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Abstract. Security Operations Center (SoC) analysts gather threat re-
ports from openly accessible global threat repositories and tailor the in-
formation to their organization’s needs, such as developing threat intelli-
gence and security policies. They also depend on organizational internal
repositories, which act as private local knowledge database. These local
knowledge databases store credible cyber intelligence, critical operational
and infrastructure details. SoCs undertake a manual labor-intensive task
of utilizing these global threat repositories and local knowledge databases
to create both organization-specific threat intelligence and mitigation
policies. Recently, Large Language Models (LLMs) have shown the ca-
pability to process diverse knowledge sources efficiently. We leverage this
ability to automate this organization-specific threat intelligence gener-
ation. We present LocalIntel, a novel automated threat intelligence
contextualization framework that retrieves zero-day vulnerability reports
from the global threat repositories and uses its local knowledge database
to determine implications and mitigation strategies to alert and assist
the SoC analyst. LocalIntel comprises two key phases: knowledge re-
trieval and contextualization. Quantitative and qualitative assessment
has shown effectiveness in generating up to 93% accurate organizational
threat intelligence with 64% inter-rater agreement.

Keywords: Cybersecurity, Cyber Threat Intelligence (CTI), Knowl-
edge Contextualization, Generative AI, Large Language Model (LLM)

1 Introduction

In 2023, there were 2,365 cyberattacks, with 29,0654 reported Common Vul-
nerabilities and Exposures (CVE)5. Cyber analysts in the Security Operations
4 URLs: bit.ly/3zccFKK and bit.ly/4g8bdKk
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Center (SoC) retrieve malware samples from the internet. These samples are
executed in sandboxes for behavior analysis. This analysis leads to developing
defensive strategies to detect and prevent cyber-attacks that use such malware.
The findings are shared publicly as generic cyber threat intelligence (CTI) in
global threat repositories like CVE, National Vulnerability Database (NVD)5,
Common Weakness Enumeration (CWE)5 or as third-party threat reports. Se-
curity analysts of an organization manually contextualize this generic knowl-
edge to that organization’s unique operating conditions by considering factors
like network, hardware & software specifics and business needs to protect from
such cyber-attacks. Security measures such as policies and protocols are then
deployed depending on this contextualized information to maintain secured op-
erations. Organizations maintain this operating information and contextualized
threat intelligence documented in their local knowledge database.

However, expeditiously developing appropriate contextualized reports is a
critical challenge before deploying security policies. Manual generation not only
consumes high costs but can also be erroneous and require plenty of time due to
the volume and criticality of unstructured information. On the other hand, orga-
nizations must immediately integrate policies for any novel threat to safeguard
operations. Failure of timely and correct contextualized CTI generation for pol-
icy updation can incur heavy losses. Consider a couple of scenarios where either
knowledge’s availability is insufficient. Scenario 1: An organization’s internal
rules detect an unknown process attempting to communicate with an external
server. The Endpoint Detection and Response (EDR) team flags and blocks the
process. However, without global CTI, they are unaware that this process is part
of a larger ransomware campaign. Without this knowledge, the EDR team’s re-
sponse is inadequate, as it fails to recognize additional Indicators of Compromises
(IoCs). A secondary payload may go undetected, encrypting the organization’s
data. Scenario 2: During a routine penetration test, the software and corre-
sponding versions used by the company are identified. Based on CVE/CWE
data, the testers flag many software versions due to reported vulnerabilities.
However, update log reveals that the flagged software has already been patched,
making the alerts unnecessary. Modern IDEs or cybersecurity tools such as Nes-
sus6 or Nexpose7 can instantly notify the SoC analyst regarding the zero-day
vulnerability. However, these solutions cannot suggest accurate counteractions as
they cannot assume organizational status since local knowledge resides within
the organizational scope. Furthermore, organizations resist granting access to
this local knowledge to a third-party vendor. This situation presents a challenge
for SoC analysts as they are dealing with two sets of unstructured information.
They may require more time to fully understand the context to develop the right
policy before the vulnerability gets exploited in an active attack.

To address this problem, we developed LocalIntel. Our motivation stems
from the idea that an on-premise system capable of automatically generating

5 CVE: cve.mitre.org | CWE: cwe.mitre.org | NVD: nvd.nist.gov
6 Nessus: tenable.com/products/nessus
7 Nexpose: rapid7.com/products/nexpose
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CVE-2024-2414:
The primary channel is 
unprotected on Movistar 
4G router affecting 
version ES_WLD71-
T1_v2.0.201820. This 
device has the 'adb' 
service open on port
5555 and provides access 
to a shell with root 
privileges.

CVE-2024-2415:
Command injection 
vulnerability in Movistar 4G 
router affecting version 
ES_WLD71-T1_v2.0.201820. 
This vulnerability allows an 
authenticated user to 
execute commands inside 
the router by making a 
POST request to the URL 
'/cgi-bin/gui.cgi'.

Configuration Wiki:
Denver office complex 
(DEN.20.303) has 
Installed Movistar 4G 
router 
(DEN_MVS4_2023) 
ES_WLD71-
T1_v2.0.201820 with 
ADB service 
configured on port 22.

Configuration 
Wiki:
Z-tier_1.35 
NAT server at 
DEN.20.303
has WinSCP
version 5.17.10
configured to 
port 5555.

CVE-2024-2416:
Cross-Site Request Forgery 
vulnerability in Movistar's 
4G router affecting version 
ES_WLD71-T1_v2.0.201820. 
This vulnerability allows an 
attacker to force an end 
user to execute unwanted 
actions in a web application
in which they are currently 
authenticated.

Maintenance Tracker:

Platform team at DEN.20.303 will perform 
firmware update for DEN_MVS4_2023
versioned ES_WLD71-T1_v2.0.201820 to 
ES_WLD71-T1_v2.0.214140 on August 15th

Monday, 12-Aug-24 00:15:00 UTC and 
service might be unavailable due to the 
scheduled device restart and disabled 
authentication services.

The Movistar 4G router 
(DEN_MVS4_2023) at the Denver 
office (DEN.20.303) has a 
vulnerability identified as CVE-2024-
2414 due to its accessible ADB
service, which provides root shell 
access, posing a significant security 
risk. While the ADB service is 
typically open on port 5555 globally, 
in this case, it is open on port 22 due 
to WinSCP configuration. Therefore, 
it is crucial to close port 22. In 
addition, all network traffic to the 
DEN.20.303 Movistar 4G routers 
should be suspended for scheduled 
maintenance on Monday, August 
15th, 2024, at 00:15:00 UTC. It's 
important to note that during this 
period, the authentication service 
will be unavailable, potentially 
allowing users to exploit the 
Command injection vulnerability 
(CVE-2024-2415) by making a POST
request to the URL '/cgi-bin/gui.cgi'.

Generic Threat Intelligence (𝓖𝒊)

Organizational Local Knowledge (𝓛𝒊)

Contextualized CTI (𝓒)Global 
Threat 
Repository
(𝓖)

Local 
Knowledge
Database
(𝓛)

Local-Intel

Fig. 1: Overview of our LocalIntel framework with an example use case.

relevant and accurate organization-specific threat intelligence, which includes
threat implications and counteractions, by assimilating global and local knowl-
edge, would empower SoC analysts to quickly understand the effects of new cyber
threats on their infrastructure, thereby saving valuable time from the manual
effort. Hence, SoC analysts can develop, modify, or update their cyber defense
strategies in real-time, mitigating the risk of early cyber-attacks. Considering the
diverse organizational infrastructure, we have designed our LocalIntel frame-
work to be modular, meaning the framework is customizable based on the use
case. To the best of our knowledge, this is the first research that contextualizes
global threat intelligence adapted for an organization-specific context. Our work
makes the following contributions:

– We demonstrate the feasibility of producing accurate and relevant organization-
specific CTI from generic threat intelligence and its operational knowledge.

– We built a knowledge-contextualization framework that generates real-time
organizational CTI from publicly available and organizational knowledge.

– We construct a prototype repository of local organizational knowledge and
an evaluation dataset to assess the generation of contextualized CTI.

– Through our evaluation dataset, we illustrate LocalIntel’s ability to gen-
erate precise organizational CTI using qualitative and quantitative metrics.

In Section 2, we discuss the problem statement and theoretical foundations.
Section 3 provides a detailed description of our LocalIntel framework. The
experiment and evaluation are presented in Section 4. Moving forward, Section
5 explores the related works. Concluding remarks are in Section 6.
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Table 1: Description of Notation.

Notation Description
{Gi|Gi ∈ G} Global Threat Repository
{Li|Li ∈ L} Local Organizational Database

Q Query to fetch global (Gi) & local (G) knowledge
C Contextualized Completion

2 Research Objective & Theoretical Foundations

Global threat repository (G = {G1,G2, ...,Gn}) is a publicly available set of online
CTI reports (Gi). Local knowledge database (L = {L1,L2, ...,Ln}) consists of
policies and procedures of an organization’s operating environments (Li), such
as business requirements, trusted cyber intelligence, allowed system software list
and version details, cyber knowledge about the organization, asset location and
configurations, DMZ configurations, and maintenance reports.

Problem Statement
For a given set of vulnerability Gi in G and corresponding relevant organiza-
tional knowledge Li in L. The task is to generate Completion (C), which is the
contextualized knowledge of Gi w.r.t. Li. C can be considered as contextualiza-
tion function f(·), that translates Gi to organizational context using Li.

f(Gi,Li) = Ci∀Gi ∩ Li ̸= ϕ (1)

For instance, in Figure 1, where Gi is a set containing information stating
vulnerability (v) through process (p). Alternatively, Li contains information re-
garding the organization using process (p) for its operations and other relevant
information. Hence, in the process of generating contextualized threat intelli-
gence C considering v and p, Gi is being translated through Li, when Gi∩Li ̸= ϕ.

3 LocalIntel Framework

In this section, we explain our LocalIntel framework. We first explain our
solution and each module with its functionality in detail (refer to Figure 3). Fi-
nally, we discuss the system implementation and module interactions to generate
the final contextualized threat intelligence C.

3.1 Solution Approach

LocalIntel consists of two core phases: knowledge retrieval (Retrieval Phase)
and generation (Generation Phase). In the retrieval phase, knowledge from global
(G) and local (L) sources are retrieved, and in the generation phase, a final
contextualized threat intelligence C based on the retrieved knowledge Gi ∪ Li is
generated. Refer to Figure 2 and Algorithm 1 for framework overview.
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Fig. 2: LocalIntel data-flow diagram. The zero-day vulnerability triggers the
system to retrieve information from global Gi and local Li knowledge sources
and then contextualizes the results, producing a final output Completion C.

Algorithm 1: LocalIntel Pseudo-code
Input: Generic Threat Intelligence (Gi)
Output: Contextualized Threat Intelligence (C)
Retrieval Phase:
Li ← execute_local_search(Gi,L)
while Li ∩ Gi ̸= ϕ do
Q ← get_search_query(Gi ∪ Li)
forall α ∈ Q do
Gi ← execute_global_search(α,G)

Li ← execute_local_search(Gi,L)
Generation Phase:
C ← generate_completion(Gi ∪ Li)
return C

– In the Retrieval Phase, the system retrieves generic CTI Gi from G and
relevant local knowledge Li from L based on the relevancy. The system per-
forms Named Entity Recognition (NER) to identify search keywords/queries
Q over on the acquired knowledge (Gi ∪ Li). Then, it executes the search
for all search queries in Q in the global knowledge repository G and local
knowledge database L to fetch relevant threat reports and associated details.
This phase continues until no additional knowledge is required (L ∩ Gi ̸= ϕ)
to generate final contextualized threat intelligence.

– Finally, in the Generation Phase, the system generates contextualized threat
intelligence C for the zero-day vulnerability generic threat intelligence based
on the retrieved global knowledge and local knowledge (Gi ∪ Li).
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3.2 LocalIntel System Modules

To implement LocalIntel, we first discuss system modules, which are Global
Threat Repository (G), Local Knowledge Database (L), Agent, Tools, LLM, with
zero-day threat report input Gi and contextualized completion C) output.

Global Threat Repository (G) refers to publicly available cybersecurity
threat intelligence (CTI), such as threat reports from CVE, NVD, CWE, se-
curity blogs and bulletins, social media updates, and third-party reports. These
repositories contain well-documented reports on cybersecurity threats, such as
malware, vulnerability, cyber attacks, and many more. The primary purpose of
these repositories is to facilitate information sharing among cybersecurity pro-
fessionals regarding the latest developments. However, the global knowledge Gi

is generic and may not directly apply to an organization’s needs as organizations
tend to customize their infrastructure depending upon the business. Moreover,
the knowledge obtained from unverifiable sources is only directly usable by an
organization after thorough analysis. LocalIntel is expected to be connected
to these threat repositories for automated zero-day vulnerability report retrieval.

Local Knowledge Database (L) refers to an organizations’ operational in-
formation repository. Due to the generic characteristics, G contains a wide range
of CTI, but they must be supplanted with organization-specific information to
be useable. Hence, local knowledge databases or wikis are private knowledge
repositories containing critical information related to organizational operations
and trusted threat intelligence, such as specifics regarding the environment, op-
erating systems, infrastructure, software, third-party systems, and processes.
Confluence8, Notion9, are a few instances of such wiki platforms. The primary
goal of these wikis is to facilitate structured development and knowledge sharing
among the working professionals in an organization. Due to the unstructured
nature of this information, we assume wiki platforms to be our local knowledge
database. However, more structured sources like knowledge graphs can replace
them with similar searching functionalities.

Agent is the main controller in our LocalIntel framework. It controls the
overall flow, from receiving the input vulnerability report trigger to returning
the final contextualized completion C. Specifically, the Agent’s function is to
determine and regulate the sequence of actions among two phases for generating
the output. The Agent actions are primarily of three types: Query generation,
Query execution, and Completion generation. To achieve this, the Agent interacts
with the other two modules: Tool and LLM, detailed following.

– Query generation refers to generating search queries for information retrieval
from either G or L. The Agent generates a search query to retrieve all the

8 Confluence: atlassian.com/software
9 Notion: notion.so/product/wikis
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relevant information from pre-acquired knowledge (Gi ∪Li). The Agent per-
forms contextual embedding and keyword identification through named en-
tity recognition (NER) to generate search queries Q.

– Query execution refers to executing search query Q in global threat reposi-
tory G and local knowledge database L to retrieve relevant knowledge. Due
to the different characteristics of G and L, the retrieval process can either be
a keyword search through online API calls or a semantic similarity search.

– Text generation can be considered an LLM inference scenario, where the
Agent passes an input text to generate desired output text using LLM. Task-
specific input prompts are pre-designed in the Agent.

Tool are functions that help the Agent execute some third-party actions. The
actions can be diverse in type, for instance, making an online API call, perform-
ing a database search, executing custom scripts, invoking other software, and
many more. However, for the scope of our research, tool functionality is limited
to query generation using LLM, query execution through API calls and vector
database search, and contextualized generation using LLM functionalities only.
Therefore, in our LocalIntel framework, tools are responsible for executing
online searches through API calls or vector database searches and parsing the
results while bridging the Agent’s access to different framework modules.

Large Language Model (LLM) acts as the brain of our LocalIntel frame-
work to process diverse information and generate contextualized CTI. Besides
contextualized threat intelligence generation, it acts as the parser that processes
retrieved knowledge to generate queries for structured information retrieval. De-
pending on the task, the Agent invokes LLM with instructions and information.

Input: Zero-day threat report (Gi) refers to publicly available CTI reports
regarding any discovered vulnerability or malware. We assume that LocalIntel
is connected with the global CTI repositories (G) with active triggers to receive
any newly disclosed threat reports for instant processing.

Output: Contextualized completion (C) is the real-time generated threat
intelligence specifically tailored for an organization depending on its unique op-
erating condition. The objective of C is to assist SoC by providing mitigating
strategies or relevant information on the specific zero-day threat (Gi). We assume
the local knowledge database (L) contains all required organizational knowledge.

3.3 LocalIntel Implementation & Module Interactions

Previously, we have described each module in the architecture. Here, we explain
the implementation phases with intermediate module interactions (refer to Fig-
ure 3). LocalIntel initiates when a vulnerability report is received. The report
can be pushed manually or via automated zero-day triggers.
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CVE-2024-2414:
The primary channel is unprotected on 
Movistar 4G router affecting version 
ES_WLD71-T1_v2.0.201820. This device 
has the 'adb' service open on port 5555
and provides access to a shell with root ...
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Fig. 3: LocalIntel framework module interaction in the two phases: knowledge
retrieval, and contextualized threat intelligence generation. Processes are num-
bered in ascending execution order following the data-flow diagram (Fig. 2).

Knowledge Retrieval (Phase 1): This is the first phase of our framework
where the Agent retrieves generic threat intelligence (Gi). It generates search
queries (Q) for relevant knowledge retrieval. The initial local knowledge search
(refer to Algorithm 1) plays a crucial role in identifying whether the threat in-
telligence is relevant to the organization. If there is no overlap (Gi∩L = ϕ), then
the Agent discards input Gi, as there are no connections; hence, it cannot be con-
textualized. Upon overlaps discovered, it iteratively generates Q and executes
knowledge retrieval from both global (G) and local (L) sources until all required
knowledge needed to be considered for contextualization is retrieved. For the
scope of our experiment, we implemented global knowledge retrieval from the
Internet through keyword search via API endpoints of global threat repositories
such as NIST, CVE, and ensemble [2] vector similarity search for local knowl-
edge retrieval from the organizational wikis. This simplified approach efficiently
fetches corresponding relevant knowledge from both sources. For instance, for
the following threat intelligence, the execution is as follows:

Invoked Generic Threat Intelligence (Gi)

CVE-2024-2414: The primary channel is unprotected on Movistar 4G router af-
fecting E version S_WLD71-T1_v2.0.201820. This device has the ‘adb’ service open
on port 5555 and provides access to a shell with root privileges.
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Upon receiving Gi above, the Agent generates query embedding to perform
ensemble retrieval in L. After executing Q in the vector-indexed L, the Agent
identifies “Movistar 4G" to be the affecting device with following knowledge:

Phase 1: NER Query Generation (Q)

Agent Instruction:
You are a named entity recognition (NER) tool. Given the following classes, perform
NER for the provided Input text.
Classes: software, device, library, functionality, attack_vector, vulnerability ...
Input Threat Intelligence:
CVE-2024-2414: The primary channel is unprotected on Movistar 4G router affecting
E version S_WLD71-T1_v2.0.201820. This device has the ‘adb’ service open on port
5555 and provides access to a shell with root privileges.
Output Keywords:
{"device": “Movistar 4G”, "attack_vector": “port 5555”, "functionality": “adb” }

The semantic search is performed through vector embedding generation and
execution of similarity matching algorithms (cosine, euclidean, dot-product).

Phase 1: Retrieved Local Knowledge (Li) using QL

Configuration Wiki::
– Denver office complex (DEN.20.303) has Installed Movistar 4G router
(DEN_MVS4_2023) ES_WLD71-T1_v2.0.201820 with ADB service config-
ured on port 22.
– Z-tier_1.35 NAT server at DEN.20.303 has WinSCP version 5.17.10 configured to
port 5555.

After searching L, the Agent performs similar query generation Q and exe-
cution iteratively in G and L for additional context retrieval. For this example,
the additional retrieved knowledge Gi and Li from Phase 1 is below:

Phase 1: Additional Global and Local Knowledge (Gi ∪ Li)

Global Knowledge:
– CVE-2024-2415: Command injection vulnerability in Movistar 4G router
affecting version ES_WLD71-T1_v2.0.201820. This vulnerability allows an au-
thenticated user to execute commands inside the router by making a POST request
to the URL ’/cgi-bin/gui.cgi’.
– CVE-2024-2416: Cross-Site Request Forgery vulnerability in Movistar’s 4G
router affecting version ES_WLD71-T1_v2.0.201820. This vulnerability allows
an attacker to force an end user to execute unwanted actions in a web application
in which they are currently authenticated.
Local Knowledge:
– Maintenance Tracker: Platform team at DEN.20.303 will perform firmware
update for DEN_MVS4_2023 versioned ES_WLD71-T1_v2.0.201820 to
ES_WLD71-T1_v2.0.214140 on August 15th Monday, 12-Aug-24 00:15:00 UTC and
service might be unavailable due to the scheduled device restart and disabled au-
thentication services.
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Consolidated knowledge (Gi ∪ Li) is passed for query generation. For this
case, DEN.20.303 and DEN_MVS4_2023 used to identify related information.

Contextualized Generation (Phase 2): In this phase, upon complete re-
trieval of Gi ∪ Li, the Agent invokes LLM for final contextualization.

Phase 2: Contextualized Organizational Threat Intelligence (C)

Agent Instruction:
You are an honest network security analyst. Given public threat intelligence re-
ports fetched from trusted cybersecurity sources and organizational infrastructure
and operations details. Generate a cyber threat intelligence report with all details,
including the impact and mitigation strategies. Do not include any information that
is not provided as additional knowledge.
Retrieved Global Knowledge (Gi):
– CVE-2024-2414: The primary channel is unprotected on Movistar 4G router af-
fecting E version S_WLD71-T1_v2.0.201820. This device has the ‘adb’ service open
on port 5555 and provides access to a shell with root privileges.
– CVE-2024-2415: Command injection vulnerability in Movistar 4G router affect-
ing version ES_WLD71-T1_v2.0.201820. This vulnerability allows an authenticated
user to execute commands inside the router by making a POST request to the URL
’/cgi-bin/gui.cgi’.
– CVE-2024-2416: Cross-Site Request Forgery vulnerability in Movistar’s 4G
router affecting version ES_WLD71-T1_v2.0.201820. This vulnerability allows an
attacker to force an end user to execute unwanted actions in a web application in
which they are currently authenticated.
Retrieved Local Knowledge (Li):
– Configuration Wiki: Denver office complex (DEN.20.303) has Installed Movis-
tar 4G router (DEN_MVS4_2023) ES_WLD71-T1_v2.0.201820 with ADB service
configured on port 22
– Configuration Wiki: Z-tier_1.35 NAT server at DEN.20.303 has WinSCP ver-
sion 5.17.10 configured to port 5555.
– Maintenance Tracker: Platform team at DEN.20.303 will perform
firmware update for DEN_MVS4_2023 versioned ES_WLD71-T1_v2.0.201820 to
ES_WLD71-T1_v2.0.214140 on August 15th Monday, 12-Aug-24 00:15:00 UTC and
service might be unavailable due to the scheduled device restart and disabled au-
thentication services.
Contextualized Completion:
The Movistar 4G router (DEN_MVS4_2023) at the Denver office
(DEN.20.303) has a vulnerability identified as CVE-2024-2414 due to its ac-
cessible ADB service, which provides root shell access, posing a significant security
risk. While the ADB service is typically open on port 5555 globally, in this
case, it is open on port 22 due to WinSCP configuration. Therefore, it is cru-
cial to close port 22. In addition, all network traffic to the DEN.20.303 Mo-
vistar 4G routers should be suspended for scheduled maintenance on Monday,
August 15th, 2024, at 00:15:00 UTC. It’s important to note that during this
period, the authentication service will be unavailable, potentially allowing
users to exploit the Command injection vulnerability (CVE-2024-2415)
by making a POST request to the URL ’/cgi-bin/gui.cgi’.
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After completing both phases, we can observe that through an initial local
search, the agent identified the “Movistar 4G router” as the device of inter-
est (Gi ∩ L) with additional relevant knowledge. Then, it iteratively retrieved
additional threat intelligence (CVE-2024-2415 and CVE-2024-2416) for the de-
vice from G (we considered NVD as G for the experiment) and L (considered
an organizational wiki) to obtain additional local context. The concatenation
of knowledge prior to retrieval allowed the discovery of indirect relevant docu-
ments such as maintenance schedules. Without this knowledge, the mitigation
strategy might become ineffective. Finally, by providing all relevant information
(Gi∪Li) and task instruction, the Agent invokes LLM for real-time organization-
specific threat intelligence generation. This relevant real-time update then equips
SoC analysts with all relevant information without investing any time in man-
ual investigation. The SoC analyst can then utilize this knowledge to take the
necessary actions to safeguard the organization against imminent cyber threats.

4 Experiment and Evaluation

In this section, we discuss our experiments and the achieved evaluation results.
For our evaluations, we performed experiments considering 58 publicly available
threat intelligence scenarios to demonstrate the feasibility of the LocalIntel
framework and assess contextualization relevancy. For the global threat reposi-
tory (G), we considered NVD-CVE data, and for the local knowledge database
(L), a curated organizational wiki (PII anonymized for confidentiality). How-
ever, as described in Section 3, LocalIntel10 is modular, allowing flexibility
to modify the modules depending on requirements and organization-specifics.
For example, other generic threat intelligence sources can be integrated with G,
different local knowledge sources such as knowledge graphs can be incorporated,
and other generative language models can be adopted for a more controlled
generation. Following, we will delve into the evaluation dataset and experiment
setup. Finally, we will describe our evaluation measures and findings with justi-
fications.

4.1 Data Description and Experiment Setup

Our dataset includes (1) 58 trigger/zero-day generic threat intelligence reports
(Gi), (2) 5 organizational wikis resembling an organizational local knowl-
edge database source (L), and (3) 58 subject matter expert (SME) generated
(manually unbiased) ground truth (C). A trigger (Gi) can be a report of any
malware, vulnerability, attack vector, or security updates. For further auto-
mated relevant global knowledge retrieval, LocalIntel is connected with CVE
API endpoints. The 58 trigger reports contain both positive and negative test
cases. We gathered 5 organizational wikis corresponding to 5 real-time ap-
plications and curated them (PII removed) suitable to the research. For each

10 LocalIntel Repository: github.com/shaswata09/LocalIntel
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positive test scenario, we ensured the corresponding knowledge was present in
the local knowledge database. In addition to the organizational wiki, we also
collected 326 confidential organizational trusted CTI reports to allow Local-
Intel to retrieve more infrastructural context and threat implications. These
reports offer detailed analyses and insights from security analysts studying var-
ious global cyber attacks within the organization. For negative test scenarios,
there was no intersecting knowledge present in L i.e. Gi ∩ L = ϕ. In conduct-
ing our experiments, we tested with proprietary GPT-3.5-turbo, and GPT-4o11,
and open-source meta-llama/Llama-2-7b-chat-hf, meta-llama/Meta-Llama-3.1-
8B-Instruct, mistralai/Mistral-7B-Instruct-v0.2, nvidia/Mistral-NeMo-Minitron-
8B-Base, Qwen/Qwen1.5-7B-Chat, AiMavenAi/AiMaven-Prometheus, senseable
/WestLake-7B-v2, PetroGPT/WestSeverus-7B-DPO-v2 downloaded from hug-
gingface.co as the LLM models. All models’ temperatures were deliberately kept
default, and instructions prompts were set the same for neutral comparison. The
global knowledge was retrieved from NVD-CVE sources through search API. For
local knowledge retrieval, we store the 5 organizational wikis and 326 threat re-
ports in a vector database (Chroma 12). We segmented and organized the data
into smaller chunks to enhance processing efficiency. In our experimental setup,
we opted for a chunk size of 1500 with a chunk overlap of 150. We used the
text-embedding-ada-002 13 as our base model for embedding each chunk of data
in Chroma DB and used Maximal Marginal Relevance (MMR) sorting for dense
retrieval of relevant chunks. The experiment was performed over Intel i9-12900
with 24 GB GeForce RTX™ 3090Ti GPU and 128 GB of RAM.

Table 2: Evaluation results of our LocalIntel framework over following LLMs.

Model Ragas (Sim.) GEval (Cor.) BertSc-F1

gpt-3.5-turbo 0.92 0.75 0.68

gpt-4o 0.91 0.75 0.66

qwen1.5-7b-chat 0.92 0.78 0.66

llama-3.1-8b-Instruct 0.85 0.46 0.53

westlake-7b-v2 0.92 0.69 0.65

llama2-7b-chat 0.91 0.69 0.65

mistral-7b-instruct-v2 0.90 0.67 0.63

prometheus-7b 0.93 0.71 0.66

westseverus-7b-dpo-v2 0.90 0.60 0.60

mistral-nemo-minitron-8b 0.84 0.56 0.55

11 GPT Models: platform.openai.com/docs
12 Chroma: trychroma.com
13 OpenAI Embedding: platform.openai.com/docs
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Fig. 4: Evaluation box-plot for Completion C with respect to ground truth.
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4.2 Quantitative Evaluation

For the quantitative assessment of LocalIntel’s performance in generating
contextually relevant organizational threat intelligence C, we utilize three frame-
works: Retrieval Augmented Generation Assessment (RAGAs) [3], G-EVAL [6],
and BertScore [15]. Using these frameworks, we evaluate two metrics, including
similarity and correctness. Similarity measures the semantic similarity between
ground truth and C, while correctness measures answer correctness compared
to ground truth as a combination of factuality and semantic similarity. Both
metrics range from 0 to 1, with higher values indicating optimal C. In our case,
RAGAs and BertScore is used to evaluate similarity, whereas G-EVAL is used
to evaluate correctness of C. Results of our evaluation is presented in Table 2.

In our evaluation, the model Qwen1.5-7B-Chat performed the best, with the
highest similarity score and the lowest standard deviation, as depicted in Fig 4.
On the other hand, Mistral-NeMo-Minitron-8B-Base was the least-performing
model. We found that ‘qwen’ was the most stable, which is essential in critical
domains such as cybersecurity. Contrarily, ‘mistral-nemo’ showed lower accuracy
and higher variance. This can be explained through Mistral’s sliding attention
mechanism that struggles to retail critical information over longer contexts. We
also discovered that due to the task criticality, llama 3.1 avoided suggesting a
solution, indicating its cautious generation. We observed a similar trend with
the ‘GPT 4o’ model. Another critical point to note is that we used a generic
instruction prompt for all models, and it is also worth mentioning that model-
specific prompt engineering techniques may lead to even better results.

4.3 Qualitative Evaluation

To justify our quantitative findings (refer to Section 4.2), we qualitatively eval-
uate the performance of LocalIntel in generating contextually relevant or-
ganizational threat intelligence through human evaluation. Given the expensive
nature of human evaluation, we engage a panel of 3 Subject Matter Experts
(SMEs), including one security analyst and two cybersecurity researchers. We
task these SMEs to evaluate the correctness of generated threat intelligence
based on the 58 scenarios and ground truths explained in the preceding section.
The SMEs were instructed to rate the correctness of the response on a scale of 1
to 5, where 1 represents an incorrect response, and 5 indicates a correct response.
We then compare the inter-rater agreement using Fleiss Kappa [7] measure. The
result of this evaluation shows an agreement score of 0.6477 with a standard
error of 0.0767, indicating that the raters’ evaluations are not random and are
generally aligned, and they substantially agree on the correctness of the threat
intelligence responses generated by LocalIntel. Moreover, qualitative results
aligns closely with the quantitative results, justifying the evaluation.

5 Related Works

In the last decade, within the realm of cybersecurity, NLP tasks over unstruc-
tured CTI text primarily encompass Named Entity Recognition, text summariza-
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tion, and analysis of semantic relationships between entities[13], etc. Researchers
have demonstrated numerous real-world applications using these techniques uti-
lizing CTI gathered from diverse sources [9, 11, 12, 8]. With the advancement of
generative AI in this decade, the application horizon of CTI has proportionally
expanded. Liu et al. [5] introduced a trigger-enhanced CTI (TriCTI) discovery
system designed to identify actionable CTI automatically. They utilized a fine-
tuned BERT with an intricate design to generate triggers, training the trigger
vector based on sentence similarity. Similarly, in [1], the researchers employed
a BERT classifier to map Tactics, Techniques, and Procedures (TTPs) to the
MITRE ATT&CK framework. On the other hand, Niakanlahiji et al., [10], pro-
poses an information retrieval system called SECCMiner utilizing various NLP
techniques. With SECCMiner, unstructured APT reports can be analyzed, and
critical security concepts (e.g., adversarial techniques) can be extracted. A ques-
tion and answering model called LogQA that answers log-based questions in
natural language form using base BERT model and large-scale unstructured log
corpora is proposed by Huang et al. [4]. Recently, BERT has also been explored
to generate contextualized embedding [14] in cybersecurity. Cybersecurity is a
critical domain, and this specialized embedding enables language models to un-
derstand the context better. On top of the improvements mentioned, we attempt
to integrate LLM to understand the problem context and generate real-time
scope-specific threat intelligence while considering different factors. This work is
the first attempt to generate complete CTI from diverse sources.

6 Conclusion

This paper introduced LocalIntel, a novel framework that generates contex-
tualized CTI uniquely tailored for an organization depending on its operations.
LocalIntel is a valuable tool for SoC analysts due to its unique ability to
seamlessly contextualize generic global threat intelligence specific to local oper-
ations. The main benefit of this system is its ability to efficiently customize global
threat intelligence for local contexts, reducing the need for manual efforts. This
gives SoC analysts the necessary information to concentrate on essential tasks,
such as developing defensive strategies. We employed qualitative and quantita-
tive evaluations to evaluate LocalIntel’s confidence in delivering accurate and
relevant threat intelligence. The system exhibited remarkable proficiency in both
evaluations, supported by human-generated ground truth responses. It achieved
a remarkable RAGAs contextual similarity score of 92% and a correctness score
of 78%, with a low standard deviation. This underscores the feasibility of auto-
mated CTI generation using LLMs and our LocalIntel’s robust performance
and ability to generate relevant CTI. In the future, we plan to perform further
performance improvement measures, such as developing task-specific retrievers
and connecting with cybersecurity knowledge graphs as our local knowledge
database for broader evaluations. Additionally, we plan to fine-tune LLMs as
part of our performance improvement measures.
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