
EasyChair Preprint
№ 11229

Adaptation of the Jena Framework for Fuzzy
Reasoning in the Semantic Web Expert System

Olegs Verhodubs

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 2, 2023

1

Adaptation of the Jena Framework for Fuzzy

Reasoning in the Semantic Web Expert System

Olegs Verhodubs

oleg.verhodub@inbox.lv

Abstract— The main purpose of this paper is to present a way

to adapt the Jena framework for fuzzy inference. This is

necessary, because the Jena framework has no built-in way to

infer using fuzzy values. The Jena framework with the ability of

fuzzy inference implies as part of a Semantic Web Expert

System, which is being designed to use OWL (Web Ontology

Language) ontologies from the Web, to generate rules from these

ontologies and to supplement or even to develop its knowledge

base in automatic mode. Available publications show that the

problem of the Jena framework adaptation for fuzzy inference is

not investigated deeply enough.

Keywords— Semantic Reasoner, Fuzzy Reasoning, Fuzzy Jena,

Semantic Web, Expert Systems

I. INTRODUCTION

Nowadays the Semantic Web technologies give new

impetus to the development of the Web. This impetus was

mainly based on the use of semantics and was prepared by

technological development of the Web during the last few

decades, when the users of the Web were provided with access

to far more information than could be comprehended or

managed effectively [1].

Semantics as a base of the Semantic Web is expressed in
ontologies. Ontologies are defined as explicit and formal

specifications of a conceptualization of a domain of interest

[2] and consist of concepts (or classes), relations, instances

and axioms. The use of ontologies has a lot of advantages. For

example, ontologies enable to organize and to find information

based on meaning, not just text. In addition, the use of

ontologies improves the presentation of information, and it

means that results can be clustered by meaning, but not in

linear way. The use of ontologies can also make the task of

information integration doable. Early work in different

countries on defining ontology languages have led to the
development of OWL (Web Ontology Language) by the W3C

(World Wide Web Consortium). OWL builds on the RDF

(Resource Description Framework), which is a data modeling

language based on triples: subject, predicate and object [1]. In

fact, OWL has three species: OWL Lite, OWL DL and OWL

Full. OWL Full is a superset of OWL DL, and OWL DL is a

superset of OWL Lite.

The number of OWL ontologies located in the Web is

large, what can be verified using Watson Semantic Web

Search (watson.kmi.open.ac.uk). Moreover, interest in the

representation of information in the form of OWL ontologies

is not waning. The development of the second version of

OWL namely OWL 2 [3] and a lot of conferences, which were

dedicated to the Semantic Web and the Semantic Web

technologies, where OWL was a cornerstone of numerous

researches, came upon the idea of using OWL ontologies in

the subarea of artificial intelligence known as expert systems.

In this context, ontologies are seen as a widening resource that
cannot be unused. The research of OWL ontology

transformation to rules [4] became a key research and allowed

to formulate the final goal that is to develop a Semantic Web

Expert System (SWES), which will be capable to use OWL

ontologies from the Web, to extract rules from these

ontologies and to supplement its knowledge base with the

extracted rules in automatic mode [5]. To achieve the final

goal of research and to develop SWES it is necessary to solve

several tasks. The main purpose of this paper is the

presentation of the way to adapt the Jena framework for fuzzy

inference. This is necessary, because the Jena framework has

no built-in way to infer using fuzzy values, but this ability is a
backbone since the SWES is aimed to work with fuzzy rules.

Analysis of the available sources reveals that the problem is

not solved either for SWES, or to any other system.
This paper is structured as follows. Section 2 describes the

reasons for the need of fuzzy Jena namely why it is necessary
to adapt the Jena framework for fuzzy inference and also
reflects the requirements for fuzzy Jena. Section 3 represents
the proposed realization of fuzzy Jena. And finally some
conclusions are outlined.

II. REQUIREMENTS FOR FUZZY JENA

The Web is an environment, filled with a lot of

information, produced by different people for different

purposes. In this connection it is logical that diversity of

information producers and their purposes do not allow treating

the information in the same way in the sense of belonging to a

particular subject area. Errors and human factor only

exacerbate the problem. Hence SWES as an expert system,

which is keen to work with the Web sources, has to dispose
the mechanism to cope with uncertainty in the Web. Despite

the fact that expert systems are quite new field of artificial

intelligence, there are several ways to manage this uncertainty.

Here they are [6]:

 Conditional probability,

 Trust coefficients,

 Fuzzy sets and fuzzy logic,

 Possibility theory.

2

Fuzzy sets and fuzzy logic have such advantages over

other methods as scientific validity, efficiency in

implementation, and also the fact that they have many

previous examples of successful use. That is why fuzzy sets

and fuzzy logic are chosen for realization in the SWES. Fuzzy
sets are helpful in the formation of resource base for rule

generation that is in the process of ontology merging [7]. Thus

as a result of merging process the single ontology is obtained,

where all necessary for rule generation ontology elements

have fuzzy values. Fuzzy values of ontology elements give an

opportunity to generate fuzzy rules [7], and this is a serious

problem. The fact is that the Jena framework, which is chosen

for use in SWES, does not allow inferring using fuzzy rules. It

is possible that one of the main reasons of this is the lack of an

official standard for displaying fuzzy ontology. Despite the

lack of fuzzy inference, the Jena framework is chosen due to a

number of advantages as type of licensing, good reputation of
developer, availability of detailed documentation, focus on

Java programming language, presence of ontology consistency

checking function, having multifunction capabilities of

reasoning on OWL ontologies, availability of rule support and

reasoning on these rules, and also having storage subsystem

[8]. Plenty of advantages and only one severe disadvantage

drive at the idea of adaptation of the Jena framework to fuzzy

inference. To implement this idea, it is necessary to work out

requirements for the Jena framework with the function of

fuzzy inference (Fuzzy Jena).
In general, the flow of information within the SWES can be

represented as follows (Fig. 1.):

Each element of the SWES information flow has to be
adapted for fuzzy inference. As can be seen, the first element is
ontology (Fig. 1), and it refers to the OWL ontology here. The
specification of OWL has several advantages, but its main
disadvantage for fuzzy inference is in the impossibility of
storage for fuzzy values by means of specially designed for this

purpose constructs. Certainly, there are some attempts to
extend the OWL specification in the direction of fuzziness (for
example, [9]), but these attempts are not official and hence the
extentions cannot be used without problems because of lack of
continuity. One more problem, which is associated with OWL
use for storage of fuzzy values, refers to the implementation of
the SWES. The task of OWL ontology transformation to rules
or it is better to say to the concept map [11], where rules are
coded in abstract IF…THEN form, is realized in such a way
that each property, class or relation influences the condition or
result part of any rule. Therefore it is not possible to set fuzzy
values by means of these ontology elements without loss of
meaning. It is necessary such a way to set fuzzy values, at
which fuzzy values will be kept separate from the main
elements of OWL ontology. This problem is partly solved in
the research of ontology merging for the SWES, where values
of membership functions, obtained in the process of ontology
merging, are stored in OWL ontology comments [7]. One of
the complexity of this manner is an objective limitation of
OWL ontology means of expression, which do not allow to
assign comments to relations or in other words to object
properties in terms of OWL specification [12]. Of course,
coding fuzzy values in OWL ontology, it is necessary to
remember that these fuzzy values have to be able to be read by
the Jena framework. The second element of the SWES
information flow is a set of rules (Fig.1.). The Jena framework
supports the inference based on rules in a specific format of the
Jena framework [8]. The main requirement for rules in the Jena
framework is the ability to infer the result with a degree,
expressed by a real number. Of course, it is also necessary to
have an ability to store and to extract the result of inference,
but this requirement refers mostly to the last element of the
SWES information flow that is to the new generated facts (Fig.
1.). One more important task is to combine the capabilities of
the OWL specification, the capabilities of the Jena framework
regarding rules and inference and the capabilities of organizing
new facts, which are generated by the Jena framework.

III. REALIZATION OF FUZZY JENA

The structure of any system is decisive for its functioning

that is why it is necessary to overview the structure of the

SWES before adapting the Jena framework to fuzzy inference.

SWES is designed as an expert system, and it means that its

structure is similar to the structure of any other expert system

[5]. Therefore there is no need to repeat and to consider the
whole structure of the Semantic Web Expert System here.

However the SWES knowledge base has to be examined in

more detail, because it is the most closely associated with an

inference engine SWES part and, therefore, it strongly

influences the overall process of inferring.

Let us remind that the knowledge base of the Semantic

Web Expert System receives OWL ontologies from the Web

by means of searching them according to a user’s request.

Further these OWL ontologies are stored in the OWL

repository. After that the stored OWL ontologies from the

OWL repository are merged into a single OWL ontology, and
it is placed in the appropriate repository for the merged

ontology. Then this merged ontology is transformed to rules in

abstract form. These rules are stored in the appropriate

Fig. 1. The flow of information in SWES.

New Facts

Ontology

Rules

generating

inferring

3

repository named as the concept map. After that the rules from

the concept map are transformed to the rules in the format of

the Jena framework; the Jena rules are stored in the

appropriate repository, too. Finally the rules in the format of

the Jena framework are supplied to the inference engine [7].
Thus, it is possible to conclude that the knowledge base of

the SWES is divided into several storages. These storages are

the following:

 Storage for OWL ontologies (OWL Repository),

 Storage for merged ontology,

 Storage for concept map,

 Storage for Jena rules.

So, the structure of the SWES knowledge base, described in the
previous paper [7] looks like as follows (Fig.2.):

At first glance, the SWES knowledge base, which is shown

in Fig. 2, seems to be exhaustive, but it is not the case. Indeed,

it is expected that in the process of inferring new facts will be
produced, and this will be the main profit of the Semantic

Web Expert System. However it can be noticed that there is no

explicit storage for placing produced new facts in the SWES

knowledge base (Fig.2.). Furthermore, there is no explicit

storage for placing the facts, which are obtained from a user,

whereupon the SWES starts. On this basis, it is possible to

suppose that the structure of the SWES knowledge base

requires some changes. These changes should be directed

towards the separation of the knowledge base into two areas of

TBox and ABox in terms of description logic terminology,

where the TBox contains the axioms defining the classes and
relations in an ontology, while the ABox contains the

assertions about the individuals in the domain [12]. So,

considering this fact, the SWES knowledge base can be

represented as follows (arrows “From the Web” and “To

inference engine” are not displayed because of place

constraints):

In Fig.3, it can be seen that there is only one storage for
placing facts. This applies to the facts, which are entered by a

user and the facts, which are produced by the SWES inference

engine. This provides a logical data integrity of the SWES

knowledge base and the convenience of their technological

use by the SWES inference engine. There is no need to

describe the structures of the SWES knowledge base TBox

area storages in details (Fig.3.), because they are described in

the previous papers [7] [10]. In turn, talking about facts, which

are stored in the specially designed storage, it is necessary to

clarify that they are expressed in terms of RDF (Resource

Description Framework).

Ontology is a key resource for the functioning of the
SWES, because ontology is a source of knowledge for the

SWES knowledge base. Before extracting knowledge from

OWL ontologies, the SWES user prints the request, based on

which the corresponding ontologies are searched in the Web

and are supplied to OWL repository, which is part of the

SWES knowledge base (Fig. 3.). After that found OWL

ontologies, which are situated in the OWL repository, are

retrieved and are merged into one OWL ontology. This

merged OWL ontology is stored in a specially designated

place of the knowledge base (Fig. 3) and serves as a source for

rule generation. SWES is in need of fuzzy rules, and for this
purpose it is necessary to store fuzzy values. It is logical to

utilize OWL auxiliary means as comments, but this manner

has some limitations what is mentioned in the previous

section. The main limitation of storing fuzzy values in the

comments of OWL ontology is that comments can be assigned

only to the following OWL elements [11]:

 Classes,

 Properties,

 Individuals,

 Ontology headers.

OWL ontology elements, which cannot have comments,

but they should have them for fuzzy rule generation, are the

following [4] [7]:

 SubClassOf (partOf relation),

 EquivalentClass (equivalentOf relation),

 ComplementOf,

 ObjectProperty.

Knowledge base

OWL

Repository

Merged

Ontology

Concept

Map
Jena Rules

From the Web To Inference Engine

Fig. 2. SWES knowledge base.

Fig. 3. Detailed structure of SWES knowledge base.

Knowledge base

Facts

OWL

Repository

Merged

Ontology

Concept

Map
Jena Rules

TBOX ABOX

4

One of the principal features, which make it possible to
eliminate the restriction of commenting the mentioned above
OWL elements, is the ability to assign several comments to one
OWL ontology element. By choosing a central element, which
allows having comments, it is possible to develop a system of
notation for the fuzzy values of the other elements of the OWL
ontology. Certainly, classes are the most reasonable OWL
ontology elements for this purpose among classes, properties,
individuals and ontology headers, because classes satisfy by
their level of abstraction and also by convenience in practical
use, as will be shown hereinafter. Consider a class that has a
few fuzzy relations (Fig. 4).

In Fig. 4, the class “House” and “liveIn”, “partOf”,

“complementOf”, “equivalentOf” relations are presented. The

mentioned relations have corresponding fuzzy values of

membership function and can be divided into two groups:
group of incoming relations as “liveIn”, “complementOf”

relations and group of outgoing relations as “partOf” and

“equivalentOf” relations. There is a significant difference

between incoming and outgoing relations. A class is a subject

for outgoing relations, and it is an object for incoming

relations. Using the example in Fig. 4, the class “House” is a

subject for “partOf” and “equivalentOf” relations, while the

same class is an object for “liveIn” and “complementOf”

relations. The class affects neighboring classes by its outgoing

relations, when it is a subject, and it is affected by other

classes by dint of incoming relations, when it is an object. In
this regard, it is possible to be assumed that outgoing relations

in some way belong to the class and therefore only the values

of membership functions of outgoing relations have to be

stored in the comments of this class. It should be added that

the values of membership functions of incoming relations

have to be stored in the comments of the classes, which are the

subjects for these relations. The assumption of incoming and

outgoing relation division and their values of membership

function storing in different places is a fundamental moment

that gives an opportunity to develop strict storage system in

order to store fuzzy values of membership functions for those

OWL elements, which cannot have comments. Before
describing the coding system of values of membership

functions in the comments of classes, it is important to note

that one comment is used for coding of the value of

membership function of only one relation. Such a comment

should have information about the type of relation, effect

recipient that is the class, to which relation is connected and

the actual value of the membership function. Comma can
serve as a separator between the type of relation, effect

recipient and the value of membership function. So, the format

of a comment looks like as follows:

(<type of relation>,<effect recipient>,<value>).

There are only four types of relations, which have to be
commented in such a way. These types of relations must have
their own acronyms to be able to distinguish them. Table I
contains the types of relations.

TABLE I. TYPES OF RELATIONS

Nr
OWL element

Type of

relation
Clarification

1 subClassOf partof
part_of relation between

classes

2 equivalentClass equivalentof classes are equivalent

3 complementOf not classes are complement

4 ObjectProperty link
arbitrary relation between

classes

For example, if there are “House” and “City” classes, and

the “House” class is a subclass of the “City” class, and the

part_of relation between these classes has the value of

membership function, which equals 0.75, then the comment

will look like as follows:

“partof,City,0.75”.

In pursuance of the SWES information flow, which is

shown in Fig. 1, rules and facts have to be adjusted for fuzzy

inference after ontology. Rules and facts (entered by a user

and produced by an inference engine) are closely linked with
each other, and this means that change in one result in a

change of the other. The Jena framework has an inference

subsystem, which is designed to allow a range of inference

engines or reasoners. There are a number of predefined

reasoners [13]:

 Transitive reasoner;

 RDFS reasoner;

 OWL reasoner

 General purpose rule engine.

The transitive reasoner provides support for storing and
traversing class and property lattices. The RDFS reasoner
implements a configurable subset of the RDFS entailments.
The OWL reasoner includes a default OWL reasoner and two
smaller/faster configurations. Each of the configurations is
intended to be a sound implementation of a subset of OWL
Full semantics but none of them is complete in the technical
sense. The general purpose rule reasoner supports user defined
rules. It provides forward chaining, backward chaining and a
hybrid execution model. Comparing the existing Jena
reasoners, it is possible to conclude that the general purpose
rule reasoner is the most suitable reasoner for use in the SWES,
because it gives an opportunity to use custom rules what is vital

House

partOf

0.75

equivalentOf

0.5

complementOf

0.9

liveIn

0.25

Fig. 4. Example of class with four relations.

5

for SWES functioning. The Jena rule syntax in abstract form
looks like as follows [13]:

[DescriptionOrNameOfRule:

(condition to be met)

(another condition)

->

(fact to assert)

(another fact to assert)]

As it is clear from the Jena rule syntax the main profit

from the application of rule is a new fact to be asserted if

certain conditions are met. The ability of asserting or adding

of new facts is useful from the SWES point of view but this is

not enough for the realization of fuzzy reasoning. It is

necessary to have a mechanism for selectively triggering rules,

depending on the values of membership functions that is if

these values are greater than certain value, then the rule is
executed. There can help procedural primitives of the Jena

inference subsystem [13]. The procedural primitives can be

called by the rules, and they can optionally be used in the rule

body, the rule head or both. But if the procedural primitives

are used in the rule body then the primitive can act as a test - if

it returns false the rule will not match. Primitives using in the

rule head are only used for their side effects [13]. There are a

lot of standard procedural primitives [13], but only several of

them are necessary for fuzzy inference. In this connection

Table 2 shows the procedural primitives of the Jena that may

be needed to implement the fuzzy inference.

TABLE II. NEEDED PRIMITIVES.

Nr Primitive Operation

1 le(?x, ?y) Test if x <= y

2 ge(?x, ?y) Test if x >= y

3 sum(?a, ?b, ?c) Sets c to be (a+b)

4 product(?a, ?b, ?c) Sets c to be (a*b)

5 quotient(?a, ?b, ?c) Sets c to be (a/b)

As to the facts, produced by an inference engine, they do

not have to store the values of membership functions in the

same format as it is described for OWL ontology elements,

and the same applies to the facts specified by the user. The

facts specified by the user have to store an initial value of

membership function, but the facts, which are produced by an

inference engine, have to store calculated values of
membership functions.

It is necessary to describe in detail a working example of
Jena inference, adapted for fuzzy reasoning, in order to
understand the whole process from the beginning to end. Let us
assume that there is an ontology, which consists of 2 classes
“Car” and “Plane”. The “Car” class has two properties: engine
and wheel. The “Plane” class has two properties, too. They are
engine and wings as it is seen from Fig. 5.

In Fig. 5, it is seen that “Engine” property of the “Car” class
has the value of membership function, which equals to 0.8 and
“Wheel” property of the same class has the value of
membership function, which equals to 0.9. In turn, “Engine”
property of the “Plane” class has the value of membership
function, which equals to 0.6 and “Wings” property of the
same class has the value of membership function, which equals
to 0.9. Now, based on [4] and [7] it is possible to generate the
following rules:

IF Engine (0.8) AND Wheel (0.9) THEN Car (MIN[0.8,0.9]) (1)

IF Engine (0.6) AND Wings (0.9) THEN Plane (MIN[0.6,0.9]) (2)

The first rule means that if there is some object, which has a
property “Engine” with the value of membership function,
which is greater or equals to 0.8, and a property “Wheel” with
the value of membership function, which is greater or equals to
0.9, then this object is a “Car” with the value of membership
function, which equals to the minimum value of 0.8 and 0.9.
Similarly, the second rule is understood. Further the generated
rules have to be transformed to the rules in the format of the
Jena rule format to have an opportunity of reasoning on facts.
The rules in the format of the Jena format look like as follows:

@prefix rdf:http://www.w3.org/1999/02/22-rdf-

syntax

 syntax-nsyntax-ns#
@prefix ex: http://example.com/#

[Car: (?s rdf:type ex:Engine)

 (?s ex:fuzzy ?pw)

 ge(?pw,0.8)

 (?z rdf:type ex:Wheel)

 (?z ex:fuzzy ?px)

 ge(?px,0.9)

 min(?pw,?px,?u)

 strConcat('Car',' ','vmf=',?u,?a)

 ->

 (ex:NF rdfs:Comment ?a)

]

[Plan

e:

(?r rdf:type ex:Engine)

 (?r ex:fuzzy ?w)

 ge(?w,0.6)

 (?y rdf:type ex:Wings)

 (?y ex:fuzzy ?x)

 ge(?x,0.9)

 min(?w,?x,?t)

 strConcat('Plane',' ','vmf=',?t,?b)

 ->

 (ex:NF rdfs:Comment ?b)

]

Now let us suppose that the user typed into the search bar
of an expert system the following data with the values of
membership functions (Fig. 6):

Car

Engine 0.8

Wheel 0.9

Plane

Engine 0.6

Wings 0.9

Fig. 5. Ontology of two classes.

engine (0.85) wheel (0.9) wings (0.1)

Fig. 6. The request of the user to an expert system.

6

After receiving a user’s request, the expert system constructs a
data file, which has RDF format. The Jena utilizes the general
purpose rule engine for this data file and obtains the result. The
necessary result is concentrated in some class as a comment. In
our case the needed result of reasoning is the following:

“Car vmf=0.85”.

Analyzing the result, it should be noticed that “Car” is an
inferred assertion and “vmf=0.85” is the value of membership
function, which equals to 0.85. It is expected that new rules
will produce new facts, which will be placed in the same class
in the form of a comment. This manner of new fact placing
allows accessing the new facts only that greatly simplifies the
output results to the user.

IV. CONCLUSION

This paper is dedicated to the problem of adaptation of the

Jena framework for fuzzy reasoning. Such an adaptation is

necessary in order to have an opportunity to integrate the Jena
framework with the Semantic Web Expert System. The Jena

framework, which is adapted for fuzzy reasoning, is aimed at

reasoning the fuzzy rules, which are generated in the process

of OWL ontology merging [7].

In the paper the requirements for the purpose of the Jena

adaptation for fuzzy reasoning in the Semantic Web Expert

System are worked out. The flow of information in SWES,

which runs from the OWL ontology to the new facts through

rules, is presented and then the requirements for each part of

this flow are defined. After that, the realization of the Jena,

adapted for fuzzy reasoning, is described. In the process of

this realization the SWES knowledge base is supplemented by
new storage for placing facts. The system of values of

membership functions storing in OWL ontology was also

developed. The Jena framework has a powerful inference

subsystem, which is expressed as a set of several standard

reasoners. These reasoners were overviewed, and one of them

was soundly selected. And finally, the working example of the

Jena framework, which is adapted for fuzzy reasoning, was

described.
The task of adaptation of the Jena framework for fuzzy

reasoning is necessary for implementation in the Semantic Web
Expert System; however such an adapted reasoning system can
be useful in other projects, where fuzzy reasoning is necessary
and where the Jena framework is chosen. Certainly, it will be
valid as long as the Jena developers do not work out the built-
in ability of fuzzy reasoning.

REFERENCES

[1] J. Davis, R. Studer, P. Warren, “Semantic Web Technologies Trends and
Research in On-tology-based Systems,” John Wiley & Sons Ltd,

Chichester, 2006

[2] T. R. Gruber, “A translation approach to portable ontologies,”

Knowledge Acquisition, 5(2):199-220, 1993

[3] W3C OWL Working Group, “OWL2 Web Ontology Language

Document Overview (Second Edition),” Available online:

http://www.w3.org/TR/owl2-overview/

[4] O. Verhodubs, J. Grundspeņķis, “Evolution of Ontology Potential for

Generation of Rules,” Proceedings of the 2nd International Conference

on Web Intelligence, Mining and Semantics, Craiova, 2012

[5] O. Verhodubs, J. Grundspeņķis, “Towards the Semantic Web Expert

System,” RTU Press, Riga, 2011

[6] P. Jackson, “Introduction to Expert Systems, Third Edition,” Addison-

Wesley, 1998

[7] O. Verhodubs, J. Grundspenkis, “Ontology merging in the context of a

Semantic Web Expert System,” Springer, Saint-Petersburg, 2013

[8] O. Verhodubs, J. Grundspenkis, “Comparison of ontology reasoning

systems for SWES,” in proceedings

[9] F. Bobillo, U. Straccia, “Fuzzy Ontology Representation using OWL 2,”
International Journal of Approximate Reasoning, vol. 52, pp. 1073–

1094, 2011

[10] O. Verhodubs, J. Grundspenkis, “Algorithm of ontology transformation

to rules,” Riga : RTU Press, 2013

[11] W3C, “OWL Web Ontology Language Reference,” Available online:

http://www.w3.org/TR/owl-ref/

[12] Apache Software Foundation, “Jena API – Common ontology

application problems,” Available online:

http://jena.sourceforge.net/ontology/common-problems.html

[13] Apache Software Foundation, “Reasoners and rule engines: Jena

inference support,” Available online:

http://jena.apache.org/documentation/inference/index.html

http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl-ref/
http://jena.sourceforge.net/ontology/common-problems.html
http://jena.apache.org/documentation/inference/index.html

