
EasyChair Preprint
№ 15990

A Comprehensive Review on Machine Learning
and Deep Learning Based Malware Detection
Methods

Mahesh Ganesamoorthi, Kannimuthu Subramanian and
Bhanu D

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 7, 2025

2024 International Conference on Emerging Research in Computational Science (ICERCS)

979-8-3315-3496-7/24/$31.00 ©2024 IEEE

A Comprehensive Review on Machine Learning and
Deep Learning Based Malware Detection Methods

1st Mahesh Ganesamoorthi
Expedia Group

Seattle, United States of America
maheshganesamoorthi@gmail.com

 2nd Kannimuthu Subramanian

Karpagam College of Engineering

Coimbatore, India
kannimuthu@kce.ac.in

3rd Bhanu D

Karpagam Institute of Technology

Coimbatore, India

bhanu.saran@gmail.com

Abstract—Malware detection has become a significant aspect of

cybersecurity, specifically with the widespread use of Android

devices. Conventional malware detection methods, such as

static and signature-based approaches have been overtaken by

evolving and increasingly sophisticated malware techniques.

Machine learning and deep learning have emerged as powerful

tools in this field, offering enhanced detection capabilities

through advanced pattern recognition. This paper presents a

comprehensive review of various machine learning and deep

learning methods, including convolutional neural networks

(CNN), Bayesian classification, ensemble learning, and hybrid

models for malware detection. The study evaluates these

techniques in terms of accuracy, efficiency, adaptability, and

their capacity to handle real-time detection, dataset diversity,

and obfuscated malware. Additionally, it explores challenges

such as class imbalance and the need for more interpretable

models. The findings suggest that while CNN-based methods

offer the highest accuracy, ensemble models strike a balance

between precision and computational efficiency.

 Keywords—Android malware detection, Deep learning,

Hybrid models, Machine learning, Mobile security, Real-time

detection.

I. INTRODUCTION

The rapid proliferation of mobile devices has made them
a primary target for malware attacks. As of recent reports,
Android malware represents a significant portion of global
cyber threats, with thousands of new malware variants
emerging daily. Traditional malware detection techniques,
which rely heavily on static analysis and signature-based
methods, are increasingly ineffective against modern,
sophisticated malware. These conventional methods struggle
to detect zero-day exploits, obfuscated code, and dynamic
behaviors that have become stamps of contemporary
malware.

 One of the major shortcomings of static and signature-
based approaches is their inability to adapt to evolving
malware threats. These methods focus on predefined
signatures or patterns, rendering them ineffective against
newly developed or heavily obfuscated malware variants.
Additionally, such techniques are computationally efficient
but lack robustness when dealing with advanced evasion
tactics. On the other hand, dynamic analysis, which involves
monitoring application behavior at runtime, provides more
accurate results but often at the cost of high computational
and time requirements. This makes it impractical for large-
scale and real-time malware detection. Moreover, the
increasing complexity of malware requires more
sophisticated analysis techniques capable of detecting
patterns that go beyond superficial features like permissions
and API calls.

 This article provides a comprehensive review of machine
learning and deep learning techniques for Android malware

detection, focusing on CNN-based methods[1-2], Bayesian
classifiers[3], ensemble learning approaches[4-19], and
hybrid models [20-29] that integrate static and dynamic
analysis techniques. The paper evaluates strengths and
limitations each method, providing a detailed analysis of
their performance in terms of accuracy, computational
efficiency, adaptability, and real-time applicability.
Additionally, the study discusses recent advancements for
malware detection with limited datasets, and graph-based
approaches that analyze inter-app communication to identify
malicious activities. The paper provides an in-depth analysis
of machine learning and deep learning methods, comparing
their effectiveness in detecting malware across various
datasets, including Drebin, OmniDroid, and Contagio. The
study highlights key challenges in the current approaches,
such as their inability to handle real-time detection due to
computational complexity, limited dataset diversity, and their
vulnerability to obfuscated malware. The paper examines the
trade-offs between accuracy, computational efficiency, and
adaptability, suggesting ensemble and hybrid models as
potential solutions for achieving high-performance detection
in resource-constrained environments.

II. LITERATURE REVIEW

This section presents a detailed survey on the machine
learning and deep learning-based malware detection methods
with the conclusion made.

A. Efficient Android Malware Identification Using CNN

Ksibi et al [1] implemented a novel approach of
converting APK files into grayscale images and feeding them
into deep learning models, specifically CNNs such as
VGG16, DenseNet169, and InceptionV3. By leveraging
transfer learning, pre-trained models are used to enhance
detection efficiency with limited training data. VGG16
achieves a superior accuracy of 95.83%, while DenseNet169
and InceptionV3 both maintain accuracy around 95.24%.
The models, however, require high computational resources
for image transformation and model training. This work uses
the dataset which includes 10,000 Android apps (both
malware and benign) [2] but lacks diversity in terms of
obfuscated malware or complex attacks. Future research
should consider more recent malware variants to improve
model robustness. Transfer learning significantly improves
performance with fewer training examples, but the model’s
computational complexity hinders its real-time applicability,
especially on mobile devices. CNN-based models remain the
most accurate but are resource-heavy, limiting their
scalability to mobile and real-time environments. 20

24
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 E
m

er
gi

ng
 R

es
ea

rc
h

in
 C

om
pu

ta
tio

na
l S

ci
en

ce
 (I

C
ER

C
S)

 |
97

9-
8-

33
15

-3
49

6-
7/

24
/$

31
.0

0
©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
ER

C
S6

31
25

.2
02

4.
10

89
49

49

Authorized licensed use limited to: Vignan's Foundation for Science Technology & Research (Deemed to be University). Downloaded on April 12,2025 at 10:09:19 UTC from IEEE Xplore. Restrictions apply.

B. Bayesian Classification for Android Malware

Guerra-Manzanares et al employed [3] a Bayesian
classification method based on static features like
permissions and API calls. Using probabilistic models, it
calculates the likelihood that a combination of these features
indicates malicious behavior. The Bayesian approach
achieves an accuracy of 91.1%, making it effective for basic
malware detection without needing heavy computational
resources. The custom dataset focuses on earlier Android
versions, limiting its applicability for newer versions with
more complex malware. The study highlights the need for
more diverse datasets to capture modern malware techniques.
The model is lightweight, making it ideal for mobile devices
or preliminary malware scans. However, its reliance on static
analysis and predefined rules makes it susceptible to
evolving malware like zero-day attacks or obfuscation
techniques. The Bayesian method is a lightweight alternative
that can complement more complex models by serving as a
first line of defense before deeper analysis is conducted

C. MEFDroid Framework

MEFDroid [4] is a multi-model ensemble learning
framework combining unsupervised and supervised learning
via Sparse Autoencoders and Stacked De-noising
Autoencoders (SDAE). These autoencoders extract features
automatically and are combined with multiple base
classifiers such as decision trees, Random Forests, and
SVMs. MEFDroid achieves 95.14% accuracy with an F1-
score of 97.12%, showcasing its ability to handle imbalanced
datasets effectively. This is especially important in real-
world scenarios where benign apps significantly outnumber
malware. The framework was evaluated on the Drebin and
AndroMD [5] datasets. While comprehensive, the datasets
could benefit from more recent malware samples to ensure
the model's adaptability to evolving threats. MEFDroid
excels in precision and recall, especially for imbalanced
datasets. However, the framework’s complexity and
computational demands make it less suitable for real-time
malware detection, and updating it with new malware
signatures can be slow. MEFDroid is highly effective for
handling imbalanced datasets and works well in situations
where malware detection must remain robust and diverse,
but its computational demands limit its real-time
applicability.

D. MalDetect

MalDetect [5] employed an ensemble approach that
combines multiple machine learning algorithms, including
Naive Bayes, J48 (C4.5 decision tree), and AdaBoost. By
integrating these diverse algorithms, MalDetect enhances its
detection capabilities, allowing for better generalization
across various types of malwares. Each classifier contributes
unique strengths, enabling the model to perform well across
different data distributions and types of malicious behavior.
The ensemble nature of the approach allows MalDetect to
achieve solid performance metrics, capturing a wide variety
of malware types effectively. This work uses multiple
datasets, including Drebin, AMD and Genome. This work
possesses enhanced flexibility and robustness through
ensemble methods, allowing it to perform well in diverse
environments. The integration of multiple classifiers
mitigates the risk of relying on a single algorithm, reducing
the chance of misclassification. This work consumes high
resource during training phases may impact performance in

real-time applications, especially on lower-end devices. This
work takes potentially longer training times due to the
complexity of combining multiple models. MalDetect is
ideal for enterprise environments with sufficient
computational resources. Its ensemble approach yields high
accuracy, although its performance may be suboptimal in
real-time applications due to high resource requirements.

E. Random Forest Classification for API Calls

Several researches utilized Random Forest [6-18]
classification based on API calls and permission analysis,
leveraging decision trees to classify malware. It’s a simpler
model that can handle medium-sized datasets efficiently, and
it’s less sensitive to noise in data. With an accuracy of
94.36% [19] and an F1-score of 88.75% [19], Random Forest
performs well for general malware detection but struggles
with highly obfuscated malware. The study uses the Drebin
dataset, one of the most widely used Android malware
datasets. However, the dataset lacks modern malware
samples that would present a greater challenge to the
classifier. Random Forest is efficient, making it suitable for
quick classification. Its reliance on static features limits its
efficacy against modern evasion techniques like code
obfuscation or zero-day malware. Random Forest models
remain effective for traditional static feature-based malware
detection but require enhancement through dynamic analysis
to cope with modern malware threats.

F. Transfer Learning Approach with Pre-trained CNN

Models

Alejandro et al. [20] combined transfer learning with pre-
trained CNN models (e.g., Inception), allowing for fast
training with fewer samples. By fine-tuning pre-trained
models, the method reduces the need for massive labeled
datasets. The model achieved 93.7% accuracy,
demonstrating the efficacy of transfer learning in malware
detection when limited data is available. The OmniDroid [17,
20] dataset used in this study is diverse, covering multiple
types of malware. However, the model’s success relies
heavily on the availability of relevant pre-trained models,
which may not always be accessible for all malware types.
Transfer learning speeds up training and boosts accuracy
with smaller datasets. However, the model’s dependency on
pre-trained architectures may limit its ability to handle highly
specialized or novel malware.

G. ProDroid

ProDroid [21] employed a hybrid analysis approach that
integrates both static and dynamic analysis techniques. The
static analysis phase extracts feature from application code,
while the dynamic analysis phase observes the runtime
behavior of applications. This dual approach helps in
identifying malicious activities that might not be apparent in
static analysis alone. ProDroid uses a variety of feature
extraction methods, including opcode analysis, permission
usage, and API call patterns, which are fed into a machine
learning classifier to make the final determination of whether
an app is benign or malicious. ProDroid utilizes a diverse
range of datasets, including Drebin, Contagio and other
academic datasets that encompass various Android app
characteristics, ensuring comprehensive coverage of
potential threats [22]. This approach is high adaptable with
accuracy due to the combination of static and dynamic
analysis. It has the ability to detect complex malware

Authorized licensed use limited to: Vignan's Foundation for Science Technology & Research (Deemed to be University). Downloaded on April 12,2025 at 10:09:19 UTC from IEEE Xplore. Restrictions apply.

behaviors that are missed by purely static analysis tools.
Computational intensity may lead to longer processing times,
making it less suitable for devices with limited processing
capabilities. This work has the potential for false positives in
certain edge cases, particularly with legitimate apps that
exhibit similar behaviors to malware. ProDroid is an
excellent choice for environments that prioritize detection
accuracy and adaptability. However, its deployment may be
limited on lower-end devices due to high resource
requirements, which could hinder its broader applicability.

H. WHGDroid

WHGDroid [23] employed a graph-based approach that
models interactions among applications using weighted
heterogeneous graphs. The interactions, such as method calls
and data flows, are analyzed using Graph Neural Networks
(GNNs) to identify potentially malicious behaviors. This
methodology allows for a nuanced understanding of how
applications communicate, facilitating the detection of
threats that arise from complex interactions. WHGDroid’s
performance indicates that it is adept at recognizing
malicious interactions, making it particularly effective in
scenarios involving multiple applications. This work [24, 25]
uses utilizes datasets like Anzhi and AndroZoo. It is
Effective in detecting complex communication patterns that
might not be evident in traditional analysis methods. It is
Capable of identifying hidden threats through interaction
analysis among apps, which is a unique advantage. The
complexity of graph processing can lead to increased latency,
impacting real-time effectiveness. This requires significant
computational resources, particularly during the graph
construction phase. WHGDroid is a promising solution for
environments focused on detecting inter-app communication
threats but may require optimization for improved response
times in real-world applications.

I. XManDroid

XManDroid [26] focused on monitoring inter-app
communications, employing classifiers like Support Vector
Machine (SVM) and Random Forest to detect malicious
behavior based on inter-component communication (ICC)
patterns. The model analyzes the data exchanged between
apps, such as intents and broadcasts, to identify anomalies
indicative of malware. XManDroid demonstrates effective
performance metrics, particularly in identifying malicious
interactions among applications. XManDroid utilizes a
custom dataset specifically designed to emphasize inter-app
communication anomalies, enhancing its specificity in
detection. This dataset is curated to include both benign and
malicious applications, focusing on the communications that
occur between them. This work is excellent for real-time
monitoring due to its focus on ICC, making it suitable for
dynamic environments. It is capable of detecting malicious
interactions that traditional malware detection methods may
overlook. This work relies heavily on continuous updates to
remain effective against rapidly evolving threats. This work
is well-suited for dynamic environments, XManDroid excels
in monitoring inter-app communications but requires regular
updates to maintain its effectiveness against new malware
variants.

J. MADRF-CNN

MADRF-CNN [27] integrated Convolutional Neural
Networks (CNN) with Random Forest classifiers to improve

malware detection accuracy through deep learning
techniques. The CNN component extracts spatial features
from application representations, while the Random Forest
classifier provides a robust classification mechanism that
enhances overall detection performance. This model shows
exceptional accuracy, particularly in recognizing complex
malware patterns that require nuanced detection strategies.
MADRF-CNN employs a combination of datasets,
including: Drebin, AMD and Contagio. This work has High
accuracy due to the deep learning framework, allowing for
improved detection of complex malware. It has good
adaptability with more data, making it scalable as new
threats emerge. This work can be resource-intensive,
requiring significant computational power and time. Deep
learning models can be opaque, making it challenging to
interpret their decision-making processes. MADRF-CNN is a
robust model for malware detection, demonstrating high
accuracy and adaptability. Its advanced methodologies
position it well for modern malware threats, although it may
require substantial resources during the training phase.

J. KronoDroid

KronoDroid [28] focused on continuous learning by
employing reinforcement learning techniques to adapt to new
malware patterns over time. The model updates its
parameters dynamically based on feedback from its
environment, enabling it to learn from ongoing interactions
and emerging threats. KronoDroid showcases reliable
performance metrics, emphasizing its capability to learn
from real-world data continuously. KronoDroid uses Drebin,
Genome and Contagio datasets for experimentation. These
datasets emphasize continuous learning, focusing on
dynamic adaptation from diverse sources. This work is
highly adaptable to evolving malware, making it suitable for
dynamic environments. It is capable of learning from new
data, improving detection over time. This approach is
vulnerability to low-quality data, which may impair detection
accuracy if not managed properly. The reliance on
continuous learning processes may lead to stability issues if
the incoming data is inconsistent. KronoDroid is highly
effective in dynamic environments, making it a strong
candidate for modern malware detection systems. However,
it requires high-quality data for optimal performance and
must be carefully managed to mitigate risks associated with
data quality.

III. COMPARATIVE ANALYSIS

This section showcases an in-depth analysis of various
malware detection studies, each using different
methodologies, techniques, and datasets to achieve specific
performance outcomes. Table 1 and Table 2 expresses the
expanded methodology comparison table with performance
details. The Efficient CNN approach applies advanced deep
learning techniques such as VGG16 and DenseNet169, on
APK images. With a high accuracy of 95.83% and notable
precision and recall scores, this method is proficient at
detecting complex patterns within malware datasets.
Bayesian Method, on the other hand, utilizes a lightweight
Bayesian Machine Learning model that operates on a custom
dataset through static analysis of permissions and API calls,
achieving an accuracy of 91.1%. This method, ideal for
mobile devices due to its low computational cost, has a
relatively higher False Positive Rate, reflecting a trade-off
between simplicity and detection precision.

Authorized licensed use limited to: Vignan's Foundation for Science Technology & Research (Deemed to be University). Downloaded on April 12,2025 at 10:09:19 UTC from IEEE Xplore. Restrictions apply.

 MEFDroid uses an ensemble learning approach by
combining sparse autoencoders and denoising autoencoders
(SDAE), yielding a robust performance with an accuracy of
95.14% on Drebin and AndroMD datasets. This model
excels with imbalanced datasets and achieves a high F1-
Score of 97.12%, indicating an effective handling of varied
malware samples. Similarly, Random Forest relies on API
call and permission-based static analysis to attain a 94.36%
accuracy on the Drebin dataset, although it is somewhat
limited by obfuscation techniques due to its static analysis
constraint, resulting in a lower F1-Score of 88.75%. Transfer
Learning employs pre-trained CNN models like Inception to
reduce training time while achieving 93.7% accuracy on
OmniDroid. This model adapts quickly to similar datasets
but depends heavily on the pre-trained model's applicability
to new types of malwares. The Hybrid Model, which
combines static and dynamic features from both API calls
and system logs, stands out with a high accuracy of 96.5%
on CICInvesAndMal2019 and a correspondingly high F1-
Score. This approach proves valuable for real-time
applications, merging the strengths of static and dynamic
detection for robust malware analysis.

The ProDroid model also follows a hybrid approach, that
combines static and dynamic analysis through Multiple
Sequence Alignment (MSA) and Profile Hidden Markov
Models (PHMMs). This is tested on Drebin and Contagio
datasets, achieves 95.7% accuracy and a balanced set of
metrics, though it faces computational challenges in low-
resource settings. MalDetect, an ensemble model combining
Naive Bayes, J48, and AdaBoost, delivers 94.6% accuracy
across Drebin, AMD, and Genome datasets. With an area
under the curve (AUC) of 0.96, it balances precision and
inference speed but requires significant resources for
training. WHGDroid and XManDroid address inter-app
communication threats through graph-based detection and
ensemble inter-app communication monitoring, respectively.
These models perform well, with AUC values close to 0.95,
though both face challenges in real-time responsiveness and
monitoring overhead. Finally, MADRF-CNN and
KronoDroid uses deep learning and incremental learning
techniques. MADRF-CNN integrates CNN with Random
Forest to process dex files, achieving a high accuracy of
96.1% and an AUC of 0.97, which enhances efficiency in
inference time but adds computational overhead during
training. KronoDroid uses incremental learning, adapting
continuously with high accuracy and performance stability
but being somewhat sensitive to noisy data inputs, which
may affect real-time accuracy.

Several case studies demonstrate the effectiveness of ML
and DL-based approaches for Android malware detection.
CNN models like VGG16 achieve high accuracy (95.83%)
by processing APK files as grayscale images but require
significant computational resources. Lightweight Bayesian
classifiers focus on static features and deliver 91.1%
accuracy, though they struggle with obfuscated malware.
Hybrid models such as ProDroid integrate static and dynamic
analysis, achieving 95.7% accuracy, while ensemble
methods like MEFDroid and MalDetect excel with
imbalanced datasets, attaining F1-scores of 97.12% and 94%,
respectively. Advanced approaches like MADRF-CNN
combine deep learning with Random Forest for 96.1%
accuracy, and KronoDroid employs reinforcement learning

for continuous adaptation to new threats. Graph-based
techniques, exemplified by WHGDroid, effectively identify
inter-app communication threats but are computationally
intensive. These studies highlight a trade-off between
accuracy, computational efficiency, and adaptability, with
hybrid and ensemble models emerging as robust solutions for
modern malware detection.

The evaluation of machine learning and deep learning
techniques for malware detection is incomplete without
discussing key performance metrics such as accuracy,
precision, recall, F1-score, and Area Under the Curve
(AUC). Accuracy, while commonly reported, can be
misleading in imbalanced datasets where malware instances
are significantly outnumbered by benign ones. Precision and
recall offer deeper insights, with precision focusing on
reducing false positives by measuring the proportion of
correctly identified malware among all predicted malware
instances, and recall emphasizing the detection of actual
malware cases to address false negatives. The F1-score
provides a balanced measure of precision and recall, making
it particularly useful for datasets with class imbalances. AUC
evaluates the model's ability to differentiate between benign
and malicious apps across various thresholds, highlighting its
robustness. For instance, MEFDroid achieves a high F1-
score of 97.12%, excelling in handling imbalanced datasets,
while MalDetect demonstrates a strong AUC of 0.96,
indicating its effectiveness in diverse environments.
Incorporating these metrics into the analysis of the discussed
techniques would provide a more comprehensive evaluation
of their performance and practical applicability.

Data quality challenges significantly impact the
performance of ML and DL-based malware detection
systems. Data imbalance, where benign samples outnumber
malware, leads to biased models with reduced recall and
poor generalization. Noisy labels introduce errors, degrading
precision and recall, while the lack of diverse, labeled
datasets limits models' adaptability to evolving malware
threats. To address these issues, synthetic data generation
(e.g., SMOTE), cost-sensitive learning, and ensemble
methods can mitigate imbalance, while robust data cleaning
and noise-aware training improve resilience to labeling
errors. Techniques like transfer learning, active learning, and
crowdsourcing enhance the availability of labeled data,
ensuring models remain robust and adaptable to modern
malware challenges. These strategies collectively improve
detection accuracy, reliability, and applicability in real-world
scenarios.

Overall, each study reflects distinct strengths in terms of
dataset suitability, real-time feasibility, and adaptability,
making these methods suitable for different malware
detection scenarios based on resource availability and
specific application needs. The performance comparison in
terms of precision, recall and F1-score is illustrated in Figure
1. It is observed that Hybrid model outperforms well in terms
of accuracy, precision, recall and F1-score.

Authorized licensed use limited to: Vignan's Foundation for Science Technology & Research (Deemed to be University). Downloaded on April 12,2025 at 10:09:19 UTC from IEEE Xplore. Restrictions apply.

TABLE I. Expanded Methodology Comparison Table

Study Approach Technique Dataset Accuracy Other Metrics

Efficient CNN
Deep Learning
(CNN)

VGG16, DenseNet169,
InceptionV3

APK Images 95.83% Precision: 94.2%, Recall: 95.5%

Bayesian
Method

Machine
Learning
(Bayesian)

Static Analysis using
Permissions and API Calls

Custom Dataset 91.1% False Positive Rate: 12%

MEFDroid
Ensemble
Learning

Sparse Autoencoder + SDAE
Drebin,
AndroMD

95.14% F1-Score: 97.12%

Random Forest
Machine
Learning

Random Forest for API Call
and Permission Analysis

Drebin 94.36% F1-Score: 88.75%

Transfer
Learning

Transfer
Learning

Pre-trained CNN (Inception) OmniDroid 93.7% Precision: 93.1%, Recall: 92.8%

Hybrid Model
Hybrid Static-
Dynamic

API Call + System Logs
CICInvesAndMa
l2019

96.5% F1-Score: 96.8%

ProDroid
Hybrid (Static &
Dynamic)

Multiple Sequence Alignment
(MSA) + PHMMs

Drebin, Contagio 95.7%
Precision: 94%, Recall: 96%, F1-Score:
95%

MalDetect
Hybrid
Ensemble

Naive Bayes, J48, AdaBoost
Drebin, AMD,
Genome

94.6%
Precision: 93%, F1-Score: 94%, AUC:
0.96

WHGDroid
Graph-Based
Detection

Weighted Heterogeneous
Graph + GNNs

Anzhi,
AndroZoo

91.3% F1-Score: 92%, Recall: 91%, AUC: 0.95

XManDroid
Ensemble for
Inter-App
Communication

ICC Monitoring + SVM,
Random Forests

Custom Dataset
(Inter-App
Malware)

93.8% Precision: 92%, Detection Rate: 94%

MADRF-CNN
Deep Learning
Ensemble

CNN on Dex Files + Random
Forest

Drebin, AMD,
Contagio

96.1%
F1-Score: 95%, Precision: 94%, AUC:
0.97

KronoDroid
Incremental
Learning

Self-Taught Learning
Drebin, Genome,
Contagio

93.2% Precision: 92%, Update Speed: High

TABLE 2. Expanded Performance Metrics Comparison Table

Study Precision Recall F1Score Efficiency (Time)

Efficient CNN 94.2% 95.5% 94.8% High computation due to image processing

Bayesian Method 88.9% 87.5% 88.1% Low computational cost

MEFDroid 97.1% 96.8% 97.12% Moderate (Autoencoder training adds complexity)

Random Forest 90.2% 89.4% 88.75% Moderate

Transfer Learning 93.1% 92.8% 92.95% Moderate to high (due to fine-tuning pre-trained models)

Hybrid Model 96.8% 96.3% 96.5% High efficiency in real-time detection

ProDroid 94% 96% 95% High (Computationally intensive, longer processing time)

MalDetect 93% 94% 94% Medium (Resource-intensive training but reasonable inference speed)

WHGDroid 92% 91% 91% Medium to High (Graph processing can be time-consuming)

XManDroid 92% 94% 93% Medium (Real-time processing but requires monitoring overhead)

MADRF-CNN 94% 95% 95% Medium (Image conversion adds overhead but good inference time)

KronoDroid 92% 92% 92% High (Real-time updates but potentially slower with noise)

Authorized licensed use limited to: Vignan's Foundation for Science Technology & Research (Deemed to be University). Downloaded on April 12,2025 at 10:09:19 UTC from IEEE Xplore. Restrictions apply.

Fig.1. Performance comparison of existing methodologies

TABLE 3. Comparison of Real-Time Feasibility and Adaptability across Malware Detection Approaches

Study Real-Time Feasibility Adaptability

Score Strengths Weaknesses Score Strengths Weaknesses

Efficient CNN Low High accuracy;
Detects complex
patterns

High computational
cost; unsuitable for
mobile devices

Moderate Learns complex
patterns, adaptable to
diverse malware

Struggles with unseen threats
without retraining

Bayesian

Method

High Lightweight; Ideal
for mobile devices

Less effective
against evolving
threats

Low Fast and simple
model

Weak against new, unseen
malware

MEFDroid Moderate Handles
imbalanced
datasets; Ensemble
learning

High complexity;
Requires
computational
power

High Can detect evolving
malware; Uses
autoencoders for
dynamic feature
extraction

Complexity limits real-time
retraining

Random

Forest

Moderate Efficient for static
features; Handles
moderate data

Prone to
obfuscation; Limited
by static analysis

Moderate Flexible for
structured data

Requires retraining for new
malware variants

Transfer

Learning

Moderate
to Low

Pre-trained models
reduce training
time

Dependent on
available pre-trained
models

Moderate
to High

Fast adaptation with
pre-trained models

Limited by the scope of pre-
trained data

Hybrid Model High Combines static
and dynamic
features; Good for
real-time
applications

More complex
model, but worth the
performance gain

High Combines static and
dynamic analysis,
making it robust
against zero-day
malware

Requires extensive resource
management for real-time
deployment

ProDroid Moderate
to High

High accuracy in
diverse
environments;
hybrid approach
allows
adaptability.

Computationally
intensive, may slow
down in low-
resource settings

Moderate
to High

Hybrid approach
allows it to adapt to
new threats
effectively; good for
varied environments.

Requires frequent retraining to
maintain effectiveness against
new malware types.

MalDetect Moderate Efficient for
enterprise
environments;
ensemble methods
enhance accuracy.

Requires substantial
resources for
training and may
face latency during
real-time operations.

Moderate
to High

Ensemble methods
enhance flexibility in
adapting to different
malware
characteristics

Complexity can make it harder
to adapt quickly to emerging
threats.

WHGDroid Moderate
to Low

Effective in
identifying inter-
app
communication

Graph-based
processing can be
time-consuming,
impacting real-time

Moderate Graph-based
methods provide
adaptability to inter-
app communication

Adaptability is limited by the
quality and comprehensiveness
of the graph model.

Authorized licensed use limited to: Vignan's Foundation for Science Technology & Research (Deemed to be University). Downloaded on April 12,2025 at 10:09:19 UTC from IEEE Xplore. Restrictions apply.

threats. responsiveness changes.

XManDroid Moderate Good detection of
malicious inter-app
interactions; real-
time monitoring
capability.

May need constant
updates to maintain
effectiveness against
evolving threats.

Moderate
to High

Designed to monitor
dynamic inter-app
communications,
allowing for real-
time adaptability.

Relies heavily on continuous
updates to remain effective
against evolving threats.

MADRF-CNN Moderate
to High

Utilizes deep
learning for high
accuracy;
relatively efficient
inference.

Initial training time
can be lengthy; may
require significant
computational
power.

High Deep learning model
can improve with
more data and adapt
to new malware
patterns over time.

Initial setup and training can
be resource-intensive; slower
to adapt if new data is sparse.

KronoDroid Moderate Adapts
continuously to
new threats;
suitable for
dynamic
environments.

Vulnerable to noise
in data, which could
lead to inaccuracies
in detection over
time.

High Incremental learning
allows it to
continuously adapt
without full
retraining; ideal for
dynamic
environments.

Vulnerable to noise in
incoming data, which may
hinder effective adaptation
over time.

Hybrid Models, due to the combination of static and
dynamic features, provide excellent precision and recall
while remaining efficient enough for real-time application.
Transfer learning Models, offer an attractive balance of
performance and efficiency, especially when access to pre-
trained models is feasible. Bayesian Models are resource-
efficient, but fall short in handling modern, complex
malware variants. This section presents a detailed evaluation
of strengths and weaknesses of each approach in terms of
real-time applicability and adaptability. Scores reflect
computational efficiency, capability for continuous
adaptation, and suitability for varying device environments,
illustrating each effectiveness of each method in detecting
evolving malware and handling different levels of system
resources. The analysis is summarized using Table 3. The
following discusses the present gap in every approach with
future directions.

A. Real-Time Detection

The most accurate models, such as CNN-based approaches,
are too computationally heavy for real-time applications. To
address this, future work should focus on lightweight models
or optimized neural networks like MobileNet or Tiny-
YOLO, which are designed for mobile and edge devices with
limited computational power. Leveraging edge-cloud
architectures where most intensive computations are
offloaded to the cloud while light detection models run on
the device could offer a balance between real-time detection
and accuracy

B. Dataset Diversity

Most studies rely on older datasets such as Drebin or
AndroMD, which may not reflect the evolving nature of
malware today. These datasets, while comprehensive, lack
the latest zero-day malware and more sophisticated
obfuscation techniques. Building and maintaining real-time
malware datasets through active monitoring systems that
collect malware from app stores and devices would help
improve detection systems’ adaptability. Datasets like MH-
100K, which offer more representative and extensive
samples, are a step in the right direction. Static feature-based
models like Random Forests and Bayesian classifiers
struggle with obfuscated malware, as they cannot capture
runtime behaviors. Research should shift towards graph-
based malware detection that can understand relationships
between multiple entities (API calls, permissions) and offer
better resilience to obfuscation techniques. Temporal

Convolutional Networks (TCNs) could also be explored for
analyzing time-based sequences (e.g., system calls).

C. Class Imbalance

Class imbalance remains a significant issue, especially in
real-world applications where benign apps far outnumber
malware. Although ensemble methods like MEFDroid
address this, further work is needed to prevent overfitting on
dominant benign samples. Techniques such as cost-sensitive
learning, data augmentation (e.g., synthetic malware
generation), and SMOTE (Synthetic Minority Over-sampling
Technique) can help models learn from minority (malware)
classes without bias.

D. Interpretability

Interpretability remains a problem for deep learning
models like CNNs, which operate as black boxes. This lack
of transparency can hinder trust and acceptance in real-world
cyber security applications. Integrating explainable AI (XAI)
techniques like LIME (Local Interpretable Model-agnostic
Explanations) or SHAP (Shapley Additive Explanations)
[29] can offer insight into which features contributed most to
a model’s classification. Additionally, attention-based neural
networks can highlight specific sections of code or API calls
that led to a malware classification.

IV. CONCLUSION

In summary, this review of Android malware detection
methods highlights the strengths and limitations of various
approaches. CNN-based models offer the highest accuracy
but come with high computational costs, making them less
suitable for real-time detection on mobile devices. Ensemble
methods such as MEFDroid are highly accurate and robust
in handling imbalanced datasets, though they come at the
cost of complexity and slower adaptation to new malware
types. For the future, hybrid models that combine both static
and dynamic features offer a promising balance between
accuracy and efficiency. However, a key focus should be on
creating more diverse, real-time datasets, addressing model
interpretability, and improving real-time detection
capabilities for malware detection systems.

REFERENCES

[1] A. Ksibi, M. Zakariah, L. Almuqren, and A. S. Alluhaidan, ‘‘Efficient

Android malware identification with limited training data utilizing
multiple convolution neural network techniques,’’ Eng. Appl. Artif.

Authorized licensed use limited to: Vignan's Foundation for Science Technology & Research (Deemed to be University). Downloaded on April 12,2025 at 10:09:19 UTC from IEEE Xplore. Restrictions apply.

Intell., vol. 127, Jan. 2024, Art. no. 107390, doi:
10.1016/j.engappai.2023.107390

[2] S.R.T. Mat, M.F.A. Razak, M.N.M. Kahar, J.M. Arif, A. Firdaus, A
Bayesian probability model for Android malware detection, ICT
Express 8 (3) (2022) 424–431,
https://doi.org/10.1016/j.icte.2021.09.003

[3] A. Guerra-Manzanares, M. Luckner, and H. Bahsi, “Android malware
concept drift using system calls: Detection, characterization and
challenges,” Expert Syst. Appl., vol. 206, 2022, Art. no. 117200.

[4] H. J. Zhu,L. Yang, L. M. Wang, and V. S. Sheng, “A multi-model
ensemble learning framework for imbalanced android malware
detection,” Expert Systems with Applications, vol. 234, pp. 120952,
2023

[5] Dhalaria M, Gandotra E. MalDetect: A classifier fusion approach for
detection of android malware. Expert Syst Appl 2024;235:121155

[6] P. Bhat and K. Dutta, ‘‘A multi-tiered feature selection model for
Android malware detection based on feature discrimination and
information gain,’’ J. King Saud Univ.-Comput. Inf. Sci., vol. 34, no.
10, pp. 9464–9477, Nov. 2022

[7] P. Bhat and K. Dutta, ‘‘A multi-tiered feature selection model for
Android malware detection based on feature discrimination and
information gain,’’ J. King Saud Univ.-Comput. Inf. Sci., vol. 34, no.
10, pp. 9464–9477, Nov. 2022

[8] T. Islam, S. S. M. M. Rahman, M. A. Hasan, A. S. M. M. Rahaman,
and M. I. Jabiullah, ‘‘Evaluation of N-gram based multi-layer
approach to detect malware in Android,’’ Proc. Comput. Sci., vol.
171, pp. 1074–1082, Jan. 2020.

[9] A. K. Singh, G. Wadhwa, M. Ahuja, K. Soni, and K. Sharma,
‘‘Android malware detection using LSI-based reduced opcode feature
vector,’’ Procedia Comput. Sci., vol. 173, pp. 291–298, 2020.

[10] A. Roy, D.S. Jas, G. Jaggi, K. Sharma “Android Malware Detection
based on Vulnerable Feature Aggregation” Procedia Comput.
Sci., 173 (2019) (2020), pp. 345-353, 10.1016/j.procs.2020.06.040

[11] O. N. Elayan and A. M. Mustafa, “Android malware detection using
deep learning,” Procedia Computer Science, vol. 184, no. 2, pp. 847–
852, 2021.

[12] V. Syrris, D. Geneiatakis, On machine learning effectiveness for
malware detection in Android OS using static analysis data, J. Inf.
Secur. Appl. 59 (May) (2021) 102794,
https://doi.org/10.1016/j.jisa.2021.102794.

[13] Sihag V, Vardhan M, Singh P. BLADE: robust malware detection
against obfuscation in android. Forensic Sci Int: Digital Investig 2021
Sep;1(38):301176

[14] Bashir, S., Maqbool, F., Khan, F.H., Abid, A.S., 2024. Hybrid
machine learning model for malware analysis in android apps.
Pervasive Mob. Comput. 97, 101859. http:
//dx.doi.org/10.1016/j.pmcj.2023.101859.

[15] D.O. ¨ S¸ ahin, O.E. Kural, S. Akleylek, E. Kılıç, Permission-based
Android malware analysis by using dimension reduction with PCA
and LDA, J. Inf. Secur. Appl. 63 (October) (2021) 102995,
https://doi.org/10.1016/j.jisa.2021.102995.

[16] H. Rathore, A. Nandanwar, S. K. Sahay, and M. Sewak, ‘‘Adversarial
superiority in Android malware detection: Lessons from
reinforcement learning based evasion attacks and defenses,’’ Forensic
Sci. Int., Digit. Invest., vol. 44, Mar. 2023, Art. no. 301511.

[17] M. Alejandro, L.-C. Raul, and D. Camachoa, “Android malware
detection through hybrid features fusion and ensemble classifiers: The
AndroPyTool framework and the OmniDroid dataset,” Inf. Fusion,
vol. 52, no. 1, pp. 128–142, 2019.

[18] D. Saif, S.M. EI-Gokhy, E. Sallam, Deep belief networks-based
framework for malware detection in Android systems, Alexandria
Eng. J. 57 (2018) (2018) 4049–4057

[19] A. S. Shatnawi, Q. Yassen, and A. Yateem, "An Android Malware
Detection Approach Based on Static Feature Analysis Using Machine
Learning Algorithms," Procedia Computer Science, vol. 201, pp. 653-
658, 2022/01/01/ 2022, doi:
https://doi.org/10.1016/j.procs.2022.03.086.

[20] M. Alejandro, L.-C. Raul, and D. Camachoa, “Android malware
detection through hybrid features fusion and ensemble classifiers: The
AndroPyTool framework and the 50dataset,” Inf. Fusion, vol. 52, no.
1, pp. 128–142, 2019.

[21] Sasidharan, S.K.; Thomas, C. ProDroid—An Android malware
detection framework based on profile hidden Markov model.
Pervasive Mob. Comput. 2021, 72, 101336.

[22] AlOmari, H.; Yaseen, Q.M.; Al-Betar, M.A. A Comparative Analysis
of Machine Learning Algorithms for Android Malware Detection.
Procedia Comput. Sci. 2023, 220, 763–768

[23] L. Huang, J. Xue, Y. Wang, Z. Liu, J. Chen, Z. Kong, Whgdroid:
effective Android malware detection based on weighted
heterogeneous graph, J. Inf. Secur. Appl. 77 (2023) 103556,
https://doi.org/10.1016/j.jisa.2023.103556.

[24] Bragança H, Rocha V, Barcellos L, Souto E, Kreutz D, Feitosa E.
Android malware detection with MH-100K: An innovative dataset for
advanced research. Data Brief. 2023 Nov 2;51:109750. doi:
10.1016/j.dib.2023.109750. PMID: 38020437; PMCID:
PMC10661696.

[25] Arif, J.M.; Ab Razak, M.F.; Tuan Mat, S.R.; Awang, S.; Ismail,
N.S.N.; Firdaus, A. Android mobile malware detection using fuzzy
AHP. J. Inf. Secur. Appl. 2021, 61, 102929.

[26] Razgallah, A.; Khoury, R.; Hallé, S.; Khanmohammadi, K. A survey
of malware detection in Android apps: Recommendations and
perspectives for future research. Comput. Sci. Rev. 2021, 39, 100358.

[27] H. Zhu, H. Wei, L. Wang, Z. Xu, and V. S. Sheng, ‘‘An effective
endto-end Android malware detection method,’’ Exp. Syst. Appl.,
vol. 218, May 2023, Art. no. 119593, doi:
10.1016/j.eswa.2023.119593.

[28] G. Renjith and S. Aji, ‘‘On-device resilient Android malware
detection using incremental learning,’’ Proc. Comput. Sci., vol. 215,
pp. 929–936, Jan. 2022, doi: 10.1016/j.procs.2022.12.095

[29] Martin Kinkead, Stuart Millar, Niall McLaughlin, and Philip O’Kane.
Towards explainable CNNs for android malware detection. Procedia
Computer Science, 184:959–965, 2021.

Authorized licensed use limited to: Vignan's Foundation for Science Technology & Research (Deemed to be University). Downloaded on April 12,2025 at 10:09:19 UTC from IEEE Xplore. Restrictions apply.

