
EasyChair Preprint
№ 8616

Undergraduate Logic Teaching in Computing:
Why, What, How?

Roger Villemaire

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 8, 2022



Undergraduate Logic Teaching in Computing:

Why, What, How?

Roger Villemaire

May 27, 2022

Abstract

Logic lies at the heart of computing, but its presence is somewhat

dimming. This is particularly striking at the undergraduate level, where

far too little logic training is done. This paper examines this regrettable

state of a�airs, considering what is actually taught, what should be taught,

and how logic must be taught at computing undergraduates.

1 Introduction

Logic is with Mathematics and Engineering a founding discipline of Computing.
While many methods and concepts from logic are to be found in computing
�elds, such as, compiler design, arti�cial intelligence, programming languages,
computer organization and architecture, and theoretical computer science, the
signi�cance of logic in computing is somewhat fading away. However, our �eld
has continued to progress, consistently producing new results and methods.
Furthermore, while the theoretical computer science logic community is still
thriving, the computing logic community has grown tremendously, shifting the
center of gravity toward applications.

Unfortunately, there is too little awareness of these striking logic-based ap-
plications in the general computing community. Furthermore, the distinct lack
of logic teaching at the undergraduate level in computing programs moreover
strongly limits opportunities to make these advances more broadly known.

The objective of this paper is to summarize the current state of logic teaching
at the undergraduate level, re�ect on the central contributions of logic, and
propose a tentative undergraduate course in logic for computing programs.

Accordingly, Section 2 will recap current undergraduate logic teaching, tak-
ing the program at the author's institution as a representative example, and
Section 3 will highlight the mostly professional orientation of current under-
graduate computing degrees. Section 4 will then summarize what current logic
teaching is missing, and Section 5 will present a tentative course content. Fi-
nally, Section 6 concludes the paper.

1



2 Logic at the undergraduate level

There is quite a wide range of undergraduate degrees in computing. It hence
comes as no surprise that the Association for Computing Machinery (ACM), a
major association in the �eld, publishes curricula recommendations for Com-
puter Engineering, Computer Science, Information Systems, Information Tech-
nology, and Software Engineering1. However, apart from some computer science
programs, there is generally little logic teaching. In order to set the stage for the
following discussion on teaching of logic in undergraduate computing degrees,
this section presents the logic content in a representative computing undergrad-
uate degree that of the bachelor's in computer science and software engineering
(BIGL, by its French acronym) at my own institution 2.

The BIGL leads to a bachelor's degree in applied sciences (B.Sc.A.) and is
not an engineering degree. Graduates are therefore not automatically eligible
to join the Quebec Association of Professional Engineers 3 and are hence for-
bidden by law to claim to be software engineers. They can however present
themselves professionally as computer scientists working in software engineer-
ing. One should note that in the industry, engineers and computer scientists
work side by side and can ful�ll exactly the same tasks. For computing, there is
no provision in the law as to activities reserved to professional engineer as for,
for instance, in civil engineering.

Nevertheless, the BIGL has a strong emphasis on software engineering, and
di�ers mostly from similar degrees in engineering schools by the lack of science
courses such as multivariable calculus, di�erential equations, physics, and chem-
istry. Prospective students must however master univariable calculus and linear
algebra as taught in pre-university colleges, a usual requirement for computer
science degrees in Quebec.

With such an emphasis on software engineering and professional skills, it
will come as no surprise that logic content in our degree is scarce. Moreover,
the BIGL went through its last major revision in 2018 following the Curriculum
Guidelines for Undergraduate Degree Programs in Computer Science from the
ACM-IEEE Joint Task Force on Computing Curricula 2013 [5]. While these
guidelines o�er quite some �exibility, the program should nevertheless also be
similar to many other computer science degrees in North America.

As to the teaching of logic in the BIGL, this is mostly done in the Math-
ematics for Computer Science4 course. In that class students learn proposi-
tional calculus and �rst-order logic. They use truth-table to show equivalence
of propositional formulas and devise and verifying �rst-order properties on spe-
ci�c structures. First-order semantics is however informal. Proof methods, such
as induction, are also informally introduced and applied to speci�c examples.
This course also introduces basic notions about binary relations, which play a
signi�cant role in computer science logic and, accordingly, will be an entire part

1https://www.acm.org/education/curricula-recommendations
2https://etudier.uqam.ca/programme?code=7617
3https://www2.oiq.qc.ca
4INF1132 Mathématiques pour l'informatique

2

https://www.acm.org/education/curricula-recommendations
https://etudier.uqam.ca/programme?code=7617
https://www2.oiq.qc.ca


of the course proposed in Section 5.
Logic-based concepts are also present in some other compulsory courses. One

can mention here entity-association and relational models, or relational algebra
and SQL, in the Data Bases5 class. As we will later see in Section 5, I also
consider in this category the teaching of Uni�ed Modeling Language (UML)6

and Object Constraint Language (OCL)7 in the Software Engineering: analysis
and modeling8 class.

Rules, Horn clauses, resolution and some constraint processing appear in the
Functional and Logic Programming9 class. Finally, one can also mention the
compulsory Computer Architecture10 class that presents logic circuit and the
Algorithmic11 class which very brie�y introduces Turing machines, the halting
problem, P=NP and NP-completeness.

A single major optional course introduces some logic that of Arti�cial In-
telligence (AI)12. This course is worth mentioning since AI shares a close rela-
tionship with logic. Furthermore, this class being immensely popular, it also
largely shapes our students' views on logic. In this class students learn how to
represent a problem in �rst-order logic, transform a formula into Conjunctive
Normal Form (CNF), and proofs by uni�cation and resolution. While not nec-
essary presented as logic-based, this course also presents constraint processing,
with constraint propagation and backtracking search for a solution.

The Curriculum Guidelines for Undergraduate Degree Programs in Com-
puter Science of the Joint Task Force on Computing Curricula 2013 (CS2013)
[5] divides topics into Core-Tier1 that should be covered by all Computer Sci-
ence programs, Core-Tier-2 that should be at least mostly, if not completely,
covered, and Elective. It also clearly explains that Core-Tier1 and Core-Tier2
are not su�cient, and that any Computer Science program should cover many
of the Elective topics in signi�cant depth.

It is signi�cant that CS2013 only mentions Propositional logic and Predi-
cate logic as Core-Tier1 topics. As Core-Tier2 topics, it further mentions digital
Logic and propositional and predicate logic with resolution and theorem prov-
ing in the setting of Knowledge Representation and Reasoning, with resolution
limited to propositional logic. Finally, Elective topics contain Description log-
ics, Logic-based knowledge representations for Natural Language Processing,
Inductive logic programming (ILP), Logic Programming, formal speci�cation
(Z, �rst-order logic) in requirements Engineering, and assertion and analysis
languages (OCL, Java Modeling Language (JML), model-checking) in formal
software modeling and analysis.

5INF3080 Bases de données
6https://www.omg.org/spec/UML
7https://www.omg.org/spec/OCL
8INF5151 Génie logiciel: analyse et modélisation
9INF6120 Programmation fonctionnelle et logique

10INF4170 Architecture des ordinateurs
11INF5130 Algorithmique
12INF4230 Intelligence arti�cielle

3

https://www.omg.org/spec/UML
https://www.omg.org/spec/OCL


3 Professional purpose and career objectives at

the undergraduate level

Undergraduate degrees in computing, particularly that at my own university,
tend to be very professionally oriented. This is quite natural since computing
shapes modern society and computing professionals are in high demand. Ac-
cordingly, essentially all graduates go to industry where many interesting career
opportunities await them. Graduate students are also mostly international, a
fact clearly not limited to my own university [8]. In this setting, it is therefore
neither possible, nor appropriate, to teach at the undergraduate level in com-
puting mainly in preparation to graduate studies. This sets computing apart
from most scienti�c �elds and should impacts on how logic is presented to a
computing audience.

Teaching of logic must therefore adapt to this state of things and allows un-
dergraduates to gain skills that are meaningful in a professional setting. More-
over, even if very few undergraduates directly continue to the graduate level,
there is also the development of less conventional paths with former graduates
coming back later in their career to graduate school. In all cases, students could
better leverage logic-based methods both in industry and academia if they had
appropriate initial training at the undergraduate level.

4 What is then missing in the actual covering of

logic in undergraduate computing degrees?

As we saw in Section 2, little logic is actually covered in a typical undergraduate
computing degree. I claim that more logic teaching is essential, and this section
will present the fundamental aspects that should be considered in devising an
undergraduate logic class in computing.

4.1 What is logic?

In its most fundamental aspect, logic is the formal representation of thoughts
allowing their formal processing. It is a formal representation in the sense that it
introduces a language constructed in a systematic way that clearly distinguishes
what is, and what is not, a formula. It represents thoughts in the sense that one
can convey a point of view, a conception of some situation, by some formula.
Formal processing �rst allows a formula to be processed to yield an unequivocal,
unambiguous meaning that allows to settle con�icting interpretations. Secondly,
formal processing also allows to infer new, implicit, knowledge and compare
viewpoints in terms of their consequences.

As I already argued in the context of graduate courses in logic [9], logic is
all about modeling. This is obviously also the case at the undergraduate level.
However, at that level, it is particularly important to step back, thoroughly
presenting what modeling is all about.

4



4.2 Modeling

A model is a representation of some aspect of reality. A model is useful in that
it allows to reason about that speci�c aspect. Modeling is used everywhere in
computing, since computational systems tend to be complex, and expensive to
design, build, and debug. A model is furthermore useful in many ways. First as
a communication tool to convey some aspect of a design, and this even before
any code artifact is developed. But also, to help to analyze, and reason about
this aspect.

It is then of paramount importance to stress the fact that, in order to be
useful, a model will represent some aspect of interest, put clearly not everything
of interest! Indeed, in order to reason about an aspect of a system, one does
not need a description of the complete system. Not only will too many details
clutter the model and slow down its development, but it will also make reasoning
more di�cult.

There is also no such thing as the �right� model. Di�erent models can o�er
complementary views. The right question is to ask whether a model is useful,
for some objective. But here also, there can be many di�erent useful models,
and this should always be emphasized when students develop their own models.

What distinguished logic from other modeling methods is that it o�ers a
clearly de�ned modeling formalism, with a well-de�ned semantics and inference
methods. A clear semantics allows to settle disagreements on the meaning of
an expression. Well de�ned inference methods allow computational processing
in order to help reasoning.

But logic does not exist in a vacuum. It is therefore of paramount importance
to establish links with other concerns and sub�elds of computing.

4.3 Logic is about applications

It is important to stress the interactions of logic with other computing �elds,
such as, for instance, networks/communications, software engineering, databases,
hardware/computer systems organization, data science, and arti�cial intelli-
gence.

An undergraduate course in logic should present meaningful applications
that shows that logic is not an isolated or limited subject but an integral part of
computing with impact throughout the �eld. Plainly, this o�ers a takeaway for
the entire undergraduate course in logic. Indeed, what will students remember
after �nishing such a course? It is of paramount importance that students
acquire some skills that they can show and use. Applications also makes the
material more relevant and easier to relate to.

Within a curriculum, it is also central to establish links with other com-
puter subjects and courses. For instance, among the �rst applications of logic
in computer science is the formal veri�cation of communications protocols. In
a typical computing undergraduate degree, students are usually introduced to
communication protocols in a dedicated network course. Communications pro-
tocols allow numerous behavior that are di�cult to encompass, and students

5



will usually realize that assuring that a protocol is correct, can be somewhat
tricky. A logic class can bring these questions to the fore and show some simple,
but representative, examples of protocol veri�cation.

Similar veri�cation questions arise with hardware and computer systems. In
a more hardware-oriented degree one could look, for instance, into equivalence of
propositional formulas or present some cases of �nite state machines veri�cation.

Software engineering, where e�ective communication and analysis of soft-
ware systems is a central concern, also o�ers many opportunities. For instance,
the class diagrams of the Uni�ed Modeling Language (UML), a fundamental
standard of the Object Management Group (OMG)13 is an instance of (binary)
relational models that should be covered in an undergraduate logic class as
suggested in Section 5.

In relation to Databases, Codd's relational model o�ers a twofold opportu-
nity. First, that of emphasizing that relations, i.e., the DB tables, are not simply
a collection of tuples, but rather regroup under a meaningful name related at-
tributes. Secondly, �rst-order logic with its logical operators is the foundation of
relational algebra, and Structured Query Language (SQL) simply because these
operators are basic building blocks that one can combine in order to express
more complex notions, from simpler.

In Data Science one should not miss the opportunity to speak of the World
Wide Web Consortium (W3C)'s14 Resource Description Framework (RDF) where
the linking structure of subject-predicate-object triples represents information
in terms of binary relations. The Web Ontology Language (OWL), or more pre-
cisely Description Logic (DL), being a fragment of �rst-order logic could appear
naturally in a logic course, as done in Section 5.

As for Arti�cial Intelligence (AI), already many of the issues touched upon in
this section are of a knowledge representation nature, so one can simply extend
toward some more AI typical problems, such as games or planning. One should
however also mention Constraint Satisfaction Problems (CSP), with its relation
to SAT, as will be proposed in Section 5.

Section 5 will develop a tentative course along these lines. But before, let
us look at some common objections that hinder logic teaching in undergraduate
computing degrees.

4.4 Objections to logic

The logic community cannot do without taking note of an important skepticism
toward logic in computing, when not outright hostility. Logic education at the
undergraduate computing level is therefore not only a question of educating our
student but also of correcting many misconceptions among our colleagues!

In many minds logic is still strongly associate to theory. As teaching of theory
has declined, since modern computing degrees tend to emphasize professional
skills, in this mindset logic is considered of minor interest to computing which is

13https://www.omg.org/
14https://www.w3.org/

6

https://www.omg.org/
https://www.w3.org/


all about building systems. Indeed, logic plays a key role in theoretical computer
science, with important results and a vibrant community. The objective of logic
teaching at the undergraduate level is obviously not to downplay this role, nor to
object to theory-related logic courses that exists in some institution. However,
there is more to logic than simply theoretical results, and many of the applied
advancements of the �eld should �nd their place in undergraduate teaching. So,
it must be clearly stated that while logic plays a key role in theory, logic is not
only about theory and that it is relevant for the computing professions.

Another objection that arises often, particularly when working with col-
leagues in more applied �elds, such as networking or robotics, is that logic is far
too complex, and that it is way too di�cult for 'normal people' to understand
some formal statement let alone to write such a statement.

While this objection is natural, and that one must recognize that writing,
reading, and understanding formal logic statements can be challenging, there
are two important pitfalls at play. First, improper, or crude tools makes the
task even more di�cult. Computer scientists expect, and deserve, a nicer ex-
perience, more in line with modern software development environments. One
must be attentive to this aspect. Logic-based tools did indeed improve in the
last decades, even if there is still some progress to be made. One should there-
fore carefully choose the tools used in a undergraduate logic class. Secondly,
practitioners tend not to realize the similarity between writing code and logic
expressions. Yes, logic expressions are declarative and therefore not usually a
sequence of instructions. However, they represent conditions, and as such can be
decomposed in simpler expressions that will allow to manage devising complex
statements. In fact, the two aspects are strongly related. If logic-based tools
commonly presented a development environment allowing parameter passing
and decomposition into simpler expressions, it would be easier to leverage usual
software engineering practice and allow a much smoother transition from writ-
ing code to writing speci�cations. This barrier should not be underestimated,
as a robotician already told me � �everything is always simple for a logician� �
making him suspicious of the usability of any tool that could emerge from our
community.

Another often heard objection is that the fundamental problems of logic are
simply too complex. For instance, SAT is NP-complete, we therefore do not
expect a polynomial algorithm. Propositional logic being at the foundation of
most logics used in applications, this pretty much knockout the whole �eld!
However, this also come from a misunderstanding of what is at play here. At
the very basic computational level, while SAT is NP-complete, there has been
tremendous improvements in algorithmic design with the engineering of im-
pressively e�cient SAT-solvers. While this feat has been acknowledged by the
computing community, it has not completely undermined this line of argument.
Another not su�ciently recognized aspect is that NP-completeness can also be
interpreted as a sign that propositional logic is concise: a short formula can
express a complex constraint. A last aspect is that one refers here to worst-case
complexity. While average-case analysis is often heard of, e�cient SAT-solving
bring the analysis of typically encountered instances to the fore. SAT-solving

7



indeed yields quite unpredictable run time, which can be reasonable in many
typical applications.

However, there is also a more fundamental confusion at play here. The
SAT problem is a synthesis question: �nd values of variables that satis�es the
formula. This is a constraint satisfaction problem and cannot be expected to
generally be easy to solve. But one does not necessary start from scratch, and
one can indeed check a formula on a �nite structure in polynomial time simply
using the usual �rst-order semantics. One therefore need to clearly distinguish
the question of verifying the validity of a formula on some structure from that
of �nding a structure on which the formula is satis�ed.

Sadly, there is a misunderstanding of the nature of logic even in Arti�cial
Intelligence (AI), a �eld that has strong ties with logic. There is of course a
vibrant community of logicians in AI that have a very clear understanding of
what logic is about and what it can bring to AI. However, this is just a small
part of the AI community. Most AI researchers, while aware of logic as usually
presented in AI textbooks, tend to miss the point.

For instance, with the striking advances and successes of machine learning,
a whole generation of AI researchers often consider that logic, and more gen-
erally symbolic AI, is something of the past. In the mind of many, logic can
be reduced to Prolog, an in�uential symbolic AI programming language now
mostly replaced by conventional programming languages. Logic is hence seen
as somewhat outdated.

On a more fundamental level, particularly in AI textbooks, logic is often
reduced to IF/THEN rules and forward/backward chaining. Also, logic is often
reduced to �rst-order logic, since most other two-valued logics can be reduced
to it. However, this totally overlooks the question of devising the appropriate
logical formalism for a setting, a line of research that is indeed highly active
among AI logicians. Finally, the criticism that logic gives rise to ine�cient
technologies, is also often heard here also, in particular in relation to ontologies
and semantic web technologies.

The next section takes these objections in consideration and proposes a logic
course at the undergraduate level.

5 A tentative undergraduate �rst course in logic

This is all well and �ne, but what should then be taught in an undergradu-
ate logic course in computing? This section will propose such a course. The
proposed content is obviously in�uenced by the author's experience and inter-
ests. Arguably, there are many conceivable alternative contents. The objective
of this section is simply to put forward a possible content built around logic
applications connecting and creating links to other computing subjects.

In accordance with current undergraduate education delivery in computing,
this course proposes to develop skills in order to build logic-based models and
apply logical methods to computing problems. The objective is therefore not to
give a introduction to a broad selection of logic-based methods that could only

8



be further developed toward interesting applications in later courses. Indeed,
the vast majority of undergraduate students strive for a professional career and
this course ought to allow them to develop skills that they can use. Nevertheless
this course is also a starting point in applying logic-based method for those who
aim at more advanced studies in the applications of logics.

5.1 Propositional logic

This course is intended to come after a class similar to Mathematics for Com-
puter Science15 presented in Section 2. Students should therefore already have
some familiarity with propositional logic, truth-tables, and have written some
properties. This course would rapidly summarize this knowledge and then move
on to show how propositional logic can be e�ectively used as a modeling tool,
emphasizing links to other computing �elds, and outlining the fundamental
principles that makes these applications possible.

5.1.1 Modeling

From day one, it must be made clear that there are e�cient tools for processing
propositional formulas. The course should therefore start by introducing such
a tool so that students can readily install and run it on some simple examples.

While a direct use of a SAT-solver is conceivable, it would surely be more
convenient to rather use a Satis�ability Modulo Theories (SMT)[2] solver such as
Z3 16. This has many advantages. First, there are bindings for many program-
ming languages, for instance C, C++, Java, Haskell, OCaml, Python,17 allowing
an approach in line with other computing courses. Secondly, this makes it pos-
sible to seamlessly go beyond pure propositional solving, using the reductions
incorporated in the SMT solver. One can then process more complex data, such
as integer arithmetic, without having to delve into the details of an explicit
reduction to SAT. Both advantages come in handy particularly when devising
assignments. As this course is not conceived for an advance audience, a typical
assignment would nevertheless be to devise, implement, and use a SAT encoding
for some graph or game problem or the encoding of some �nite domain CSP.

In more ambitious settings, it is however entirely conceivable to devise an
assignment that requires a SMT reduction. One could then brie�y present the
key points of replacement of terms by Boolean variables and the use of a domain
solver, on some representative examples.

Alternatively, one could devise a more challenging assignment around the
propositional modeling of time, as is done in Bounded Model Checking (BMC) [3].
Without introducing temporal logic and delve into the speci�c of BMC, it is pos-
sible to devise an assignment around a simple communication protocol, in the
line of those presented in communications textbooks, or do a simple reachability
analysis for a simple program.

15INF1132 Mathématiques pour l'informatique
16https://github.com/Z3Prover
17https://en.wikipedia.org/wiki/Z3_Theorem_Prover

9

https://github.com/Z3Prover
https://en.wikipedia.org/wiki/Z3_Theorem_Prover


5.1.2 Reachout and links to other computing �elds

In order to show that logic is not an isolated subject and emphasize links to
other computing subjects, it should be mentioned that SAT-solving is a special
case of CSP, a whole sub�eld of AI. Furthermore, one could also mention that
propositional logic also plays a key role in knowledge representation, games,
and planning, in AI and also in formal veri�cation of hardware and software
systems.

When considering the time required to solve explicit SAT-instances, the re-
lation to NP-completeness, that students could see maybe only later in their
cursus, should be mentioned. Without getting into the formal de�nition, it can
at least be mentioned that we do not know whether or not there is a polynomial
time algorithm for SAT, and that most experts expect that there is none. Ac-
cordingly, all known algorithms are exponential in the worst case. An informal
discussion on worst, average, and typical case (for some application setting) in
relation to the run times encountered in class could prepare students for the
more advanced classes on these topics but also allow students to re�ect on their
own run time experiments in this class.

Connection to computer architecture could also be touched upon.

5.1.3 Principles

The course should stress the fact that SAT is a fundamental reasoning question
to which essentially all speci�c questions of a �nite nature can be reduced. It
should be also emphasized that this includes using SAT to check/validate the
model and infer new knowledge. This will surely arise naturally when modeling.

Indeed, one can check and validate a model with additional constraints that
check that some speci�c expected behavior is actually allowed by the model.
Otherwise, one will debug the model by removing constraints to locate which
parts prevent the expected behavior.

Furthermore, it is important to stress that logic is a general setting for
answering a broad class of questions. For instance, while one can solve puzzles,
such as Sudoku, one can also study any question expressible in this setting. One
can therefore ask whether an element of some set of digits is present in some
zone and analyze the game beyond �nding a solution. On a more general, but
related level, satis�ability solves most logical questions, such as equivalence of
formulas.

After some modeling, where errors, multiple formalizations, and ambigui-
ties will arise, it could be the right moment to show that while there can be
multiple non-equivalent but relevant models, the interpretation of a speci�c
propositional formula is unequivocal and unambiguous. It is important to give
the formal semantic, which is recursive, and simply implementable. One should
also emphasize the fact that the semantics e�ectively gives a single meaning to
a formula, no matter how complex.

As to the algorithms behind SAT solving, one should at least mention the
general inference and search principles applicable to any CSP. This yields, for

10



Conjunctive Normal Forms (CNF) the unit propagation and chronological back-
tracking DPLL algorithm [4].

Showing how to translate a propositional formula into CNF should also be
attainable. For the general principle, one can note that a formula is satis�ed
when the variables do not agree with any false truth-table line. This directly
yields a CNF, possibly of exponential size. This should generate interest in the
fact that there are however translations into an equi-satis�able CNF of linear
size. Tseitin's translation could be explained with new variables for the internal
nodes of the syntax tree and adding clauses ensuring a value compliant with
the connector's de�nition. However, this could also be left to more advanced
courses.

I do not expect that one could do much better than mention that modern
SAT solvers use more advanced methods to prune the search space. However,
in some places, if time permits, discussing some key principles of the Con�ict-
Driven Clause Learning (CDCL) algorithm [6] could be considered.

5.2 Description logic

One could expect the course to move from propositional to �rst-order logic. Yet,
keeping with the emphasis on applications, I rather propose to present descrip-
tion logic. Description logic, or logics, is a family of logics devised for knowledge
representation, in particular in relation with the semantic web. Technically,
these logics can be seen as extensions of (multi-) modal logics or as decidable
fragments of �rst-order logic. As we will see, this choice will not preclude the
presentation of fundamental facts about �rst-order logic.

5.2.1 Modeling

Keeping up with the principle of starting with a tool that students can use from
day one, I propose Protégé18 with the Hermit19 reasoner.

Protégé is a free and open-source editor with a sizable number of contributed
plug-ins for various reasoning and data processing tasks. This tool o�ers a nice
GUI allowing to de�ne concepts (unary relations) and roles (binary relation)
in a way reminiscent of UML class (and object) diagrams. Description logic
reasoning can be done by various plug-ins, such as Hermit. This setting works
pretty well for small to medium size descriptions or as a starting point in larger
cases that can then be better processed with the stand-alone version of the
reasoner.

Basically, on the technical level, description logics allows unary (concept) and
binary (role) relations, and guarded quanti�cations of the form ∀y(R(x, y)→ ϕ)
and ∃yR(x, y) ∧ ϕ. This part of the course should hence start with a recap on
binary relations: re�exivity, symmetry, transitivity, but above all composition.

Knowledge representation through binary relations with constraint on com-
positions of these binary relations occurs repeatedly in computing. However, it

18https://protege.stanford.edu/
19http://www.hermit-reasoner.com/

11

https://protege.stanford.edu/
http://www.hermit-reasoner.com/


is rarely explicitly addressed, emphasizing the meaning of speci�c compositions
to determine required inclusions between their images (ranges).

This can be addressed from the outset as this already occurs in such simple
textbook examples of students enrolled into classes. In that case, one can en-
force the constraint that a student is enrolled only in courses of its registered
program. On the diagram, this reduces to following two di�erent paths, to the
same destination. It is always surprising that many students tend to read the
diagram simply as access paths, overlooking that di�erent paths usually yield
di�erent relations. It is hence of paramount importance to allow students to
work with many representative diagrams, explicitly writing down the meaning
of compositions in natural language. This is the require �rst step in devising
image inclusion constraints.

Description logic also allows cardinality constraints similar to UML ranges
(k..l, k..∗). Incrementally introducing description logic constructs, one can de-
velop skills in writing, reading, and understanding these formal expressions.

From the starting point one must emphasizes that modeling is about eliciting
the crucial facts in the considered setting. This can be done in di�erent, possibly
non-equivalent ways, but clearly one should not overload a model with irrelevant
details. It should be made clear that modeling is about devising proper concepts
and relations in order to describe the system in a natural way. Students should
hence be invited to discuss and compare their models.

Now, as di�erent models are devises and compared, it will be natural to
introduce computational inference. The reasoner plays an integral part of the
tool, since it not only allows to infer implicit knowledge, but also to experiment
in order to understand limitations and shortcomings of the model. A pro�table
standpoint is to make the student aware that a model is always incomplete.
Furthermore, when some aspect of the system is missing in the model, the in-
ference engine clearly cannot conclude on this aspect. The pleasant thing about
the Protégé/Hermit environment is that one can add/remove description logic
constraints and experiment with what the reasoner can conclude. This helps
a lot, raising awareness of the knowledge actually encompassed by the model.
In practice it can be challenging to �gure out exactly what is encompassed by
our model. The tools help to �nd this out, enhancing our reasoning abilities by
turning our attention to relevant parts of our model.

5.2.2 Reachout and links to other computing �elds

The link to Software Engineering (SE) modeling, UML class and object diagram,
is pretty direct and natural to establish. In both cases, the underlying framework
is based on unary and binary relations. Furthermore, SE has a long tradition
establishing that writing down a description already helps to communicate and
analyze a design, independently from any tool or processing framework. Logic
adds inference of implicit knowledge.

Ontologies in the setting of the semantic web and W3C standards should ob-
viously be mentioned. From triple stores one can touch on relational Databases,
emphasizing that they, more generally, use n-ary relations. A brief discussion

12



of close world assumption and verifying within a structure, vs., open world and
reasoning on all structures, could be of interest. This would nicely contrast data
processing in databases vs. in the semantic web.

5.2.3 Principles

The course should address at least some elements on how inference engines
work. A detailed algorithmic description of inference in description logic is wide
beyond what should be expected here. It is nevertheless possible to give the key
elements and develop an understanding of the fundamental aspects at stake.

Tableaux methods[7] are quite e�ective with Description Logic [1]. Fur-
thermore, the basic tableau method can be presented quite concisely both for
propositional and �rst-order logic, by reducing to negative normal form (NNF).

The course should hence present the tableau method by �rst transforming a
formula into NNF, using de Morgan laws. Tableaux should be presented �rst in
the context of propositional logic, introducing all basic concepts: open branch,
closed tableau, and the fact that a tableau proof is a proof by refutation. This
allows to emphasize that the tableau steps correspond to the intended meaning
of the connectives. The proof of the completeness theorem is also attainable by
a case analysis. This could even be shown by an analysis of the di�erent cases
on representative examples. Termination is easily justi�ed since a formula is
decomposed at each step.

Tableaux for �rst-order logic and completeness can be done among the same
lines. Branches are somewhat more involved since an open branch de�nes a
model. The method can hence be presented on some �x language not to overload
the key points. Justi�cation of completeness can be done along the lines used
in the propositional case, obviously emphasizing that the construction won't
terminate and that the constructed structure will be in�nite, in general. One
can however have student work on examples where it does indeed terminate,
yielding a �nite counter-example. This will show that there are indeed cases
where this construction terminates.

Obviously, this is not the full story and tableaux methods for description
logic are indeed much more involved. However, I would not suggest more in
that direction in this course. Nevertheless, if time permits, one could show how
description logic is embeddable in �rst-order logic, by formula translation. But,
in any case, one should mention that tableaux methods are indeed extended
to description logic, and that in most cases (there are many description logics
variants) the algorithm terminates and yields a �nite counter-example. One can
then conclude the class by mentioning that for �rst-order logic in general, in�nite
structure are essential for completeness, i.e., that there is no completeness when
restricted to �nite structures.

13



6 Conclusion

In computing, research and practice areas are primarily de�ned by the intended
applications rather than by the methods used. While logic contributed and is
still contributing strongly to computing, it cannot ignore this fact. It is therefore
of paramount importance to strongly put forward the applications that have
emerged from our �eld.

However, as we have seen, there is truly little logic teaching in current com-
puting degrees. But, the development of computing, and especially the maturity
of many logic-based methods o�er a major opportunity to greatly extend logic
teaching in modern professionally-oriented computing degrees.

Logic is relevant and it is of paramount importance to convey that formal-
ization of thoughts and inference lead to many fruitful computing applications.
This brings modeling, a central activity in computing, to the fore, but in a
principled and sound way. This is indeed challenging and requires some e�orts.
However, this goal is totally attainable, and this, with an approach following
current teaching practices in undergraduate computing degrees. This is surely
also an ideal opportunity to counter unfortunate stereotypes around logic and
make important advanced in our �eld much better known, among our students
and colleagues.

Section 5 has proposed an undergraduate logic course around SAT and de-
scription logic. Arguably, this is not the only relevant possibility. However, this
proposal allows to build a course that put modeling to the fore and develop
hands-on skills with tools appropriate beyond the classroom. The presented
topics are also representative of advances of the last decades and are readily
applicable. As shown in that section, this choice of topics also allows to present
fundamental notions and principles and establish connections with other com-
puting �elds.

Establishing such a course is possibly an ambitious endeavor. This is however
a challenge that can, and should, be met by the logic community to further
disseminate logic knowledge and make the case of the contribution of our �eld
to computing.

References

[1] F. Baader, I. Horrocks, C. Lutz, and U. Sattler. An Introduction to Descrip-
tion Logic. Cambridge University Press, 2017.

[2] C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satis�ability mod-
ulo theories. In A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors,
Handbook of Satis�ability, volume 185 of Frontiers in Arti�cial Intelligence
and Applications, pages 825�885. IOS Press, 2009.

[3] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. Bounded
model checking. Advances in Computers, 58:118�149, 2003.

14



[4] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Communications of the ACM, 5(7):394�397, 1962.

[5] Joint Task Force on Computing Curricula, Association for Computing Ma-
chinery (ACM) and IEEE Computer Society. Computer Science Curricula
2013: Curriculum Guidelines for Undergraduate Degree Programs in Com-
puter Science. Association for Computing Machinery, New York, NY, USA,
2013.

[6] J. P. M. Silva, I. Lynce, and S. Malik. Con�ict-driven clause learning SAT
solvers. In A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors,
Handbook of Satis�ability, volume 185 of Frontiers in Arti�cial Intelligence
and Applications, pages 131�153. IOS Press, 2009.

[7] R. M. Smullyan. First-order logic, volume 43 of Ergebnisse der Mathematik
und ihrer Grenzgebiete. Springer-Verlag, Berlin, Heidelberg, and New York,
1968.

[8] M. Y. Vardi. Where have all the domestic graduate students gone? Com-
munications of the ACM, 63(9):5, Aug 2020.

[9] R. Villemaire. Logic modelling. In 4th International Conference on Tools for
Teaching Logic TTL 2015, volume abs/1507.03686 of CoRR. arXiv, 2015.

15


	Introduction
	Logic at the undergraduate level
	Professional purpose and career objectives at the undergraduate level
	What is then missing in the actual covering of logic in undergraduate computing degrees?
	What is logic?
	Modeling
	Logic is about applications
	Objections to logic

	A tentative undergraduate first course in logic
	Propositional logic
	Modeling
	Reachout and links to other computing fields
	Principles

	Description logic
	Modeling
	Reachout and links to other computing fields
	Principles


	Conclusion

