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Abstract

Type checking and, to a larger extent, type and term inference in programming lan-
guages and proof assistants can be implemented by means of unification. In the presence
of dependent types, variations of higher-order unification are often used, such as higher-
order pattern unification. In practice, there are several mechanisms for abstraction and
application, as well as other eliminators (such as projections from pairs) that have to be
accounted for in the implementation of higher-order unification for a particular language.
In this work, we study the possibility of representing various higher-order unification prob-
lems as a special case of E-unification for a second-order algebra of terms. This allows
us to present β-reduction rules for various application terms, and some other eliminators
as equations, and reformulate higher-order unification problems as E-unification problems
with second-order equations. We then present a procedure for deciding such problems, in-
troducing a second-order mutate rule (inspired by one-sided paramodulation) and generic
versions of the imitate and project rules. We also provide a prototype Haskell implemen-
tation for syntax-generic higher-order unification based on these ideas.

1 Introduction

Unification is often used as part of a type checking algorithm in programming languages and
proof assistants. Unification also drives proof search through term inference algorithms in proof
assistants and theorem provers.

In presence of dependent types, first-order unification becomes insufficient and variations
of higher-order unification [10, 11, 5] are implemented. Mazzoli and Abel [13] describe how
higher-order unification can be leveraged in a type checking algorithm for a dependently typed
language. In general, higher-order pre-unification [10] and full unification [11] are only semi-
decidable, and is rather expensive without non-trivial optimizations [16]. Instead, many depen-
dent type inference algorithms choose to consider only some subset of unification problems that
are sufficiently nice. For example, Miller’s higher-order pattern unification [14] and its varia-
tions [9, 17] are often used as they present a decidable subset and still offer some convenience
to the programmer, allowing them to omit some explicit type annotations.

In practice, many type theories offer several mechanisms for abstraction and application.
For example, System F offers separate λ-abstraction for types and terms. Some calculi dif-
ferentiate between call-by-name and call-by-value (e.g. λµµ̃-calculus and other sequent calculi
[2]). Cubical type systems [3] introduce abstraction (and application) over the variable of the
interval type I. Riehl and Shulman’s type theory with shapes [15] introduces extension types
with a separate abstraction and application.

Additionally, higher-order unification is often extended to support eliminators other than
function application. In particular, it is common to extend the pattern fragments to projections
(for products and Σ-types) [1, 9]. This allows one to solve constraints where one of the terms



Higher-order unification via E-unification Kudasov

is an application of a projection from a metavariable:

(π2 m1) x y
?
= ⟨y, x⟩ (1)

m1 7→ ⟨m2, λx1.λx2.⟨x2, x1⟩⟩ (2)

In this work, we attempt to reformulate these different higher-order unification problems
as a special case of a more general E-unification problem, and provide a single unification
procedure that can be parameterised by the syntactic constructions of the object language and
their evaluation rules.

Our approach is inspired by the one-sided paramodulation procedure [4, decomposition
procedure], a simple technique used for equational unification (E-unification), that is unifica-
tion of terms modulo a set E of first-order equalities. This technique assumes that E has a
corresponding convergent abstract rewrite system R, which typically suits application to type-
checking since reduction is typically provided for terms. We are most interested in the mutate
rule (also known as restructure rule [4] and lazy paramodulation [8]):

{F (e1, . . . , en)
?
= t} ∪ S =⇒ {e1

?
= l1, . . . , en

?
= ln, r

?
= t} ∪ S

when F (l1, . . . , ln) −→ r is a rewrite rule in R (mutate rule)

The rule says that if the root symbol of term s in equation s
?
= t matches with one of the

rewrite rules in R, we can decompose it into smaller equations using the rewrite rule.

Example 1.1. Consider the following rewrite rules:

first(pair(x, y)) −→ x (3)

second(pair(x, y)) −→ y (4)

Then, a constraint second(first(p))
?
= t can be solved by applying the mutate rule as follows:

{second(first(p)) ?
= t} (5)

=⇒ (mutate rule with second(pair(x, y)) −→ y)

{first(p) ?
= pair(x1, y1), t

?
= y1} (6)

=⇒ (mutate rule with first(pair(x, y)) −→ x)

{p ?
= pair(x2, y2), pair(x1, y1)

?
= x2, t

?
= y1} (7)

These constraints can then be handled further by simplification and decomposition rules.

To get solutions for higher-order unification problems by means of E-unification, we require
second-order equations. We will be using the second-order algebra of terms with parametrised
metavariables by Fiore and Mahmoud [7, 6]. For instance, we will have a second-order rewrite
rule corresponding to the β-reduction:

ap(lamx(m1[x]),m2[]) −→ m1[m2[]] (8)

The parametrised metavariables allow us to avoid explicit substitution in equations and
are also helpful in the adaptation of the traditional imitate and project rules used in higher-
order unification [10]. Those explicitly rely on “seeing” the bound variables and the head of a
λ-term, but this information may not be fully available when we consider any specific metavari-
able locally without an explicit assumption that we have λ-abstraction. With parametrised
metavariables, the project rule will select from a list of parameters of a metavariable instead.

Our expected contributions are as follows:
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1. We formulate a notion of an E2-unification problem (for a lack of a better name) for a
set E of second-order equations with parameterised metavariables. We also show how
higher-order unification can be seen as a special case of E2-unification.

2. We describe a basic non-deterministic pre-unification1 procedure for solving E2-unification
problems, with special versions of the mutate, imitate, and project rules.

3. We prove the pre-unification procedure to be complete and semi-decidable.

4. We present a prototype implementation of the syntax-generic higher-order unification
procedure in the Haskell programming language based on these ideas [12].

2 E2-unification problem

For the rest of this note, let M be a set of metavariable names. We start by formally introducing
second-order terms with fully applied metavariables:

Definition 2.1 (terms,equations,rewrite rules,substitution,metasubstitution). Let C be a set of
function symbols. The set TC(X) of second-order terms with fully applied metavariables
over the set X of (free) variables is defined recursively as follows:

1. x ∈ TC(X) when x ∈ X (x is a variable);

2. m[t1, . . . , tn] ∈ TC(X) when m ∈ M (m is a metavariable) and for each 1 ≤ i ≤ n we have
ti ∈ TC(X);

3. F (t1, . . . , tn) ∈ TC(X) when F ∈ C (F is a function symbol) and for each 1 ≤ i ≤ n
either ti ∈ TC(X) or ti = z.si (where si ∈ TC({z} ∪X)).

Equations m1[k1], . . . ,mn[kn] ⊢ t1 ≡ t2 and rewrite rules m1[k1], . . . ,mn[kn] ⊢ t1 −→ t2
are simply pairs of terms in the context of metavariables m1, . . . ,mn with arities k1, . . . , kn.
Given a term t ∈ TC(X), variables x, x1, . . . , xk ̸∈ X, and metavariable m ∈ M we define
substitution [x 7→ t] and metasubstitution [m[x1, . . . , xk] 7→ t] in the usual way [6, 7].

Definition 2.2 (constraint,E2-unification problem). Let E be a set of equations of second-order

terms with fully applied metavariables. Let t1, t2 be terms. Then c = ∀z1, . . . , zk.t1
?
= t2 is a

constraint. A tuple (C,E,Cs) where C is a set of function symbols, X is a set of variables, E is
a set of equations over TC(∅), Cs is a set of constraints over TC(X), is called an E2-unification
problem. A metavariable substitution σ is called a solution to the E2-unification problem
(C,E,Cs) if σCs contains only trivial constraints ∀zk.t1 = t2 where t1 = t2 modulo E.

Example 2.3 (untyped lambda calculus). For the untyped λ-calculus, we set Cλ = {ap, lam}.
Well-formed λ-terms will be a subset of TCλ

(X). Closed λ-terms will be a subset of TCλ
. We

set the equations Eλ corresponding to a single rewrite rule (β-reduction rule):

ap(lam(x.m1[]),m2[]) −→ m1[m2[]] (9)

Consider the following constraint:

ap(ap(m3[y], f), x)
?
= ap(ap(f, y), x) (10)

1pre-unification procedure solves rigid-rigid and flex-rigid constraints, but does not solve flex-flex constraints
(i.e. when terms on both sides are metavariables)
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The following metavariable substitution constitutes a solution:

[m3[z1] 7→ lam(z2.ap(z1, z2)])] (11)

Higher-order unification problem for untyped λ-calculus corresponds directly to the E2
λ-

unification problem for well-formed λ-terms.

3 The unification procedure

To solve E2-unification problems we propose a non-deterministic procedure specified by the
following rules. Each rule takes a set of constraints as input and maps it onto a new set of
constraints together with a (potentially empty) metavariable substitution.

3.1 Decomposition

The three rules below can be collectively described as decomposition rules, since they do not
introduce any metavariable substitutions and instead only remove or break down some of the
constraints.

Delete rule. This rule simply removes a constraint where both sides are equal:

S ⊎ {∀zk.t
?
= t} 7→ ⟨S, []⟩ (delete)

Simplify rule. This rule breaks down a constraint where both sides have the same function
symbol at the root:

S ⊎ {∀zk.F (tn)
?
= F (un)} 7→ ⟨S ⊎ {∀zk.t1

?
= u1, . . . ,∀zk.tn

?
= un}, []⟩ (simplify)

Technically, some of the subterms ti, ui can have the form x.si and y.vi (introducing scope).

In this case, the notation ∀zk. x.si
?
= y.vi is understood as ∀zk+1.[x 7→ zk+1]si

?
= [y 7→ zk+1]vi

(assuming zk+1 is fresh).
Mutate rule. This rule essentially aims to unify one of the terms in the constraint with

the left hand side of some rewrite rule:

S ⊎ {∀zk.F (tn)
?
= u} 7→ ⟨S ⊎ {∀zk.t1

?
= l′1, . . .∀zk.tn

?
= l′n,∀zk.r′

?
= u}, []⟩ (mutate)

when F (lk) −→ u is in R

In this rule, all parameters of the rewrite rule are enriched with extra parameters zk. For
example, in the rule π1(mkPair(m1[],m2[])) −→ m1[], we have l′1 = mkPair(m1[zk,m2[zk])] and
r′ = m1[zk].

3.2 Construction rules

The role of the remaining rules is to construct candidate solutions for constraints where one of
the terms is just a metavariable. The main idea follows the original idea of Huet [10]. We can
either imitate the other term (i.e. build a term from the “head” of the other term), or project
(i.e. build a term from one of the available arguments of the metavariable). However, before
we can state these two rules, we need to define how we “build a candidate solution” from a
starting seed.
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Definition 3.1 (candidate shapes). Let TC be a family of terms, R be a set of rewrite rules
over TC , and H ⊆ TC(zk) be a set of terms, then the set Shapeszk(H) of candidate shapes is
defined recursively as follows:

1. t ∈ Shapeszk(H) when t ∈ H;

2. F (tn) ∈ Shapeszk(H) when F (ln) −→ r is in R and for each 1 ≤ i ≤ n

(a) if li is a metavariable, then ti = mi[zk], where mi is a fresh metavariable;

(b) if li = x.si then ti = zk+1.ui and ui ∈ Shapeszk+1
(H)

(c) otherwise ti ∈ Shapeszk(H)

We also need to define how to extract the head(s) from a term, since we are not assuming
any particular structure of the terms:

Definition 3.2 (head subterms, heads of a term). Let T : Set → Set be a family of terms, and
R be a set of rewrite rules over T . A subterm ti of a term F (tn) is called a head subterm if
there is a rewrite rule F (ln) −→ r in R such that li is not a metavariable mi[. . .] or a scoped
meta variable x.mi[. . .]. Set heads(t) of heads of a term t is defined recursively as follows:

1. u ∈ heads(t) if u ∈ heads(s) and s is a head subterm of t;

2. t ∈ heads(t) if t has no head subterms.

Imitate/project rule. This rule constructs a metavariable substitution by selecting a
shape built from a set of heads of the other term (imitate) or from a set of arguments passed
to the metavariable (project):

S ⊎ {∀zk.m[tn]
?
= u} 7→ ⟨σS, σ⟩ (imitate/project)

when σ = [m[xn] 7→ s]

and s ∈ Shapeszk(heads(u) ∪ {x1, . . . , xn})

4 Implementation

We have implemented syntax-generic higher-order unification based on ideas similar to this
paper in Haskell [12]. There, we use a particular presentation of syntax of terms using a
combination of techniques from free monads and intrinsic scoping (via de Bruijn indices as
nested data types).
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