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Abstract— We have developed a comprehensive prototype 

solution for a specific use case involving entity resolution for 

mailing addresses of financial institutions. Our objective was to 

find matches between user entry of misspelled or inaccurate 

addresses of business entities and their corresponding entries in a 

“gold copy” of complete and accurate mailing addresses 

(dictionary). Three distinct matching methods (PySolr, SoDA and 

Record Linkage) were used for a preliminary, yet diverse scheme of 

lookups in finding matches. These lookup processes may optionally 

be followed by search via a hybrid machine learning (ML) model 

via regularized logistic regression and hierarchical clustering using 

Dedupe. Our experimental results of elapsed times for searches 

using the three lookup methods on a variety of match types suggest 

that majority of the simpler matches are detected extremely fast 

(elapsed times: ~ 6 – 48 milliseconds) at the lookup stage, making it 

suitable for detecting simple and possibly most common errors in 

user entries for mailing addresses. The performance of ML models, 

on the other hand, is comparatively slower (elapsed times: ~ 174 – 

201 milliseconds). Nevertheless, the hybrid ML model seems most 

suitable in cases where multiple ambiguities exist in user entry of 

addresses, and, as a result, the preliminary lookup methods may 

fail to detect possible matches. The precision and recall of the ML 

model on a sizeable test dataset are 0.89 and 0.94, respectively. 

These high scores on model performance suggest that the ML 

models can be applied successfully to entity resolution of mailing 

addresses. Our combined solution can be integrated with any 

enterprise software applications in order to provide both efficient 

and robust address matching service in cases where users enter 

mailing addresses as free-form texts that may carry inaccuracies. 

Keywords—semantic search, natural language processing, 

machine learning, deep learning, entity resolution. 

I. INTRODUCTION 

     Natural language processing (NLP) is a field of 
Artificial Intelligence (AI) that enables software applications 
to understand and interpret human languages [1]. The 
theoretical foundations of a large variety of AI-powered NLP 
applications have been developed over the last several decades. 
Examples include speech recognition [2] “semantic” search 
engines [3], document classification [4], text summarization 
[5], and record deduplication [6, 7]. “Entity resolution” (also 
termed ‘record linkage”) is one such NLP problem where 
different manifestations of the same real world object 
(“entity”) are linked or grouped together in order to find 
matches, eliminate duplicates or find relationships among 

them within single or multiple seemingly disparate datasets  
[8-10].  

 In this study, we have built a prototype solution to 
address a recurring business problem involving financial 
message transfers. The customers for financial message 
transfer often enter recipient financial institution or company 
addresses as free-form texts that, at times, do not match with 
any entries in the corresponding system of records for exact 
mailing addresses. Such cases of free-form text entry constitute 
a sizable portion of financial message transfers. The lack of 
exact matches in most cases, however, is due to typographical 
errors, inaccuracies or ambiguities in user entries of institution 
names and/or addresses rather than actual absence of records 
for intended recipient institutions. Here we report a 
comprehensive and robust end-to-end solution to this entity 
resolution problem to find exact or most likely matches 
between addresses from users’ inputs and those from an 
existing larger address dataset persisted as a dictionary. 

II. METHODOLODIES 

     There are four stages in the end-to-end workflow for our 

solution, as shown in Fig. 1. Here we give a brief description 

on each of the stages: input; preliminary lookup; ML model; 

and output. 

 

 

Fig.1 The entity resolution workflow in our solution  

 

Stage I: User Input 

Our entity resolution workflow starts with users’ input of 
two datasets in csv format on a web application we have built 
natively using python and Apache Flask. We chose Flask for 
the deployment of our web application because it is a simple 
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and light-weight Python 3 microframe-work that can run on 
our Apache web server, and, as such, it involves minimal 
effort on its installation and setup. As part of user entry, the 
first dataset represents a “clean gold copy” of the data 
(“dictionary”) that is cached into the memory of an index-
based search engine (Apache Solr

TM
). This clean copy of data 

is ideally collected and compiled over time to include all 
known valid and complete addresses that the users are likely 
to use. In the real world, these data are collected from various 
data vendors globally (e.g., United States Postal Service). For 
the purpose of our current proof-of-concept, however, we have 
used a small set (1000 records) of publicly available addresses 
of some financial institutions in the UK [11] as a dictionary. 
Next, the user uploads a sample dataset of records for analyses 
in order to find matches with those in the dictionary dataset. 

Stage II: Preliminary Lookup 

We have implemented three matching methods for this 
stage: [a] simple index-based query via PySolr (a Python 
wrapper for Apache Solr [12]); [b] dictionary annotator using 
SoDA [13] and SolrTextTagger [14]; and [c] Record Linkage 
(python Toolkit for fast lookup: [15, 16]). See below for more 
details on each of these lookup methods. The search results, as 
returned by each of the above three lookup methods, are 
ranked and sorted based on their matching scores. The 
highest-ranking match along with a success metric for each 
method is displayed on the web application user interface (UI). 

Here we briefly describe each of the three lookup methods 
in more detail.  

1) Index-based query via PySolr 

Apache Solr
TM

 is a widely used index-based search 

engine in the industry, and it enables advanced search 

capabilities and high scalability. The PySolr wrapper allows 

users to query indexes on a Solr server using a python client 

[12]. The address schema for our dictionary data contains 

fields for the company name, address, city name etc. (Table 1). 

The addresses data used in are mode dataset are publicly 

available mailing addresses of 1,000 business entities in the 

UK [11]. Table 1 displays a subset of five sample records out 

of which the first four are distinct and the last two records are 

two variants of the same physical addresses (duplicates). The 

“Name” field lists the business entity names and the “Code” 

field is populated with postal codes. 

 

Table 1: Sample address data in the dictionary 

ID Name Address City Country Code 

1 
1 MOBILE 

LIMITED 
30 CITY ROAD LONDON UK EC1Y2AB 

2 1 TECH LTD 

57 

CHARTERHOU

SE STREET 

LONDON UK EC1M6HA 

3 
23SNAPS 

LIMITED 

16 BOWLING 

GREEN LANE 
LONDON UK EC1R0BD 

4 

2E2 

SERVICES 

LIMITED 

200 

ALDERSGATE 

STREET 

LONDON UK EC1A4HD 

5 
2E2 UK 

LIMITED 

200 

ALDERSGATE 

STREET 

LONDON UK EC1A4HD 

  

 The address data in the dictionary are cached as Solr 
indexes to enable fast and high-performance queries. Every 
time the user searches for an address, the Solr index data are 
queried via HTTP GET method. Each search query is 
processed with a request handler that calls a query parser, 
where the parser defines the search strings and parameters in 
order to specify the query. For example, when searching based 
on the company name and address fields, the query parser 
selects only those two fields for query execution.  

 We have leveraged the built-in support by Solr for both 
phrase queries and DisMax queries. The phrase queries are 
particularly helpful in detecting typographical errors, stemming 
and phonetic spelling. Similarly, Solr's built-in DisMax query 
parser is designed to process simple phrases entered by users 
with no need for complex syntax, making it particularly 
suitable for address entity resolution. Also, different weighting 
(“boosts”) can be assigned based on the significance of each 
field in search terms, and Solr supports search for individual 
terms across several fields. 

2) Dictionary based annotation via SoDA and 
SolrTextTagger 

Our second matching method, SoDA, is a dictionary-based 
annotator for Apache Solr that supports both exact as well as 
fuzzy lookups across multiple lexicons [13]. Architecturally, it 
is essentially an HTTP REST microservice that enables a 
client to post a text corpus and retrieve a corresponding set of 
annotations. Annotations, in this context, refer to structured 
objects that carry information on entity identifier, matching 
text, offsets of matching texts within a given input text corpus, 
and the confidence score of a specific match. SoDA allows the 
client to specify the desired level of accuracy. Importantly, it 
performs more efficiently when the user breaks the dictionary 
down into smaller dictionaries based on the individual fields at 
sub-entity levels (city, state, country etc.). These new smaller 
dictionaries are then loaded into SoDA and Solr using a bulk 
loader, which stores the data in separate lexicons. SoDA can 
be implemented “on premise” or on the cloud (e.g., Amazon 
Web Services (AWS)). The AWS implementation is 
particularly better suited for cases where multiple users need 
to use SoDA concurrently and yet they are not required to 
install it separately on each instance. Instead, users can simply 
connect to the AWS machine specified in the URL of their 
HTTP requests and run the tests. 

In order to query the lexicons, users can send their requests 
over HTTP POST using Python or Scala as JSON documents. 
We used a python client that exposes an Application 
Programming Interface (API) to SoDA. The Python version 
was chosen in this study because it helps to maintain 
consistency and seamless integration with all other matching 
methods we have implemented using tools and technologies 
within python ecosystem.  The HTTP requests are sent 
through Jetty that serves as an HTTP web server, and 
processes requests, responses, and stores the lexicon data in a 
TSV (Tab Separated Values) format. SoDA itself interacts 
with SolrText-Tagger

3
 on the Solr index. 

SolrTextTagger is part of Apache Solr (7.4.0 and above), 
and it

 
leverages Lucene’s Finite State Transducers (FST) 

technology [14]. This tagger is commonly used to find entities 



 

 

in large text, return pattern matching results in queries or to 
enhance “query understanding.” FST refers to finite state 
automata consisting of a set of strings with optional edges 
between the nodes of strings. The connected nodes provide a 
complete representation of the target entity. The FST structure 
enables substring tagging on word level rather than at 
character levels. FST is written as an immutable byte array, 
and, consequently, it is efficient with respect to memory usage 
and elapsed time to execute search queries. Further, when new 
dictionary entries are encountered for matching entities, FST, 
which is index-based, does not need to be rebuilt; the user 
only needs to add the new entries.  

Two separate FSTs were used in our implementation in 
order to expand the abilities of the search method. The first 
FST contains every word in the dictionary with a unique 
integer id that can be used as a substitution. The second is a 
word-phrase FST that is used based on those unique ids and 
allow the tagger to account for prefixes and suffixes in words 
and word phrases. 

Next, SoDA, which is built on top of SolrTextTagger, is 
used to hold the entity names and unique identifiers. Our 
approach allows us to perform searches with multiple 
matching modes and methods. This flexible approach thus 
enables discovery of varieties of matches. For example, the 
address dataset can be uploaded to SoDA server in multiple 
formats, and is queried either concurrently or until a strong 
match at pre-defined level is found.  The TSV files with 
separate address fields are searched first, followed by searches 
on a second file in which the entire address is stored together. 
Additional methods were also used to further strengthen this 
approach. They include the use of non-streaming matches of 
phrases against entries, text annotations against specified 
lexicons and the use of multiple stemming algorithms, such as, 
Porter stemmer [17, 18] and KStem stemmer [19]. 

3) Pattern-based matching via Record Linkage: 

The third lookup method in our solution was via use of 
“Record Linkage Toolkit [16].” It is a python implementation 
widely used in entity resolution problems. It provides the user 
with capabilities for fast lookup via powerful matching 
algorithms and also provides an optional capability to build 
ML models. For the purposes of this study, we have, however, 
used the toolkit only for its fast lookup capability.  

Similar to the other two lookup methods discussed earlier 
(PySolr and SoDA), the same two separate datasets were also 
used in Record Linkage as user inputs. The first stage of 
processing employs block and sorted neighbor indexing 
methods to reduce the volume of data that is sent to 
comparison algorithms. Under block indexing, records with 
exact matches between any or all fields produce outputs that 
show “matched” records. A sorted neighborhood indexing 
method, however, combines the two datasets, sorts them 
alphabetically, and finds the alphabetically closest dictionary 
record(s) for each user entry. These selected “neighbors” are 
subsequently sent to the classification stage. In the event that 
the previous two indexing methods deem insufficient, full 
indexing may be applied for a more comprehensive scheme of 
search.  

In the classification stage, the indexed results are 
compared against a wide variety of matching metrics. For 
string-based data, the Record Linkage program can use a 
variety of algorithms including jaro, jaro-winkler, levenshtein, 
qgram, and cosine similarity [16]. These algorithms compare 
records and compute their matching status. For our specific 
datasets, jaro-winkler and levenshtein algorithms yielded the 
most consistently accurate results. Positive matches are 
reported when the algorithm finds a match between the values 
in an input field and the corresponding dictionary field under a 
specified “similarity threshold.” This process is repeated for 
each input field, and it results in a matrix of record pairs 
classified into ones and zeros. The 1’s in this matrix signify a 
positive match for the particular field of that given record pair, 
whereas 0’s indicate a negative match status. Once this initial 
process to find match is complete at individual field levels, the 
program computes the match status of each record as a whole.  

In the next step, the matching process uses the previously 
created matrix, and, for each record, determines whether or 
not a sufficient number of fields in the record match in order 
to be considered a complete and successful match. For our 
implementation, the program first checks for agreements 
within all five fields, and if no matches are found, it 
subsequently checks for agreement within at least four of the 
five fields in the user entry. The pair of addresses with the 
highest matching score in the list of search results is returned 
to the user as the final output.  

Stage III: ML Model 

Any user entry of address that cannot be matched via the 
three preceding preliminary lookup methods is subsequently 
sent to the ML model stage for further processing. The ML 
model was trained via Dedupe python library that uses a 
combination of two separate ML models (regularized logistic 
regression and hierarchical clustering [20]; discussed later). 
Similar to the lookup methods discussed above, the first step 
in using ML model via Dedupe is to load two datasets in csv 
format: the dictionary and the simulated user entry datasets. 
The dictionary data contain a list of complete and accurate 
company addresses that potential users are likely to use. The 
second dataset includes a simulated list of addresses that 
potential users are likely to spell or type in differently. For 
example, the user-entered addresses may contain ambiguities, 
missing values, incorrect fields, improper formatting, 
abbreviations, truncations, and other possible variations. The 
ML model compares these two datasets, and determines 
matches within pairs of records. 

The first step to determine matches between strings or text 
corpora using Dedupe involves calculation of “similarity 
scores” via different measures. The method in our 
implementation uses the Affine Gap Distance [21], which is a 
string metric used to score alignments between strings. The 
Affine Gap Distance counts the minimum number of changes, 
such as substitutions, deletions, and additions required to 
achieve an exact match between the two strings. This numeric 
value thus represents the pairwise similarity between two 
strings. Additionally, each address is split into component 
fields (city, state, postal code etc.), and each individual field is 
then compared with its corresponding dictionary value. 



 

 

The gap distance is calculated based on individual fields 
within a single address (city, state etc.) rather than the entire 
address as a whole. This is particularly useful in our specific 
use case because some fields within an address, such as, the 
company name, may carry higher importance than other fields, 
such as postal code. Different numeric weights (discussed 
later) are assigned to each field (company name, address, city, 
country, and postal code). These weight factors are multiplied 
by their corresponding individual gap distance. The final gap 
distance of the entire record is given by the weighted sum of 
distances for all address fields. 

In order to determine the numeric weights for each field 
and the threshold values for gap distance, a supervised ML 
method was employed in our model. For our training data, we 
manually created labeled sample pairs across our address 
dataset, where each pair was marked either a match or distinct. 
This is a mode of training method in ML, called supervised 
“active learning.” The labeled sample pairs allow a 
regularized logistic regression model to learn from training 
data and assign weights for each field. The individual weights, 
combined with the total gap distance of the entire address, 
yield an estimate of probability for pairs of records being 
duplicates, which, in turn, is indicative of the likelihood of a 
match between them. Thus, the predictive ML model is 
essentially based upon the binary dependent variable (match 
or distinct) derived from active learning and on the respective 
gap penalties associated with each address. 

The ML model also uses a method called “blocking,” 
where different addresses are separated into distinct blocks 
with some common features between them. Because similar 
entities are likely to share some common feature(s), the search 
algorithm can limit comparisons among addresses only within 
the same block and not across separate blocks. This reduces 
the number of required searches for a match, and, 
consequently, results in improved efficiency in performance of 
search algorithm of the ML model. Dedupe uses two sets of 
blocking rules, namely, predicate and index blocks. Predicate 
blocks bundle together records that share a similar trait or 
characteristic feature. One such feature, for example, can be 
the same few characters that two or more company names start 
with in the name field of our address dataset. In the case of 
index blocks, Dedupe creates a data structure, called inverted 
index, which is populated with all the unique values in a 
specific field. Records with at least one similar value for its 
index are grouped together as a single block. Further, Dedupe 
uses the Greedy Set-Cover algorithm

 
[22] in order to select a 

set of blocking rules that, on one hand, maximizes the checks 
for duplicates and, on the other, minimizes the required 
number of comparisons. This algorithm selects addresses with 
lowest weights and includes them within the most prospective 
candidate blocks for match discovery. At the same time, the 
algorithm does not unnecessarily increase the size of the block 
and number of comparisons. Combined, these methods 
provide the algorithm with a fast yet robust search mechanism 
for pattern matching. 

Once the probabilities are calculated for pairs of record 
being duplicates or not, Dedupe uses a method, known as 
hierarchical clustering with centroid linkage, in order to 
group potential duplicates [21]. For example, let us assume 

that one pair of addresses (A and B) and a second pair (B and 
C) have high probabilities of being within-pair duplicates, 0.7 
and 0.8, respectively. While we do not have direct measure of 
probability of match between A and C in this case, each of 
them is indirectly linked via high match probability with 
addresses B. The address B, based on this algorithm, would be 
considered the centroid for the same cluster in which all three 
addresses are constituent members. Note that this clustering 
algorithm relies on a computed value of probability threshold 
for group membership within a single cluster. The calculation 
of this threshold involves use of an F-score, which, in turn, is 
calculated with an optimum tradeoff between precision and 
recall. Precision, in this context, is a measure of how valid the 
predictions by the Dedupe model are, whereas recall refers to 
the sensitivity of the model in detecting true matches. In order 
to calculate the precision and recall, a random sample of the 
blocked data is taken and the pairwise probabilities are 
calculated. In our specific use case, the prediction of false 
match (“false positive”) is less desirable than missing a true 
match (false negative). This is because a false match could 
potentially lead to an undesirable consequence of monetary 
transaction being delivered to an unintended recipient entity. 
Accordingly, a higher weight was placed on precision than on 
recall for our model performance. This was accomplished by 
setting an optimum threshold for match definition. 

Finally, in the event no match is found even via the hybrid 
ML model, the user is prompted to enter additional 
information and the search process is repeated starting with 
stage I. 

Stage IV: Output 

The same Flask web application user interface (UI) that is 
used for user input is also used to display the results from our 
lookup methods and the ML model. The user can view all 
results from the three lookup methods and the hybrid ML 
model displayed individually on this presentation layer. This 
provides the user with greater choice in accepting a particular 
match results from any single matching method. Also, the UI 
allows the user to run each search method sequentially or all 
four methods concurrently. 

III. RESUTLS AND DISCUSSIONS 

Table 2: Time (milliseconds) elapsed for different match 

types versus different matching methods 

Match Types  PySolr SoDA 
Record  

Linkage 
Dedupe 

Exact match:  
1 MOBILE LIMITED 

30 CITY ROAD 

LONDON 

7.46 17.07 47.31 173.64 

Incorrect wording:  
1 MOBILE LIMITED 

30 CITY STREET 
LONDON 

5.67 16.73 44.73 200.72 

Multiple ambiguities:  
1 mobil lim 30 city rd 

lon uk 

4.78  

(No 

match 
found) 

50.83  

(No 

match 
found) 

135.77  
(No match 

found) 

175.53 

 



 

 

Our results on three example match types (exact match, 
incorrect wording and multiple ambiguities) are shown in 
Table 2 along with their corresponding elapsed times (in 
milliseconds) in returning results via the three lookup methods 
and the ML model. These results suggest that PySolr can 
detect the most common types of inaccuracies in user entries 
and successfully match them with corresponding accurate 
addresses. Further, the results returned via PySolr are 
consistently the fastest among all three preliminary lookup 
methods. It is also easily scalable to large set of dictionary 
data, and the lookup works seamlessly when updates are made 
in the dictionary. Moreover, PySolr is useful in setting up the 
foundation of Solr, which can also be used with SoDA. 
Combined, PySolr provides a simple, fast and scalable way to 
find matches between records when the threshold value for a 
given match is not critical. 

As for the use of SoDA in our solution, one of its 
advantages is that it places higher importance on recall over 
precision. As such, it uses a fast and dynamic programming 
algorithm to calculate the edit distance between two text 
corpora. For our use case, we estimated an optimum threshold 
value for this edit distance (25) via multiple trial and errors. 
This is to ensure that the “gap penalty” between the user entry 
and the exact address are not exceedingly high for a desired 
conclusive match. The use of an optimum threshold can help 
reduce the number of false matches. 

Another advantage of using SoDA in our entity resolution 
problem is its ability to store aliases. When the dictionaries are 
loaded into lexicons, the user can specify a list of words and 
their variants that are frequently spelled differently. For 
example, if the user specifies “RD” or “Rd” as known aliases 
for “Road,” SoDA can identify them as exact matches. These 
differently spelled variants are evaluated the same way as their 
primary dictionary records. This capability of SoDA is thus 
particularly useful in our use case, as abbreviations or 
acronyms for both company name and street addresses are 
common in user entries.  

Notably, both SoDA and Record Linkage return match 

results only when the matches satisfy a defined threshold for 

confidence level in each method. The user sets the threshold 

values based on trial and error on known test data. Also, these 

threshold values can be customized based upon desired level 

of confidence and the data format used in a specific use case. 

  

 

 
Fig.2 The relative strengths of each method used in our 

solution for entity resolution  

 

While the three lookup methods are all useful in finding 
matches, they show different degrees of effectiveness based 
upon the match types (Fig. 2). For example, they all can 
correctly detect matches in cases where only the name string 
in the user input is incorrect, but the address string is exact 
and accurate (no deviation from the dictionary entry). 
Similarly, as desired, all lookup methods can ignore extra 
white spaces and also account for special characters. There are 
specific match scenarios, however, where these lookup 
methods show different degrees of relative efficacy. For 
example, unlike PySolr or SoDA, matching via Record 
Linkage may fail due to its case sensitivity and sensitivity to 
the order in which different substrings appear in the input 
address. Further, there are other specific match types, such as 
missing substring for which Record Linkage and SoDA fail to 
find matches, but PySolr succeeds (e.g., input: “1 mobile 30 



 

 

city London.” versus dictionary: “1 MOBILE LIMITED 30 
CITY ROAD LONDON UK EC1Y 2AB”). Moreover, we 
note examples of inaccurate street names that both Record 
Linkage and SoDA can correctly match, whereas the identical 
search phrases fail to find matches via PySolr. For example, 
when the input address is “1 MOBILE LIMITED 400 
CENTER POINTE LANE LONDON UK,” PySolr incorrectly 
suggests a completely different address as a possible match. 
Thus, these three lookup methods display their individual 
strengths and weaknesses that can have different implications 
for their suitability in specific use cases. 

All three lookup methods are, however, consistently one or 
two orders of magnitude faster (~ 6 – 48 milliseconds) than 
the ML model (~173 – 200 milliseconds). Thus, our results 
suggest that the three lookup methods can provide an efficient 
solution for simpler match types (discussed in the last 
paragraph) where they are likely to find consistent and 
identical search result for a given user entry.  

The use of three separate lookup methods reduces the 
possibility of “false positives” (false matches), and provides a 
higher degree of confidence on each match. However, in the 
event that identical matching results are obtained consistently 
across all three lookup methods for a given user entry, the user 
may optionally accept the final result from this lookup stage 
and forego the use of ML models in the next stage (Stage III; 
as discussed in section 2). Thus, the lookup stage can 
potentially limit the use of the computationally more 
expensive ML model to only those cases when either no 
matches are found at the lookup stage (Stage II) or search 
results are not consistent among the three lookup methods. 
Depending on the need and preference of the user, our 
solution provides options to search each method sequentially 
one after the other, or run them all concurrently.  

As noted, the ML model seems most suitable in cases 
where the preliminary lookup methods fail to return matches 
due to multiple ambiguities. For example, the last sample in 
Table 2 includes minor ambiguities in all the address fields 
(dictionary: “1 MOBILE LIMITED, 30 CILTY ROAD, 
LONDON, UK” versus user entry: “1 mobil lim, 30 city rd, 
lon, uk”). In this case, all three preliminary lookup methods 
fail to find a match, whereas the ML model successfully 
returns a match between the user input and the dictionary 
entry. Also, the ML model yields overall high values of 
precision and recall (0.89 and 0.94, respectively) noted over a 
large number of searches. These high values (~90%) indicate 
that our ML predictions yield only a limited number of false 
positives (high precision), while the searches via ML are still 
very sensitive to all potential matches (high recall). Combined, 
these results suggest that the Dedupe ML model can provide a 
reliable solution to the address entity problem.  

As noted, the use of the ML model, albeit computationally 
more expensive, becomes an essential part of our overall 
solution. It is particularly vital in cases where multiple 
ambiguities exist in user entries. Because it is virtually 
impossible to anticipate all possible ambiguities and 
misspellings in each address that a user may enter, it is 
impractical to prepare an exhaustive set of rules a priori in 
order to account for all likely match scenarios. Accordingly, 

the use of the ML model is critical in our overall solution of 
supervised learning method via Dedupe (Fig. 2). This is 
because the ML model does not require rule-based pattern 
matching via, for example, regular expression. The model can 
learn from the labeled training data and detect the patterns for 
matching that can be applied on new user entries. Furthermore, 
as additional marginal cases of ambiguities are encountered 
over time, they can be appended to the existing training dataset, 
and the ML model can be retrained with the revised dataset in 
an attempt to improve the accuracy in model predictions. 

IV. CONCLUSIONS 

     We have explored the efficacy of a variety of fast 
lookup methods and ML model solutions in entity resolution of 
postal addresses. Our experimental results suggest that the 
simple and perhaps most common user errors in entering 
mailing addresses can be rectified via a variety of preliminary 
lookup methods. These methods in our solution involve the use 
of fast index-based search and dictionary annotation via several 
Python software packages (PySolr, SoDA and Record Linkage). 
Most common user errors are detected extremely fast at this 
stage (elapsed time ~6 – 48 milliseconds). For the ML model 
using Dedupe, however, the elapsed times for searches are 
orders of magnitude higher (~ 174–201 milliseconds) across all 
match types. Nevertheless, the use of the ML model seems 
most suitable in detecting more complex match types where 
multiple ambiguities exist in user entries. The ML model yields 
consistently high values of precision and recall (0.89 and 0.94, 
respectively), suggesting its potential use in address entity 
resolution problems. 

Depending on specific use cases, the proportions of false 
positives and false negatives in the lookups and ML model 
results may have diverging implications for their use in entity 
resolution problems involving monetary transactions.  
Accordingly, our choice of different methods in both lookup 
and ML models reflects an optimum balance among speed, 
accuracy and caution. Further, all of the four methods (three 
lookup and one ML methods) employed in our solution can be 
customized based on specific user data and requirements for 
address matches.  

Our comprehensive solution is applicable to any entity 
resolution problems in any area of business where the 
matching of records among multiple datasets is desired. This 
flexible yet advanced solution is scalable, easy to integrate 
with other enterprise applications, and it can potentially 
reduce transaction processing times significantly. 

 Finally, as more real data of user entries are collected over 
time, the precision and recall of the ML model are expected to 
further improve. Also, our additional experimental work is 
currently underway that involves use of additional ML models 
and deep learning (DL) models in order to include more 
complex match types and leverage a majority voting algorithm 
to minimize any bias within the ML or DL models. 

Disclaimer 

The views articulated in this paper are personal to the authors 
and do not represent the views of their employers or any other 
organization. 
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