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Abstract—Malware detection has become a significant aspect of 

cybersecurity, specifically with the widespread use of Android 

devices. Conventional malware detection methods, such as 

static and signature-based approaches have been overtaken by 

evolving and increasingly sophisticated malware techniques. 

Machine learning and deep learning have emerged as powerful 

tools in this field, offering enhanced detection capabilities 

through advanced pattern recognition. This paper presents a 

comprehensive review of various machine learning and deep 

learning methods, including convolutional neural networks 

(CNN), Bayesian classification, ensemble learning, and hybrid 

models for malware detection. The study evaluates these 

techniques in terms of accuracy, efficiency, adaptability, and 

their capacity to handle real-time detection, dataset diversity, 

and obfuscated malware. Additionally, it explores challenges 

such as class imbalance and the need for more interpretable 

models. The findings suggest that while CNN-based methods 

offer the highest accuracy, ensemble models strike a balance 

between precision and computational efficiency. 

 Keywords—Android malware detection, Deep learning, 

Hybrid models, Machine learning, Mobile security, Real-time 

detection. 

I. INTRODUCTION  

The rapid proliferation of mobile devices has made them 
a primary target for malware attacks. As of recent reports, 
Android malware represents a significant portion of global 
cyber threats, with thousands of new malware variants 
emerging daily. Traditional malware detection techniques, 
which rely heavily on static analysis and signature-based 
methods, are increasingly ineffective against modern, 
sophisticated malware. These conventional methods struggle 
to detect zero-day exploits, obfuscated code, and dynamic 
behaviors that have become stamps of contemporary 
malware. 

 One of the major shortcomings of static and signature-
based approaches is their inability to adapt to evolving 
malware threats. These methods focus on predefined 
signatures or patterns, rendering them ineffective against 
newly developed or heavily obfuscated malware variants. 
Additionally, such techniques are computationally efficient 
but lack robustness when dealing with advanced evasion 
tactics. On the other hand, dynamic analysis, which involves 
monitoring application behavior at runtime, provides more 
accurate results but often at the cost of high computational 
and time requirements. This makes it impractical for large-
scale and real-time malware detection. Moreover, the 
increasing complexity of malware requires more 
sophisticated analysis techniques capable of detecting 
patterns that go beyond superficial features like permissions 
and API calls. 

 This article provides a comprehensive review of machine 
learning and deep learning techniques for Android malware 

detection, focusing on CNN-based methods[1-2], Bayesian 
classifiers[3], ensemble learning approaches[4-19], and 
hybrid models [20-29] that integrate static and dynamic 
analysis techniques. The paper evaluates strengths and 
limitations each method, providing a detailed analysis of 
their performance in terms of accuracy, computational 
efficiency, adaptability, and real-time applicability. 
Additionally, the study discusses recent advancements for 
malware detection with limited datasets, and graph-based 
approaches that analyze inter-app communication to identify 
malicious activities. The paper provides an in-depth analysis 
of machine learning and deep learning methods, comparing 
their effectiveness in detecting malware across various 
datasets, including Drebin, OmniDroid, and Contagio. The 
study highlights key challenges in the current approaches, 
such as their inability to handle real-time detection due to 
computational complexity, limited dataset diversity, and their 
vulnerability to obfuscated malware. The paper examines the 
trade-offs between accuracy, computational efficiency, and 
adaptability, suggesting ensemble and hybrid models as 
potential solutions for achieving high-performance detection 
in resource-constrained environments. 

II. LITERATURE REVIEW 

This section presents a detailed survey on the machine 
learning and deep learning-based malware detection methods 
with the conclusion made. 

A. Efficient Android Malware Identification Using CNN 

Ksibi et al [1] implemented a novel approach of 
converting APK files into grayscale images and feeding them 
into deep learning models, specifically CNNs such as 
VGG16, DenseNet169, and InceptionV3. By leveraging 
transfer learning, pre-trained models are used to enhance 
detection efficiency with limited training data. VGG16 
achieves a superior accuracy of 95.83%, while DenseNet169 
and InceptionV3 both maintain accuracy around 95.24%. 
The models, however, require high computational resources 
for image transformation and model training. This work uses 
the dataset which includes 10,000 Android apps (both 
malware and benign) [2] but lacks diversity in terms of 
obfuscated malware or complex attacks. Future research 
should consider more recent malware variants to improve 
model robustness. Transfer learning significantly improves 
performance with fewer training examples, but the model’s 
computational complexity hinders its real-time applicability, 
especially on mobile devices. CNN-based models remain the 
most accurate but are resource-heavy, limiting their 
scalability to mobile and real-time environments. 20
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B. Bayesian Classification for Android Malware 

Guerra-Manzanares et al employed [3] a Bayesian 
classification method based on static features like 
permissions and API calls. Using probabilistic models, it 
calculates the likelihood that a combination of these features 
indicates malicious behavior. The Bayesian approach 
achieves an accuracy of 91.1%, making it effective for basic 
malware detection without needing heavy computational 
resources. The custom dataset focuses on earlier Android 
versions, limiting its applicability for newer versions with 
more complex malware. The study highlights the need for 
more diverse datasets to capture modern malware techniques. 
The model is lightweight, making it ideal for mobile devices 
or preliminary malware scans. However, its reliance on static 
analysis and predefined rules makes it susceptible to 
evolving malware like zero-day attacks or obfuscation 
techniques. The Bayesian method is a lightweight alternative 
that can complement more complex models by serving as a 
first line of defense before deeper analysis is conducted 

C. MEFDroid Framework 

MEFDroid [4] is a multi-model ensemble learning 
framework combining unsupervised and supervised learning 
via Sparse Autoencoders and Stacked De-noising 
Autoencoders (SDAE). These autoencoders extract features 
automatically and are combined with multiple base 
classifiers such as decision trees, Random Forests, and 
SVMs. MEFDroid achieves 95.14% accuracy with an F1-
score of 97.12%, showcasing its ability to handle imbalanced 
datasets effectively. This is especially important in real-
world scenarios where benign apps significantly outnumber 
malware. The framework was evaluated on the Drebin and 
AndroMD [5] datasets. While comprehensive, the datasets 
could benefit from more recent malware samples to ensure 
the model's adaptability to evolving threats. MEFDroid 
excels in precision and recall, especially for imbalanced 
datasets. However, the framework’s complexity and 
computational demands make it less suitable for real-time 
malware detection, and updating it with new malware 
signatures can be slow. MEFDroid is highly effective for 
handling imbalanced datasets and works well in situations 
where malware detection must remain robust and diverse, 
but its computational demands limit its real-time 
applicability. 

D. MalDetect 

MalDetect [5] employed an ensemble approach that 
combines multiple machine learning algorithms, including 
Naive Bayes, J48 (C4.5 decision tree), and AdaBoost. By 
integrating these diverse algorithms, MalDetect enhances its 
detection capabilities, allowing for better generalization 
across various types of malwares. Each classifier contributes 
unique strengths, enabling the model to perform well across 
different data distributions and types of malicious behavior. 
The ensemble nature of the approach allows MalDetect to 
achieve solid performance metrics, capturing a wide variety 
of malware types effectively. This work uses multiple 
datasets, including Drebin, AMD and Genome. This work 
possesses enhanced flexibility and robustness through 
ensemble methods, allowing it to perform well in diverse 
environments. The integration of multiple classifiers 
mitigates the risk of relying on a single algorithm, reducing 
the chance of misclassification. This work consumes high 
resource during training phases may impact performance in 

real-time applications, especially on lower-end devices. This 
work takes potentially longer training times due to the 
complexity of combining multiple models. MalDetect is 
ideal for enterprise environments with sufficient 
computational resources. Its ensemble approach yields high 
accuracy, although its performance may be suboptimal in 
real-time applications due to high resource requirements. 

E. Random Forest Classification for API Calls 

Several researches utilized Random Forest [6-18] 
classification based on API calls and permission analysis, 
leveraging decision trees to classify malware. It’s a simpler 
model that can handle medium-sized datasets efficiently, and 
it’s less sensitive to noise in data. With an accuracy of 
94.36% [19] and an F1-score of 88.75% [19], Random Forest 
performs well for general malware detection but struggles 
with highly obfuscated malware. The study uses the Drebin 
dataset, one of the most widely used Android malware 
datasets. However, the dataset lacks modern malware 
samples that would present a greater challenge to the 
classifier. Random Forest is efficient, making it suitable for 
quick classification. Its reliance on static features limits its 
efficacy against modern evasion techniques like code 
obfuscation or zero-day malware. Random Forest models 
remain effective for traditional static feature-based malware 
detection but require enhancement through dynamic analysis 
to cope with modern malware threats. 

F. Transfer Learning Approach with Pre-trained CNN 

Models 

Alejandro et al. [20] combined transfer learning with pre-
trained CNN models (e.g., Inception), allowing for fast 
training with fewer samples. By fine-tuning pre-trained 
models, the method reduces the need for massive labeled 
datasets. The model achieved 93.7% accuracy, 
demonstrating the efficacy of transfer learning in malware 
detection when limited data is available. The OmniDroid [17, 
20] dataset used in this study is diverse, covering multiple 
types of malware. However, the model’s success relies 
heavily on the availability of relevant pre-trained models, 
which may not always be accessible for all malware types. 
Transfer learning speeds up training and boosts accuracy 
with smaller datasets. However, the model’s dependency on 
pre-trained architectures may limit its ability to handle highly 
specialized or novel malware. 

G. ProDroid 

ProDroid [21] employed a hybrid analysis approach that 
integrates both static and dynamic analysis techniques. The 
static analysis phase extracts feature from application code, 
while the dynamic analysis phase observes the runtime 
behavior of applications. This dual approach helps in 
identifying malicious activities that might not be apparent in 
static analysis alone. ProDroid uses a variety of feature 
extraction methods, including opcode analysis, permission 
usage, and API call patterns, which are fed into a machine 
learning classifier to make the final determination of whether 
an app is benign or malicious. ProDroid utilizes a diverse 
range of datasets, including Drebin,  Contagio and other 
academic datasets that encompass various Android app 
characteristics, ensuring comprehensive coverage of 
potential threats [22]. This approach is high adaptable with 
accuracy due to the combination of static and dynamic 
analysis. It has the ability to detect complex malware 
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behaviors that are missed by purely static analysis tools. 
Computational intensity may lead to longer processing times, 
making it less suitable for devices with limited processing 
capabilities. This work has the potential for false positives in 
certain edge cases, particularly with legitimate apps that 
exhibit similar behaviors to malware. ProDroid is an 
excellent choice for environments that prioritize detection 
accuracy and adaptability. However, its deployment may be 
limited on lower-end devices due to high resource 
requirements, which could hinder its broader applicability. 

H. WHGDroid 

WHGDroid [23] employed a graph-based approach that 
models interactions among applications using weighted 
heterogeneous graphs. The interactions, such as method calls 
and data flows, are analyzed using Graph Neural Networks 
(GNNs) to identify potentially malicious behaviors. This 
methodology allows for a nuanced understanding of how 
applications communicate, facilitating the detection of 
threats that arise from complex interactions. WHGDroid’s 
performance indicates that it is adept at recognizing 
malicious interactions, making it particularly effective in 
scenarios involving multiple applications. This work [24, 25] 
uses utilizes datasets like Anzhi and AndroZoo. It is 
Effective in detecting complex communication patterns that 
might not be evident in traditional analysis methods. It is 
Capable of identifying hidden threats through interaction 
analysis among apps, which is a unique advantage. The 
complexity of graph processing can lead to increased latency, 
impacting real-time effectiveness. This requires significant 
computational resources, particularly during the graph 
construction phase. WHGDroid is a promising solution for 
environments focused on detecting inter-app communication 
threats but may require optimization for improved response 
times in real-world applications. 

I. XManDroid 

XManDroid [26] focused on monitoring inter-app 
communications, employing classifiers like Support Vector 
Machine (SVM) and Random Forest to detect malicious 
behavior based on inter-component communication (ICC) 
patterns. The model analyzes the data exchanged between 
apps, such as intents and broadcasts, to identify anomalies 
indicative of malware. XManDroid demonstrates effective 
performance metrics, particularly in identifying malicious 
interactions among applications. XManDroid utilizes a 
custom dataset specifically designed to emphasize inter-app 
communication anomalies, enhancing its specificity in 
detection. This dataset is curated to include both benign and 
malicious applications, focusing on the communications that 
occur between them. This work is excellent for real-time 
monitoring due to its focus on ICC, making it suitable for 
dynamic environments. It is capable of detecting malicious 
interactions that traditional malware detection methods may 
overlook. This work relies heavily on continuous updates to 
remain effective against rapidly evolving threats. This work 
is well-suited for dynamic environments, XManDroid excels 
in monitoring inter-app communications but requires regular 
updates to maintain its effectiveness against new malware 
variants. 

J. MADRF-CNN 

MADRF-CNN [27] integrated Convolutional Neural 
Networks (CNN) with Random Forest classifiers to improve 

malware detection accuracy through deep learning 
techniques. The CNN component extracts spatial features 
from application representations, while the Random Forest 
classifier provides a robust classification mechanism that 
enhances overall detection performance. This model shows 
exceptional accuracy, particularly in recognizing complex 
malware patterns that require nuanced detection strategies. 
MADRF-CNN employs a combination of datasets, 
including: Drebin, AMD and Contagio. This work has High 
accuracy due to the deep learning framework, allowing for 
improved detection of complex malware. It has good 
adaptability with more data, making it scalable as new 
threats emerge. This work can be resource-intensive, 
requiring significant computational power and time. Deep 
learning models can be opaque, making it challenging to 
interpret their decision-making processes. MADRF-CNN is a 
robust model for malware detection, demonstrating high 
accuracy and adaptability. Its advanced methodologies 
position it well for modern malware threats, although it may 
require substantial resources during the training phase. 

J. KronoDroid 

KronoDroid [28] focused on continuous learning by 
employing reinforcement learning techniques to adapt to new 
malware patterns over time. The model updates its 
parameters dynamically based on feedback from its 
environment, enabling it to learn from ongoing interactions 
and emerging threats. KronoDroid showcases reliable 
performance metrics, emphasizing its capability to learn 
from real-world data continuously. KronoDroid uses Drebin, 
Genome and Contagio datasets for experimentation. These 
datasets emphasize continuous learning, focusing on 
dynamic adaptation from diverse sources. This work is 
highly adaptable to evolving malware, making it suitable for 
dynamic environments. It is capable of learning from new 
data, improving detection over time. This approach is 
vulnerability to low-quality data, which may impair detection 
accuracy if not managed properly. The reliance on 
continuous learning processes may lead to stability issues if 
the incoming data is inconsistent. KronoDroid is highly 
effective in dynamic environments, making it a strong 
candidate for modern malware detection systems. However, 
it requires high-quality data for optimal performance and 
must be carefully managed to mitigate risks associated with 
data quality. 

III. COMPARATIVE ANALYSIS 

This section showcases an in-depth analysis of various 
malware detection studies, each using different 
methodologies, techniques, and datasets to achieve specific 
performance outcomes. Table 1 and Table 2 expresses the 
expanded methodology comparison table with performance 
details. The Efficient CNN approach applies advanced deep 
learning techniques such as VGG16 and DenseNet169, on 
APK images. With a high accuracy of 95.83% and notable 
precision and recall scores, this method is proficient at 
detecting complex patterns within malware datasets. 
Bayesian Method, on the other hand, utilizes a lightweight 
Bayesian Machine Learning model that operates on a custom 
dataset through static analysis of permissions and API calls, 
achieving an accuracy of 91.1%. This method, ideal for 
mobile devices due to its low computational cost, has a 
relatively higher False Positive Rate, reflecting a trade-off 
between simplicity and detection precision. 
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 MEFDroid uses an ensemble learning approach by 
combining sparse autoencoders and denoising autoencoders 
(SDAE), yielding a robust performance with an accuracy of 
95.14% on Drebin and AndroMD datasets. This model 
excels with imbalanced datasets and achieves a high F1-
Score of 97.12%, indicating an effective handling of varied 
malware samples. Similarly, Random Forest relies on API 
call and permission-based static analysis to attain a 94.36% 
accuracy on the Drebin dataset, although it is somewhat 
limited by obfuscation techniques due to its static analysis 
constraint, resulting in a lower F1-Score of 88.75%. Transfer 
Learning employs pre-trained CNN models like Inception to 
reduce training time while achieving 93.7% accuracy on 
OmniDroid. This model adapts quickly to similar datasets 
but depends heavily on the pre-trained model's applicability 
to new types of malwares. The Hybrid Model, which 
combines static and dynamic features from both API calls 
and system logs, stands out with a high accuracy of 96.5% 
on CICInvesAndMal2019 and a correspondingly high F1-
Score. This approach proves valuable for real-time 
applications, merging the strengths of static and dynamic 
detection for robust malware analysis. 

The ProDroid model also follows a hybrid approach, that 
combines static and dynamic analysis through Multiple 
Sequence Alignment (MSA) and Profile Hidden Markov 
Models (PHMMs). This is tested on Drebin and Contagio 
datasets, achieves 95.7% accuracy and a balanced set of 
metrics, though it faces computational challenges in low-
resource settings. MalDetect, an ensemble model combining 
Naive Bayes, J48, and AdaBoost, delivers 94.6% accuracy 
across Drebin, AMD, and Genome datasets. With an area 
under the curve (AUC) of 0.96, it balances precision and 
inference speed but requires significant resources for 
training. WHGDroid and XManDroid address inter-app 
communication threats through graph-based detection and 
ensemble inter-app communication monitoring, respectively. 
These models perform well, with AUC values close to 0.95, 
though both face challenges in real-time responsiveness and 
monitoring overhead. Finally, MADRF-CNN and 
KronoDroid uses deep learning and incremental learning 
techniques. MADRF-CNN integrates CNN with Random 
Forest to process dex files, achieving a high accuracy of 
96.1% and an AUC of 0.97, which enhances efficiency in 
inference time but adds computational overhead during 
training. KronoDroid uses incremental learning, adapting 
continuously with high accuracy and performance stability 
but being somewhat sensitive to noisy data inputs, which 
may affect real-time accuracy.  

Several case studies demonstrate the effectiveness of ML 
and DL-based approaches for Android malware detection. 
CNN models like VGG16 achieve high accuracy (95.83%) 
by processing APK files as grayscale images but require 
significant computational resources. Lightweight Bayesian 
classifiers focus on static features and deliver 91.1% 
accuracy, though they struggle with obfuscated malware. 
Hybrid models such as ProDroid integrate static and dynamic 
analysis, achieving 95.7% accuracy, while ensemble 
methods like MEFDroid and MalDetect excel with 
imbalanced datasets, attaining F1-scores of 97.12% and 94%, 
respectively. Advanced approaches like MADRF-CNN 
combine deep learning with Random Forest for 96.1% 
accuracy, and KronoDroid employs reinforcement learning 

for continuous adaptation to new threats. Graph-based 
techniques, exemplified by WHGDroid, effectively identify 
inter-app communication threats but are computationally 
intensive. These studies highlight a trade-off between 
accuracy, computational efficiency, and adaptability, with 
hybrid and ensemble models emerging as robust solutions for 
modern malware detection. 

The evaluation of machine learning and deep learning 
techniques for malware detection is incomplete without 
discussing key performance metrics such as accuracy, 
precision, recall, F1-score, and Area Under the Curve 
(AUC). Accuracy, while commonly reported, can be 
misleading in imbalanced datasets where malware instances 
are significantly outnumbered by benign ones. Precision and 
recall offer deeper insights, with precision focusing on 
reducing false positives by measuring the proportion of 
correctly identified malware among all predicted malware 
instances, and recall emphasizing the detection of actual 
malware cases to address false negatives. The F1-score 
provides a balanced measure of precision and recall, making 
it particularly useful for datasets with class imbalances. AUC 
evaluates the model's ability to differentiate between benign 
and malicious apps across various thresholds, highlighting its 
robustness. For instance, MEFDroid achieves a high F1-
score of 97.12%, excelling in handling imbalanced datasets, 
while MalDetect demonstrates a strong AUC of 0.96, 
indicating its effectiveness in diverse environments. 
Incorporating these metrics into the analysis of the discussed 
techniques would provide a more comprehensive evaluation 
of their performance and practical applicability. 

Data quality challenges significantly impact the 
performance of ML and DL-based malware detection 
systems. Data imbalance, where benign samples outnumber 
malware, leads to biased models with reduced recall and 
poor generalization. Noisy labels introduce errors, degrading 
precision and recall, while the lack of diverse, labeled 
datasets limits models' adaptability to evolving malware 
threats. To address these issues, synthetic data generation 
(e.g., SMOTE), cost-sensitive learning, and ensemble 
methods can mitigate imbalance, while robust data cleaning 
and noise-aware training improve resilience to labeling 
errors. Techniques like transfer learning, active learning, and 
crowdsourcing enhance the availability of labeled data, 
ensuring models remain robust and adaptable to modern 
malware challenges. These strategies collectively improve 
detection accuracy, reliability, and applicability in real-world 
scenarios. 

Overall, each study reflects distinct strengths in terms of 
dataset suitability, real-time feasibility, and adaptability, 
making these methods suitable for different malware 
detection scenarios based on resource availability and 
specific application needs. The performance comparison in 
terms of precision, recall and F1-score is illustrated in Figure 
1. It is observed that Hybrid model outperforms well in terms 
of accuracy, precision, recall and F1-score. 
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TABLE I. Expanded Methodology Comparison Table 

 
Study Approach Technique Dataset Accuracy Other Metrics 

Efficient CNN 
Deep Learning 
(CNN) 

VGG16, DenseNet169, 
InceptionV3 

APK Images 95.83% Precision: 94.2%, Recall: 95.5% 

Bayesian 
Method 

Machine 
Learning 
(Bayesian) 

Static Analysis using 
Permissions and API Calls 

Custom Dataset 91.1% False Positive Rate: 12% 

MEFDroid 
Ensemble 
Learning 

Sparse Autoencoder + SDAE 
Drebin, 
AndroMD 

95.14% F1-Score: 97.12% 

Random Forest 
Machine 
Learning 

Random Forest for API Call 
and Permission Analysis 

Drebin 94.36% F1-Score: 88.75% 

Transfer 
Learning 

Transfer 
Learning 

Pre-trained CNN (Inception) OmniDroid 93.7% Precision: 93.1%, Recall: 92.8% 

Hybrid Model 
Hybrid Static-
Dynamic 

API Call + System Logs 
CICInvesAndMa
l2019 

96.5% F1-Score: 96.8% 

ProDroid 
Hybrid (Static & 
Dynamic) 

Multiple Sequence Alignment 
(MSA) + PHMMs 

Drebin, Contagio 95.7% 
Precision: 94%, Recall: 96%, F1-Score: 
95% 

MalDetect 
Hybrid 
Ensemble 

Naive Bayes, J48, AdaBoost 
Drebin, AMD, 
Genome 

94.6% 
Precision: 93%, F1-Score: 94%, AUC: 
0.96 

WHGDroid 
Graph-Based 
Detection 

Weighted Heterogeneous 
Graph + GNNs 

Anzhi, 
AndroZoo 

91.3% F1-Score: 92%, Recall: 91%, AUC: 0.95 

XManDroid 
Ensemble for 
Inter-App 
Communication 

ICC Monitoring + SVM, 
Random Forests 

Custom Dataset 
(Inter-App 
Malware) 

93.8% Precision: 92%, Detection Rate: 94% 

MADRF-CNN 
Deep Learning 
Ensemble 

CNN on Dex Files + Random 
Forest 

Drebin, AMD, 
Contagio 

96.1% 
F1-Score: 95%, Precision: 94%, AUC: 
0.97 

KronoDroid 
Incremental 
Learning 

Self-Taught Learning 
Drebin, Genome, 
Contagio 

93.2% Precision: 92%, Update Speed: High 

 
TABLE 2. Expanded Performance Metrics Comparison Table 

 

Study Precision Recall F1Score Efficiency (Time) 

Efficient CNN 94.2% 95.5% 94.8% High computation due to image processing 

Bayesian Method 88.9% 87.5% 88.1% Low computational cost 

MEFDroid 97.1% 96.8% 97.12% Moderate (Autoencoder training adds complexity) 

Random Forest 90.2% 89.4% 88.75% Moderate 

Transfer Learning 93.1% 92.8% 92.95% Moderate to high (due to fine-tuning pre-trained models) 

Hybrid Model 96.8% 96.3% 96.5% High efficiency in real-time detection 

ProDroid 94% 96% 95% High (Computationally intensive, longer processing time) 

MalDetect 93% 94% 94% Medium (Resource-intensive training but reasonable inference speed) 

WHGDroid 92% 91% 91% Medium to High (Graph processing can be time-consuming) 

XManDroid 92% 94% 93% Medium (Real-time processing but requires monitoring overhead) 

MADRF-CNN 94% 95% 95% Medium (Image conversion adds overhead but good inference time) 

KronoDroid 92% 92% 92% High (Real-time updates but potentially slower with noise) 
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Fig.1. Performance comparison of existing methodologies 
 

TABLE 3. Comparison of Real-Time Feasibility and Adaptability across Malware Detection Approaches 
 

Study Real-Time Feasibility Adaptability 

Score Strengths Weaknesses Score Strengths Weaknesses 

Efficient CNN Low High accuracy; 
Detects complex 
patterns 

High computational 
cost; unsuitable for 
mobile devices 

Moderate Learns complex 
patterns, adaptable to 
diverse malware 

Struggles with unseen threats 
without retraining 

Bayesian 

Method 

High Lightweight; Ideal 
for mobile devices 

Less effective 
against evolving 
threats 

Low Fast and simple 
model 

Weak against new, unseen 
malware 

MEFDroid Moderate Handles 
imbalanced 
datasets; Ensemble 
learning 

High complexity; 
Requires 
computational 
power 

High Can detect evolving 
malware; Uses 
autoencoders for 
dynamic feature 
extraction 

Complexity limits real-time 
retraining 

Random 

Forest 

Moderate Efficient for static 
features; Handles 
moderate data 

Prone to 
obfuscation; Limited 
by static analysis 

Moderate Flexible for 
structured data 

Requires retraining for new 
malware variants 

Transfer 

Learning 

Moderate 
to Low 

Pre-trained models 
reduce training 
time 

Dependent on 
available pre-trained 
models 

Moderate 
to High 

Fast adaptation with 
pre-trained models 

Limited by the scope of pre-
trained data 

Hybrid Model High Combines static 
and dynamic 
features; Good for 
real-time 
applications 

More complex 
model, but worth the 
performance gain 

High Combines static and 
dynamic analysis, 
making it robust 
against zero-day 
malware 

Requires extensive resource 
management for real-time 
deployment 

ProDroid Moderate 
to High 

High accuracy in 
diverse 
environments; 
hybrid approach 
allows 
adaptability. 

Computationally 
intensive, may slow 
down in low-
resource settings 

Moderate 
to High 

Hybrid approach 
allows it to adapt to 
new threats 
effectively; good for 
varied environments. 

Requires frequent retraining to 
maintain effectiveness against 
new malware types. 

MalDetect Moderate Efficient for 
enterprise 
environments; 
ensemble methods 
enhance accuracy. 

Requires substantial 
resources for 
training and may 
face latency during 
real-time operations. 

Moderate 
to High 

Ensemble methods 
enhance flexibility in 
adapting to different 
malware 
characteristics 

Complexity can make it harder 
to adapt quickly to emerging 
threats. 

WHGDroid Moderate 
to Low 

Effective in 
identifying inter-
app 
communication 

Graph-based 
processing can be 
time-consuming, 
impacting real-time 

Moderate Graph-based 
methods provide 
adaptability to inter-
app communication 

Adaptability is limited by the 
quality and comprehensiveness 
of the graph model. 
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threats. responsiveness changes. 

XManDroid Moderate  Good detection of 
malicious inter-app 
interactions; real-
time monitoring 
capability. 

May need constant 
updates to maintain 
effectiveness against 
evolving threats. 

Moderate 
to High 

Designed to monitor 
dynamic inter-app 
communications, 
allowing for real-
time adaptability. 

Relies heavily on continuous 
updates to remain effective 
against evolving threats. 

MADRF-CNN Moderate 
to High 

Utilizes deep 
learning for high 
accuracy; 
relatively efficient 
inference. 

Initial training time 
can be lengthy; may 
require significant 
computational 
power. 

High Deep learning model 
can improve with 
more data and adapt 
to new malware 
patterns over time. 

Initial setup and training can 
be resource-intensive; slower 
to adapt if new data is sparse. 

KronoDroid Moderate  Adapts 
continuously to 
new threats; 
suitable for 
dynamic 
environments. 

Vulnerable to noise 
in data, which could 
lead to inaccuracies 
in detection over 
time. 

High Incremental learning 
allows it to 
continuously adapt 
without full 
retraining; ideal for 
dynamic 
environments. 

Vulnerable to noise in 
incoming data, which may 
hinder effective adaptation 
over time. 

 

Hybrid Models, due to the combination of static and 
dynamic features, provide excellent precision and recall 
while remaining efficient enough for real-time application. 
Transfer learning Models, offer an attractive balance of 
performance and efficiency, especially when access to pre-
trained models is feasible. Bayesian Models are resource-
efficient, but fall short in handling modern, complex 
malware variants. This section presents a detailed evaluation 
of strengths and weaknesses of each approach in terms of 
real-time applicability and adaptability. Scores reflect 
computational efficiency, capability for continuous 
adaptation, and suitability for varying device environments, 
illustrating each effectiveness of each method in detecting 
evolving malware and handling different levels of system 
resources. The analysis is summarized using Table 3. The 
following discusses the present gap in every approach with 
future directions. 

A. Real-Time Detection 

The most accurate models, such as CNN-based approaches, 
are too computationally heavy for real-time applications. To 
address this, future work should focus on lightweight models 
or optimized neural networks like MobileNet or Tiny-
YOLO, which are designed for mobile and edge devices with 
limited computational power. Leveraging edge-cloud 
architectures where most intensive computations are 
offloaded to the cloud while light detection models run on 
the device could offer a balance between real-time detection 
and accuracy 

B. Dataset Diversity 

Most studies rely on older datasets such as Drebin or 
AndroMD, which may not reflect the evolving nature of 
malware today. These datasets, while comprehensive, lack 
the latest zero-day malware and more sophisticated 
obfuscation techniques. Building and maintaining real-time 
malware datasets through active monitoring systems that 
collect malware from app stores and devices would help 
improve detection systems’ adaptability. Datasets like MH-
100K, which offer more representative and extensive 
samples, are a step in the right direction. Static feature-based 
models like Random Forests and Bayesian classifiers 
struggle with obfuscated malware, as they cannot capture 
runtime behaviors. Research should shift towards graph-
based malware detection that can understand relationships 
between multiple entities (API calls, permissions) and offer 
better resilience to obfuscation techniques. Temporal 

Convolutional Networks (TCNs) could also be explored for 
analyzing time-based sequences (e.g., system calls).  

C. Class Imbalance 

Class imbalance remains a significant issue, especially in 
real-world applications where benign apps far outnumber 
malware. Although ensemble methods like MEFDroid 
address this, further work is needed to prevent overfitting on 
dominant benign samples. Techniques such as cost-sensitive 
learning, data augmentation (e.g., synthetic malware 
generation), and SMOTE (Synthetic Minority Over-sampling 
Technique) can help models learn from minority (malware) 
classes without bias.  

D. Interpretability 

Interpretability remains a problem for deep learning 
models like CNNs, which operate as black boxes. This lack 
of transparency can hinder trust and acceptance in real-world 
cyber security applications. Integrating explainable AI (XAI) 
techniques like LIME (Local Interpretable Model-agnostic 
Explanations) or SHAP (Shapley Additive Explanations) 
[29] can offer insight into which features contributed most to 
a model’s classification. Additionally, attention-based neural 
networks can highlight specific sections of code or API calls 
that led to a malware classification. 

IV. CONCLUSION 

In summary, this review of Android malware detection 
methods highlights the strengths and limitations of various 
approaches. CNN-based models offer the highest accuracy 
but come with high computational costs, making them less 
suitable for real-time detection on mobile devices. Ensemble 
methods such as MEFDroid are highly accurate and robust 
in handling imbalanced datasets, though they come at the 
cost of complexity and slower adaptation to new malware 
types. For the future, hybrid models that combine both static 
and dynamic features offer a promising balance between 
accuracy and efficiency. However, a key focus should be on 
creating more diverse, real-time datasets, addressing model 
interpretability, and improving real-time detection 
capabilities for malware detection systems. 

REFERENCES 

 
[1] A. Ksibi, M. Zakariah, L. Almuqren, and A. S. Alluhaidan, ‘‘Efficient 

Android malware identification with limited training data utilizing 
multiple convolution neural network techniques,’’ Eng. Appl. Artif. 

Authorized licensed use limited to: Vignan's Foundation for Science Technology & Research (Deemed to be University). Downloaded on April 12,2025 at 10:09:19 UTC from IEEE Xplore.  Restrictions apply. 



Intell., vol. 127, Jan. 2024, Art. no. 107390, doi: 
10.1016/j.engappai.2023.107390 

[2] S.R.T. Mat, M.F.A. Razak, M.N.M. Kahar, J.M. Arif, A. Firdaus, A 
Bayesian probability model for Android malware detection, ICT 
Express 8 (3) (2022) 424–431, 
https://doi.org/10.1016/j.icte.2021.09.003 

[3] A. Guerra-Manzanares, M. Luckner, and H. Bahsi, “Android malware 
concept drift using system calls: Detection, characterization and 
challenges,” Expert Syst. Appl., vol. 206, 2022, Art. no. 117200. 

[4] H. J. Zhu,L. Yang, L. M. Wang, and V. S. Sheng, “A multi-model 
ensemble learning framework for imbalanced android malware 
detection,” Expert Systems with Applications, vol. 234, pp. 120952, 
2023 

[5] Dhalaria M, Gandotra E. MalDetect: A classifier fusion approach for 
detection of android malware. Expert Syst Appl 2024;235:121155 

[6] P. Bhat and K. Dutta, ‘‘A multi-tiered feature selection model for 
Android malware detection based on feature discrimination and 
information gain,’’ J. King Saud Univ.-Comput. Inf. Sci., vol. 34, no. 
10, pp. 9464–9477, Nov. 2022 

[7] P. Bhat and K. Dutta, ‘‘A multi-tiered feature selection model for 
Android malware detection based on feature discrimination and 
information gain,’’ J. King Saud Univ.-Comput. Inf. Sci., vol. 34, no. 
10, pp. 9464–9477, Nov. 2022 

[8] T. Islam, S. S. M. M. Rahman, M. A. Hasan, A. S. M. M. Rahaman, 
and M. I. Jabiullah, ‘‘Evaluation of N-gram based multi-layer 
approach to detect malware in Android,’’ Proc. Comput. Sci., vol. 
171, pp. 1074–1082, Jan. 2020. 

[9] A. K. Singh, G. Wadhwa, M. Ahuja, K. Soni, and K. Sharma, 
‘‘Android malware detection using LSI-based reduced opcode feature 
vector,’’ Procedia Comput. Sci., vol. 173, pp. 291–298, 2020. 

[10] A. Roy, D.S. Jas, G. Jaggi, K. Sharma “Android Malware Detection 
based on Vulnerable Feature Aggregation” Procedia Comput. 
Sci., 173 (2019) (2020), pp. 345-353, 10.1016/j.procs.2020.06.040 

[11] O. N. Elayan and A. M. Mustafa, “Android malware detection using 
deep learning,” Procedia Computer Science, vol. 184, no. 2, pp. 847–
852, 2021. 

[12] V. Syrris, D. Geneiatakis, On machine learning effectiveness for 
malware detection in Android OS using static analysis data, J. Inf. 
Secur. Appl. 59 (May) (2021) 102794, 
https://doi.org/10.1016/j.jisa.2021.102794. 

[13] Sihag V, Vardhan M, Singh P. BLADE: robust malware detection 
against obfuscation in android. Forensic Sci Int: Digital Investig 2021 
Sep;1(38):301176 

[14] Bashir, S., Maqbool, F., Khan, F.H., Abid, A.S., 2024. Hybrid 
machine learning model for malware analysis in android apps. 
Pervasive Mob. Comput. 97, 101859. http: 
//dx.doi.org/10.1016/j.pmcj.2023.101859. 

[15] D.O. ¨ S¸ ahin, O.E. Kural, S. Akleylek, E. Kılıç, Permission-based 
Android malware analysis by using dimension reduction with PCA 
and LDA, J. Inf. Secur. Appl. 63 (October) (2021) 102995, 
https://doi.org/10.1016/j.jisa.2021.102995. 

[16] H. Rathore, A. Nandanwar, S. K. Sahay, and M. Sewak, ‘‘Adversarial 
superiority in Android malware detection: Lessons from 
reinforcement learning based evasion attacks and defenses,’’ Forensic 
Sci. Int., Digit. Invest., vol. 44, Mar. 2023, Art. no. 301511. 

[17] M. Alejandro, L.-C. Raul, and D. Camachoa, “Android malware 
detection through hybrid features fusion and ensemble classifiers: The 
AndroPyTool framework and the OmniDroid dataset,” Inf. Fusion, 
vol. 52, no. 1, pp. 128–142, 2019. 

[18] D. Saif, S.M. EI-Gokhy, E. Sallam, Deep belief networks-based 
framework for malware detection in Android systems, Alexandria 
Eng. J. 57 (2018) (2018) 4049–4057 

[19] A. S. Shatnawi, Q. Yassen, and A. Yateem, "An Android Malware 
Detection Approach Based on Static Feature Analysis Using Machine 
Learning Algorithms," Procedia Computer Science, vol. 201, pp. 653- 
658, 2022/01/01/ 2022, doi: 
https://doi.org/10.1016/j.procs.2022.03.086. 

[20] M. Alejandro, L.-C. Raul, and D. Camachoa, “Android malware 
detection through hybrid features fusion and ensemble classifiers: The 
AndroPyTool framework and the 50dataset,” Inf. Fusion, vol. 52, no. 
1, pp. 128–142, 2019. 

[21] Sasidharan, S.K.; Thomas, C. ProDroid—An Android malware 
detection framework based on profile hidden Markov model. 
Pervasive Mob. Comput. 2021, 72, 101336. 

[22] AlOmari, H.; Yaseen, Q.M.; Al-Betar, M.A. A Comparative Analysis 
of Machine Learning Algorithms for Android Malware Detection. 
Procedia Comput. Sci. 2023, 220, 763–768 

[23] L. Huang, J. Xue, Y. Wang, Z. Liu, J. Chen, Z. Kong, Whgdroid: 
effective Android malware detection based on weighted 
heterogeneous graph, J. Inf. Secur. Appl. 77 (2023) 103556, 
https://doi.org/10.1016/j.jisa.2023.103556. 

[24] Bragança H, Rocha V, Barcellos L, Souto E, Kreutz D, Feitosa E. 
Android malware detection with MH-100K: An innovative dataset for 
advanced research. Data Brief. 2023 Nov 2;51:109750. doi: 
10.1016/j.dib.2023.109750. PMID: 38020437; PMCID: 
PMC10661696. 

[25] Arif, J.M.; Ab Razak, M.F.; Tuan Mat, S.R.; Awang, S.; Ismail, 
N.S.N.; Firdaus, A. Android mobile malware detection using fuzzy 
AHP. J. Inf. Secur. Appl. 2021, 61, 102929. 

[26] Razgallah, A.; Khoury, R.; Hallé, S.; Khanmohammadi, K. A survey 
of malware detection in Android apps: Recommendations and 
perspectives for future research. Comput. Sci. Rev. 2021, 39, 100358. 

[27] H. Zhu, H. Wei, L. Wang, Z. Xu, and V. S. Sheng, ‘‘An effective 
endto-end Android malware detection method,’’ Exp. Syst. Appl., 
vol. 218, May 2023, Art. no. 119593, doi: 
10.1016/j.eswa.2023.119593. 

[28] G. Renjith and S. Aji, ‘‘On-device resilient Android malware 
detection using incremental learning,’’ Proc. Comput. Sci., vol. 215, 
pp. 929–936, Jan. 2022, doi: 10.1016/j.procs.2022.12.095 

[29] Martin Kinkead, Stuart Millar, Niall McLaughlin, and Philip O’Kane. 
Towards explainable CNNs for android malware detection. Procedia 
Computer Science, 184:959–965, 2021. 

 

     

Authorized licensed use limited to: Vignan's Foundation for Science Technology & Research (Deemed to be University). Downloaded on April 12,2025 at 10:09:19 UTC from IEEE Xplore.  Restrictions apply. 


