follows, we only consider faces defined by intersection with
hyperplanes whose normal vectors only have non-negative components. More on
convex polytopes can be found in [27].

Example 1. Consider the MDP Γ in Figure 1 on page 2 and the formula φ(x) =
Pr≥x1(♢F1) ∧ Pr≥x2(♢F2) (we ignore parity). Let s be the marked initial state.

– p1 = (1, 1/3) is achievable from s by choosing pair1, and then playing a
repeatedly to reach F1 with 2/3, and both F1 and F2 with probability 1/3.

– p2 = (1/3, 1) is achievable from s by choosing pair2, and then a repeatedly
to reach F2 with 2/3 and both F1 and F2 with probability 1/3.

– As mentioned earlier, a convex combination of two achievable points is
achievable by following one of the two strategies with suitable probabilities.
However, in this specific example, the vector p3 = (2/3, 2/3) = 0.5·p1+0.5·p2

is achievable with a deterministic strategy as well: First choose pair2 in s
and then b to reach state F1 with 1/3, state F2 with 1/3, and both F1 and F2

with probability 1/3. These points will be relevant in Sections 4 and 5.
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– The above strategies are all Pareto-optimal, but there are also sub-optimal
strategies, e.g., choosing pair1 in s and then b leads to reaching F1 and F2

with probability 0 and 1, respectively. This is sub-optimal as (0, 1) ≤ p2.

We consider clean MDPs throughout the rest of the paper:

Definition 2 (Clean MDP). Let Γ = (S,Act,P) be an MDP. Γ is clean ...

– ... w.r.t. a parity objective ρ : S → [k]0 if for all s ∈ S, we have s |=Γ S(ρ),
i.e., ρ is surely satisfiable from every state s.

– ... w.r.t. target sets F1, . . . , Fn ⊆ S if for all s ∈ S, we have s |=Γ Pr≥1(♢F ),
where F =

⋃n
i=1 Fi, and every state in F is a sink.

Example 2. The MDP from Figure 1 is clean w.r.t. ρ because from every state,
there is a strategy that surely reaches a sink with priority 0. For instance, from
the topmost state, the rightmost sink is reachable by playing action b. The MDP
is also clean w.r.t. F1, F2 because from every state there exists a strategy reaching
F = F1 ∪ F2 with probability one, and because F contains sink states only.

Some remarks about clean MDPs are in order: (i) One can clean an MDP
w.r.t. parity by identifying and removing states that violate S(ρ). The latter can
be done by solving the 2-player deterministic parity game obtained by replacing
the randomness in the MDP by an antagonistic player. Note that deciding the
winner in a parity game (and hence checking if s |=Γ S(ρ) holds for state s)
is in NP ∩ coNP [14], and even in UP ∩ coUP [31], but is not known to be in
PTIME. (ii) Reachability towards sinks only is a more severe restriction. We
make it because simultaneous almost-sure reachability of n general target sets in
an MDP is already PSPACE-complete [36]. Intuitively, this is because strategies
have to remember which targets were already seen. Contrarily, sink reachability
often admits more practical complexities as shown in Sections 3 and 4 (also see,
e.g., [17] and [39]) and is still of practical interest. We leave a solution for general
reachability for future work, since it would likely further improvements on the
techniques we introduce.

3 Sure Parity and n Strict Reachability Thresholds

We study MO formulas of the form S(ρ) ∧
∧n

i=1 Pr>pi
(♢Fi) in this section, i.e.,

with strict thresholds only. Non-strict thresholds are more involved, see Sec-
tion 5. We start by stating the main result of this section. Note that it is for-
mulated for MDPs that are clean w.r.t. the parity objective ρ and the target
sets Fi. The assumption of being clean w.r.t. parity can be dropped, but this
incurs the additional complexity of solving a parity game (see Definition 2 and
subsequent remarks), and hence leads to an NP∩coNP complexity bound on the
associated decision problem.
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Theorem 1. Let Γ be a clean MDP w.r.t. parity objective ρ and target sets
F1, . . . , Fn ⊆ S. Further, let p ∈ [0, 1]n, and let s ∈ S be a state. Then:

1. The decision problem ∃σ : s, σ |=Γ S(ρ)∧
∧n

i=1 Pr>pi(♢Fi) is in PTIME.
2. A witness strategy σ using at most 2poly(|Γ |+nD) memory, where D is

the bit-complexity of the rational numbers in p, can be effectively con-
structed for the Yes-instances.

Proof (sketch). Using Corollary 3.5 of [25], we can test if φ(p) =
∧n

i=1 Pr>pi
(♢Fi)

is achievable (note that we have dropped the parity objective). If it is not, then
the answer is clearly No. Otherwise, there exists a memoryless but possibly ran-
domized strategy achieving φ(p). As the inequalities in φ(p) are strict, it can
be shown that the reachability thresholds can be guaranteed after playing the
strategy for some finite but exponential number of steps. As parity objectives
are prefix-independent, we can then simply switch to a memoryless deterministic
winning strategy for parity. For the latter argument to work, it is crucial that
the MDP is clean w.r.t. the parity objective ρ, i.e., that it is possible to satisfy
S(ρ) from every state of the MDP.

Example 3. Reconsider the MDP Γ from Figure 1 with initial state s, yellow
target F1 and blue target F2. To surely satisfy ρ, we must visit non-sink states
only finitely often (this is a co-Büchi condition). We show that s |=Γ S(ρ) ∧
Pr>1/2(♢F1)∧ Pr>1/6(♢F2), achieving a value strictly greater than p4 = (1/2, 1/6)
which is strictly inside the Pareto frontier. To achieve this objective, we take the
following strategy: we first play action pair1, then a twice. By doing so, we have
probability 1/4 of reaching the leftmost state (contained in both F1 and F2), and
probability 1/2 of reaching the state only fulfilling F1. If we now play action b, we
satisfy condition ρ surely. We end up reaching F1 with probability 3/4 > 1/2 and
reaching F2 with probability 1/2 > 1/6. Note that in general, thresholds that are
achievable with strict inequalities are located strictly inside the Pareto frontier.

4 Sure Parity and Lexicographic Reachability

We are now interested in surely satisfying a parity objective while maximizing
the probability of reaching n target sets in lexicographic order. Towards this goal
we define the notion of projection in Definition 3, a concept also used extensively
in Section 5. We then propose an algorithm using projection and prove it correct.

Recall that the lexicographic order on [0, 1]n is the total order defined as
x <lex y iff there is k ∈ [n] such that (i) xk < yk and (ii) xi = yi for all
i ∈ [k−1]. In the following, the order of our target sets F1, . . . , Fn is relevant:
For all i, j ∈ [n], Fi appears before Fj iff Fi is more important than Fj .

One of the difficulties is that when considering the set of achievable points, the
lexicographic supremum may not be achievable, i.e., the lexicographic maximum
may not exist. We now formally give the main result of this section.
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Theorem 2. Let MDP Γ be clean w.r.t. parity objective ρ and target sets
F1, . . . , Fn ⊆ S, and let s ∈ S be a state. Then:

– It is decidable if p∗ = maxlex{p ∈ [0, 1]n | s |=Γ S(ρ)∧
∧n

i=1 Pr≥pi(♢Fi)}
exists by solving O(poly(n)) many parity games (hence the problem is
in NP ∩ coNP [11]).

– A witnessing strategy using at most 2|Γ || ρ | memory can be effectively
constructed for the Yes-instances.

Our approach considers every target set Fi one by one, following the lexi-
cographic order. The general idea is to successively remove all transitions that
do not achieve the maximal probability to reach Fi. Thus, after having pruned
transitions w.r.t. the first i target sets, any strategy that maximizes the prob-
ability to reach the set F = F1 ∪ . . . ∪ Fn also maximizes the probabilities of
reaching F1, . . . , Fi lexicographically [18]. In order to find the maximal probabil-
ity to achieve a single objective, we adapt the notion of projection from [25,26].
The main difference is that we keep reachability objectives, instead of converting
them into reward objectives, enabling us to use existing results [8] on combina-
tions of sure and almost-sure objectives.

We define the MDP Γπv, the projection of MDP Γ on a non-zero vector
v ∈ [0, 1]n where we can freely assume ∥v∥1 = 1. Intuitively, to obtain Γπv, we
consider a k-dimensional face of the Pareto frontier of

∧n
i=1 Pr≥pi(♢Fi), maximal

in the direction v. This is thus an intersection with a hyperplane, and defines
a face of dimension k. We remove all available actions that are used in none of
the strategies achieving this face of dimension k, i.e. we remove all non-optimal
actions when trying to maximize in the direction v. Our purpose is to obtain a
new MDP, in which every strategy that almost-surely reaches a final state in F
also maximizes the probability to reach these states weighted with the direction
v. We remark that in this new MDP, the parity condition ρ may not be surely
satisfied from every state; we will thus need to address this condition later.

Definition 3 (Projection). Let Γ = (S,Act,P) be clean w.r.t. F1, . . . , Fn ⊆
S. The projection Γπv of Γ in direction v ≥ 0 with ∥v∥1 = 1, is defined in two
steps: (1) Let Γ ′ = (S′, Act,P′) be an MDP where

– S′ = S ∪ {⊥} where ⊥ is a fresh sink state, and
– P′ is defined similar to P with the following modifications (let F =

⋃n
i=1 Fi):

• For all s ∈ S \ F , a ∈ Act(s), and s′ ∈ F , we set
P′(s, a, s′) = P(s, a, s′)·

∑
i:s′∈Fi

vi and P′(s, a,⊥) = 1−
∑

s′′∈S P′(s, a, s′′).
• P′(⊥, a,⊥) = 1, where a ∈ Act is arbitrary.

(2) For each state s ∈ S′, let ys = maxσ Pr
Γ ′[σ]
s (♢F ) be the maximum probability

to reach F from s in Γ ′. The MDP Γπv is then obtained from Γ ′ by removing
all actions a ∈ Act(s) that do not satisfy ys =

∑
s′∈S′ P′(s, a, s′) · ys′ .

Example 4. The MDP in Figure 2 results from projecting the MDP from Figure 1
on v = (0, 1) (⊥ is not reachable). Only the actions reaching the blue target F2

with maximal probability remain.
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Fig. 2. The MDP from Figure 1 projected on v = ( 0 , 1 ). Right: The set of achiev-
able points w.r.t. S(ρ) ∧ Pr≥x1(♢ F1 ) ∧ Pr≥x2(♢ F2 ) is [0, 1/3) × [0, 1) ∪ {(0, 1)}; the
lexicographic maximum for order F2 , F1 is thus p∗ = ( 1 , 0 ).

Algorithm 1 Sure parity and lexicographic reachability
Input: MDP Γ – clean w.r.t. parity objective ρ and F1, . . . , Fn ⊆ S, a state s ∈ S
Output: If p∗ = maxlex{p ∈ [0, 1]n | s |=Γ S(ρ) ∧

∧n
i=1 Pr≥pi(♢Fi)} exists, then the

output is a witness strategy σ, otherwise the output is false.
1: Γ0 ← Γ
2: F ←

⋃n
i=1 Fi

3: for i from 1 to n do
4: Compute Γπei

i−1 ▷ See Definition 3.
5: Γi ← result of pruning all states not satisfying S(ρ) ∧ Pr=1(♢F ) in Γπei

i−1 .
6: end for
7: if s is not a state of Γn then return false
8: else return σ such that s, σ |=Γn S(ρ) ∧ Pr=1(♢F ) ▷ By Theorem 2.
9: end if

Given Γ , F1, . . . , Fn and v, it is clear from Definition 3 that we can construct
the projection Γπv in polynomial time. Note that strategies in Γπv are still valid
in Γ , but the converse is not necessarily the case as projection removes actions.

Lemma 1. (Key property of projection) Let Γ = (S,Act,P) be clean w.r.t.
F1, . . . , Fn,⊥ ⊆ S, and let v ≥ 0, ∥v∥1 = 1. Then for all strategies σ of Γπv,
the following holds: s, σ |=Γπv Pr=1(♢F ) iff there exists x ∈ [0, 1]n such that (i)
x · v is maximal among the achievable x, and (ii) s, σ |=Γ

∧n
i=1 Pr≥xi(♢Fi).

5 Sure Parity and n non-Strict Reachability Thresholds

Finally, we consider the case of one sure parity condition and multiple non-strict
threshold reachability objectives, i.e., formulas like S(ρ)

∧n
i=1 Pr≥pi

(♢Fi). We do
not impose a lexicographic ordering on the target sets. Our main result is:
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Theorem 3. Let MDP Γ be clean w.r.t. parity objective ρ and target sets
F1, . . . , Fn ⊆ S. Further, let p ∈ [0, 1]n, and let s ∈ S be a state. Then:

1. The decision problem ∃σ : s, σ |=Γ S(ρ)∧
∧n

i=1 Pr≥pi(♢Fi) is in EXPTIME.
2. A witness strategy σ using at most 2poly(|Γ |+nD) memory, where D is

the bit-complexity of the rational numbers in p, can be effectively con-
structed for the Yes-instances.

We solved the case where p is strictly inside the Pareto frontier in Section 3.
It remains to show how to achieve S(ρ)

∧n
i=1 Pr≥pi

(♢Fi) when p is exactly on
the frontier. We first consider the case where p is a vertex of the Pareto frontier,
that we will then use as a base case for an arbitrary point p of the frontier. We
sketch the proof in the remainder of the section.

Since the Pareto frontier does not depend on the sure objective, to de-
termine whether p is exactly on the Pareto frontier, it suffices to check if
s |=Γ

∧n
i=1 Pr≥pi

(♢Fi) and s ⊭Γ

∧n
i=1 Pr>pi

(♢Fi). The first formula checks
if p is achievable, the second checks whether it is on the boundary. Hence the
main difficulty is to decide whether adding a sure parity condition keeps the
achievability of a point. We illustrate this in the following example.

Example 5. In the MDP of Figure 1, playing pair1 then a forever gives a total
probability of 1 of reaching F1 and probability 1/3 of reaching F2. This strategy
does not surely satisfy the parity condition though, since there exists a path
that visits the uppermost state, labelled 1, forever. Playing pair1 and then b
once surely reaches F2. It is thus possible to satisfy S(ρ) ∧ Pr=1(♢F2), but not
S(ρ) ∧ Pr=1(♢F1) ∧ Pr≥1/3(♢F2). Still, for every ε > 0, we can achieve S(ρ) ∧
Pr≥1−ε(♢F1) ∧ Pr≥1/3−ε(♢F2) by Theorem 1, using a finite-memory strategy.

5.1 Vertex of the Pareto frontier

We first consider the easier case where we want to achieve a point which is a
vertex of the Pareto frontier. We assume p to be a vertex of the Pareto frontier.
Our proof relies on projection (Definition 3). Indeed, since p is a vertex, there
exists some vector v such that p is the unique point of the Pareto frontier
maximizing p · v. We obtain the following lemma.

Lemma 2. Suppose that the MDP Γ is clean w.r.t. parity objective ρ and target
sets F1, . . . , Fn ⊆ S. Further, let p ∈ [0, 1]n, and let s ∈ S be a state. If p is a
vertex of the Pareto frontier of

∧n
i=1 Pr≥pi

(♢Fi) from s, then we can decide if
s |=Γ S(ρ) ∧

∧n
i=1 Pr≥pi(♢Fi) and if so give a finite-memory strategy.

5.2 Arbitrary Point of the Pareto Frontier

We now consider any arbitrary point p of the Pareto frontier. Since p may be
contained in a k-dimensional face of the frontier (with k > 0; k = 0 means
that p is a vertex, see Section 5.1), projecting on this face will not be sufficient
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Fig. 3. The MDP of Figure 1 after projection on v = ( 1 , 1 ).

to obtain p. Similar to Algorithm 1, we iterate projections and state removal,
thereby reducing the dimension of the Pareto frontier until either reducing p to
a vertex, or entering a situation where we cannot project anymore. We remark
that the latter only happens in specific cases. To properly define these cases,
given a Pareto frontier P , we consider the smallest vector space containing P .
We show that we cannot project any more when p is an interior point of P for
this subspace, denoted p ∈ intgen(P )(P ).

Example 6. After projecting the MDP of Figure 1 on v = (1, 1), we obtain the
MDP in Figure 3 (including both the dashed and the solid transitions). Since
from the uppermost state, no strategy surely satisfies the parity condition, S(ρ)∧
Pr=1(♢F ) does not hold. We thus prune the dashed transitions, and the Pareto
frontier is now restricted between (1/3, 1) and (2/3, 2/3), see Figure 3 (right). To
achieve e.g. p = (1/2, 5/6), which is strictly inside this line segment, it suffices to
play pair2, then a once, and then finally b once.

To obtain our result, we get the following lemma. After projecting on a given
vector, and removing any state refuting S(ρ)∧Pr=1(♢F ) we obtain some polytope
P ; any point of P that is a topologically interior point in the smallest vector
space containing P is achievable. Formally:

Lemma 3. Let the MDP Γ be clean w.r.t. parity objective ρ and target sets
F1, . . . , Fn ⊆ S. Further, let v ∈ [0, 1]n, and s ∈ S. Let Γρ be obtained by taking
the MDP Γπv and pruning all states that refute S(ρ)∧Pr=1(♢F ). Let B ⊆ [0, 1]n

be the set of ≤-maximal points of the Pareto frontier of Γρ from s. Then: For
every x ∈ intgen(B)(B), we have s |=Γρ

S(ρ) ∧
∧n

i=1 Pr≥xi
(♢Fi), and we can

compute a strategy that achieves this.

The proof of this lemma is quite involved. Figure 4 provides some intuition
on the proof. If x is inside an m-dimensional surface B, we can find m + 1
elements of B such that x is within their convex hull. These are y1, y2, y3 in
Figure 4. For every yj , we can find a strategy satisfying

∧
i∈[n] Pr≥yj

i
(♢Fi). By
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Fig. 4. To obtain x on the two-dimension plane, we first take three points y1, y2, y3,
then find ε small enough for x to be within the convex hull of any ε-approximation
z1, z2, z3 of y1, y2, y3.

playing such a strategy for sufficiently many steps, then switching to a strategy
satisfying S(ρ) ∧ Pr=1(♢F ), we can ε-approximate the yj while staying inside
B. Points achieved by such approximation are denoted z1, z2, z3 in Figure 4. It
then remains to show that if ε is small enough, x is within the convex hull of
z1, z2, z3 and thus can be achieved.

We can now give our result stating that we can verify the achievability of an
arbitrary point of the Pareto frontier.

Lemma 4. Suppose that the MDP Γ is clean w.r.t. parity objective ρ and target
sets F1, . . . , Fn ⊆ S. Further, let s ∈ S be a state, and
x = (xi)i∈[n] ∈ [0, 1]n on the border of the Pareto frontier of

∧
i∈[n] Pr≥xi(♢Fi)

– Checking whether s |=Γ S(ρ) ∧
∧

i∈[n] Pr≥xi
(♢Fi) is decidable;

– if Yes a witnessing strategy with at most 2|Γ || ρ | memory can be effectively
computed.

Proof. We show that Algorithm 2 answers Lemma 4. The main differences with
Alg. 1 is that we must find the vector on which we project, and at the end of
the loop of Alg. 2 we have to split between the cases where x is a vertex or not.

During iteration i, we first find a vector orthogonal to the face of Pi that
x belongs to. To do so, we may need to fully compute the Pareto frontier of
Γi−1. In line 4 we project the current MDP Γi−1 on vector vi, obtaining Γπvi

i−1 .
By Lemma 1, a strategy satisfies Pr=1(♢F ) in Γπei

i−1 iff it maximizes p such that
Pr≥p(♢Fi) in Γi−1. We then prune all states that do not satisfy the conjunction
with the parity condition S(ρ) ∧ Pr=1(♢F ).

If x is an interior point, it follows by Lemma 3 that we can find a strategy σ
such that s, σ |=Γi S(ρ) ∧

∧n
i=1 Pr≥xi(♢Fi). Otherwise, we start the loop again.
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Algorithm 2 Sure parity and n non-strict reachability threshold objectives
Input: MDP Γ – clean w.r.t. ρ and F1, . . . , Fn ⊆ S, a state s ∈ S, a vector x ∈ [0, 1]n

Output: A strategy σ such that s, σ |=Γ S(ρ)∧
∧n

i=1 Pr≥xi(♢Fi) if it exists, else false.
1: Set Γ0 = Γ and i = 1.
2: while x is not a vertex of Pi, the Pareto frontier of Γi do
3: Get vi a vector orthogonal to the smallest face of Pi that x belongs to.
4: Compute Γπvi

i from s. ▷ By Lemma 1.
5: Set Γi by taking Γπvi

i−1 and pruning all states that do not satisfy S(ρ)∧Pr≥1(♢F ).
6: If x is an interior point of Pi return σ s.t. s, σ |=Γi S(ρ) ∧

∧n
i=1 Pr≥xi(♢Fi) ▷

By Lemma 3.
7: i := i+ 1
8: end while
9: Check if there exists σ such that s |=Γi S(ρ) ∧

∧n
i=1 Pr≥xi(♢Fi). ▷ By Lemma 2.

10: If such a σ does not exist then return false, else return σ.

Since every time we project, it is onto a face of the Pareto frontier of dimen-
sion smaller than the current Pareto frontier, we can only take the loop at most
n times. After this we go to line 9, and since x is now a vertex of the Pareto
frontier, we can use Lemma 2 to find whether there exists a strategy such that
s |=Γi

S(ρ) ∧
∧n

i=1 Pr≥xi
(♢Fi).

If the output is false, we remark that since projection in line 4 keeps all
states belonging to strategies such that Pr≥p(♢Fi) in Γi−1 (by Lemma 1), it keeps
all states belonging to strategies such that

∧n
i=1 Pr≥xi(♢Fi). Step 5 may prune

states used in strategies such that
∧n

i=1 Pr≥xi
(♢Fi), but then by definition these

strategies did not satisfy S(ρ). Hence, since none of the pruned states belonged
to a strategies such that s |=Γi

S(ρ)∧
∧n

i=1 Pr≥xi
(♢Fi), the algorithm is correct.

We show that Algorithm 2 solves at most a polynomial number of parity
game of size polynomial in |Γ |.

Indeed, to obtain |Γπvi
i−1 |, we have to compute the Pareto frontier of |Γi−1|.

This new MDP only has one more state than Γ and at most |Γ | additional
transitions (that may lead from states originally in Γ to the new state ⊥). We
then remove once all states that do not satisfy S(ρ) ∧ Pr=1(♢F ), which can be
done by solving a polynomial number of parity games. Every time we do this
step, we project onto a face of the Pareto frontier of dimension smaller than the
current Pareto frontier and this can only happen at most n times. Thus we end
up solving a number polynomial in n of parity game of size polynomial in Γ ,
and compute Pareto frontiers for MDPs with n objectives at most n times.

We output true iff we find a strategy σ that is a solution of s, σ |=Γi
S(ρ) ∧

Pr=1(♢F ) iff it is a solution of s |=Γ S(ρ) ∧
∧

i∈[n] Pr≥xi(♢Fi), and we can find
strategies satisfying the left hand formula that use 2|Γ || ρ | memory, as proved
in Theorem 2.

Example 7. For the MDP from Figure 1, with initial state s, and where F1 is the
yellow target and F2 is the blue target, we check if s |=Γ S(ρ) ∧ Pr≥2/3(♢F1) ∧
Pr≥2/3(♢F2). Point (2/3, 2/3) is on the Pareto frontier but not a vertex of it,
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and following Algorithm 2, a vector orthogonal to it is (1, 1). After projection
on (1, 1), we obtain the MDP in Figure 3 (left), with both full and dashed
transitions. As in Example 6, no strategy satisfies surely the parity condition
in the uppermost state, we prune the dashed transitions, restricting the Pareto
frontier to between (1/3, 1) and (2/3, 2/3). Now (2/3, 2/3) is a vertex of the new
Pareto frontier, Lemma 2 tells us to project on vector (2, 1), and so we prune
transition a from the lowermost state, only keeping transition b. Since we can
satisfy the parity condition from the lowermost state, we obtain that the strategy
playing b twice satisfies S(ρ) ∧ Pr≥2/3(♢F1) ∧ Pr≥2/3(♢F2).

6 Conclusion and Future Work

Combining sure parity and n reachability threshold objectives can be done via a
reduction to parity games in the case of strict thresholds and when maximizing
the threshold lexicographically, and in exponential time with non-strict thresh-
olds. Finite-memory strategies suffice in all cases. One direction for future work
is to implement our algorithms in the probabilistic model checker Storm [30].
Further open problems include the case where targets are not sinks, and the
study of one sure parity and n parity threshold objectives. However, the exact
memory required for one sure and one almost-sure parity is already unknown. It
seems worthwhile to investigate if 1-bit Markov strategies suffice, as they do in
countable MDPs with parity objectives [32]. In [1,8], the solution of sure parity
and almost-sure reachability in MDPs relies on a reduction to a game with a
fair opponent. Results in [15] concern stochastic games with a fair opponent,
and may thus help extending the results from [1,8] to stochastic games. Another
possible extension is to consider combinations of multiple objectives in partially
observable MDPs (POMDPs), as in [21].
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