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Abstract—This paper deals with extending linear 

compression codes by nonlinear check bits that improve 
the usability of decompressed patterns for testing circuits 
with more inputs. The earlier works used a purely random 
or partially random search of the nonlinear check-bits 
truth tables to construct the first nonlinear structures. 
Here, we derive deterministic rules that characterize the 
relationship among the nonlinear code check bits. The 
efficiency of the rules is demonstrated on different codes 
with the number of specified bits equal to three. The code 
parameters obtained after applying the rules overperform 
the parameters of the linear codes. Keeping the 
restrictions makes the search for the check bit truth tables 
faster and more efficient than can be got by a simple 
random search. The reached nonlinear block code 
(136,5,3) is the most efficient code among other loose 
compression codes. 

Keywords — Test vector compression technique, Pseudo-
exhaustive testing, Binary nonlinear codes, Graph theory, 
Minimum clique cover problem, Design for testability. 

I. INTRODUCTION 
This contribution deals with codes used for test pattern 

compression and expansion. The character of the circuits 
under test enables us to perform a loose compression and 
decompression. Only a few bits with given logical values must 
be delivered to specified input positions for testing a circuit 
under test [6]. Test patterns have considerable redundancy (a 
high number of don't care values in a test pattern), and thus 
they can be compressed. In testing a narrow stream of bits into 
n-bit test patterns applied to functional combinational circuit 
inputs or parallel scan chain inputs [1], [3], [9], [13], [16], 
[19], [20]. The compression scheme can be either application-
dependent or universal [11]. Paper [12] abstracts the test 
vector redundancy and requires that the decompressor must be 
able to set any r-tuple of the generated test vector bits to 
arbitrary values. The decompressor is then specified by the 
number n of scan chains (decompressed test vectors width), 
the number of information bits (input width), and the number 
r (number of specified bits) only. This abstraction was used by 
other authors afterward. Using the linear block codes (LBC) 
theory, we can design either a Built-in Self-test equipment 
(BIST) or a decompressor that guarantees that arbitrary r-tuple 
within the n  bits can be set to a random value. The best-known 
linear codes were tabulated [8]. We can find the minimum 
number of decompressor inputs that guarantee a given n and r 
and vice versa; we can see the maximum value of 
decompressor outputs n for given i and r. A code with n, i, and 
r may be denoted as an (n, i, r) code. 

Codes with a high value of the minimum code distance of 
the dual code dmin are well suitable for combinational pattern 

compression [20], [5], [4]. The decompressor parameter r 
corresponds to the code's value dmin-1, dual to the applied 
codewords [20]. Unfortunately, LBCs provide a limited value 
of n for all values of r. Search for the best LBCs has a long 
history, and there is no hope that some new, substantially 
better codes will be discovered.  

An extension to codes other than linear is obvious. They 
promise much more freedom to choose the decompressor 
function and cause a much more extensive search space. 
While using the NBC for error correction does not bring 
substantially better code parameters than it can be obtained for 
linear ones, the compression codes are considerably more 
effective when using nonlinear functions. This fact can be 
demonstrated by comparing the resulting linear and nonlinear 
code parameters given in Table. 1. The NBC codes are much 
more potent than the LBCs and are worthy of study. 
Comparing the LBC and NBC lengths, we can see that if the 
NBC decompressors are easily constructed by hardware 
means, they could represent a promising possibility of test 
pattern compression and decompression. 

TABLE 1. THE MAXIMUM NONLINEAR  [16][8] AND LINEAR [8] 
CODES  

# of 
informatio

n bits i 

 
# of 

specified 
bits r 

Maximum 
LBC length 

n 

Maximum 
NBC length n 
reached till 

now 
4 3 8 12 
5 3 16 128 
6 3 32 536 

4 8 18 
7 3 64 2500 

4 10 63 
5 9 13 

8 4 13 531 
5 12 24 

9 4 23 816 
5 14 111 
6 11 16 

10 5 24 232 
6 17 54 

 

In recent publications the nonlinear block codes (NBC) 
were investigated [14], [15], [16], [18]. These code structures 
are not systematically explored enough. The codes have 
complex and multiple dependencies among the code bits. It is 
impossible to perform an exhaustive search among all codes 
of a given size. For this reason, the examples of the larger 
codes are obtained with the help of a random generator. Thus, 
the prediction of the extremal code lengths cannot be simply 



made. Finding some creation rules that may reduce the search 
space without losing potentially efficient codes is challenging.  

Paper [18] presents a systematic approach to suboptimal 
NBC construction. The authors have shown that the minimum 
NBC code search can be transformed into a Clique Cover 
Number (CCN) solution [10]. The CCN is a minimum number 
of graph partitions such that each graph subset induces a 
clique. The authors of [18] developed a methodology of 
finding i information bits (decompressor inputs) necessary for 
a given number r of specified bits within n outputs. The 
parameter r represents 2r requirement cubes for each r-tuple of 
output bits within n outputs. Each requirement cube requires 
at least one output vector with r specific bits within the n 
outputs. All possible values of all potential r-bit output vectors 
correspond to a complete set of requirements. Requirement 
cubes may be identified with graph vertices and requirement 
cube's compatibility with the graph's edges. There exist 
compatible requirements, which means that these 
requirements can be fulfilled using one output vector only. 
These requirements form a clique. The compatible 
requirements have the same logical values on the 
corresponding output positions, or the requirements have a 
don't care bit on the places where some requirement has a 
defined value. Then, finding the CCN solves the problem of 
an NBC with a given n and minimal i. The CCN problem is 
NP-hard, in general. Therefore, no efficient algorithms were 
found for this kind of problem. 

We may formulate the problem of finding a code with r 
specified bits as a problem of setting truth tables (TT) of code 
check bits. Within all r-tuples of check and information code 
bit TTs, there must be at least one row in which an arbitrary r-
tuple of logical values can be found. NBC construction 
methodology was proposed in [14]. The check bit TTs were 
got by a random search within the space of all TTs with a 
balanced number of ones and zeros and checking whether the 
condition mentioned above holds. The check bit TTs were 
obtained by a step-by-step process. The algorithm was 
improved in [15] and [16]. It is advantageous to use an LBC 
with a given i and r and extend the code length by nonlinear 
code bits. Performing this, we can find particular rules that 
improve the probability of check bit TTs that complete the 
code words without any corruption of the number of specified 
bits. The search of the TTs is done randomly. 

We do not know the Boolean expressions characterizing 
the TTs as there exists a substantial ambiguity of conditions 
that characterize the code structure. We can derive only 
examples of the Boolean terms for larger codes as there exist 
many parametric solutions to the problem. The search space is 
enormous. Let us consider having p check bits. The thorough 
examination among all possible check bit TTs has to exercise 
(2 exp (2 exp i)) exp p combinations of TTs whether they 
fulfill the condition of r specified bits among the whole 
codeword. A greedy algorithm was used to speed up the code 
search process for larger values of i and p. A step-by-step 
creation finds a check bit TT, fixes it, and does not use other 
possible TTs to find the complete code structure. There exist 
many code variations fulfilling the condition of r specified 
bits. For this reason, a random or semi-random search was 
performed in our previous code constructions [16]. This kind 

of search may hit an efficient code structure due to the high 
variability of successful TTs. It is possible to reduce the search 
space by preferring some TT shapes that were successful in 
the previous check bit TT searches and using variations for the 
subsequent check bit TT searches. We have found that using 
the rules that are advantageous to be followed to get a required 
code substantially helps to improve the code parameters. 

This paper proposes a method of NBC creation. It uses an 
LBC and extends it by nonlinear check bits. This approach 
benefits from the LBC check bit structure as it balances logical 
values on all r-tuples and (r-1)-tuples. The regularity of logical 
values on (r-1)-tuples makes the following concatenation 
NBC check bits easier to keep the number of specified bits. 
Additional constraints are used to reduce the check bit TT 
search space. Following the rules substantially increases the 
obtained medium code length n. This fact is demonstrated by 
a randomly driven set of code creation experiments.  

 

II. CODE GENERATION 
We develop rules for codes with different numbers of 
information bits and the number of specified bits equal to 
three. 
 

(4, 3, 3) code 

 Let us consider all information bit values; they are given 
in 8 rows of the columns i1. i2. and i3. Let us consider adding 
one check bit c1. In the beginning, the check bit TT column 
values are set to an unknown value denoted by symbol 2. At 
this point, there is not any restriction on choosing an arbitrary 
bit in a random row to an arbitrary logical value. If the bit is 
set, we have to check if it requires setting another bit to a 
specific value to keep the existence of all possible triplets 
within all code bits. This process is repeated until all bits are 
set.  

The stages of code formation are illustrated in Fig. 1. Let 
us set the 1st row bit to log. 0. It is shown in the 1st step part of 
the figure. There exist three triplets of bits on the 1st row; they 
are denoted by the black circles (Differently dashed circles or 
ellipses mark bits of different triplets.) Setting the 1st bit in c1 
to logical 0 implies the logical value 1 in row 2. The logical 
value is enforced because only two rows of the TT have the 
logical values in columns i2 and i3 equal to values in the 
already set row. This situation is denoted by red circles and a 
red square in the figure. The same problem is on rows 3 and 
5, indicated by green and blue circles and squares. To 
guarantee the existence of the values (0, 0, 1) on the 
corresponding positions, we set the values in the check bit TT 
rows equal to 1. The resulting TTis of the 1st step is shown in 
column Result 1. The logical values are given in Result 1 part 
of the figure. The Result 1 logical values imply Result 2 
values, and the Result 2 values condition Result 3. All the 
logical values given in Result 3 TT are necessary to be used in 
the code. All triplets containing the bit c1 reach all possible 
combinations of logical values. If there were a contradiction 
in the requirements, the code would not exist. Two different 
codes can be formed depending on the logical value chosen 



 
Figure 1. Step-by-step (4, 3, 3).code formation 

in c1, 1st row. Setting the starting bit equal to 1 causes the 
check bit TT to have opposite values than we obtained in 
Result 3. It is impossible to add another check bit as the 
requirements contradict each other. If the starting bit was set 
to 0, the resulting check bit TT corresponds to the logical 
function i1ꚛi2 ꚛi3. It means that the formed code is linear. If the 
starting bit was set to 1, the code is nonlinear. 

 (12, 3, 3).code:  

The ambiguity problem of restriction rules arises for this 
kind of code. It is illustrated in Figure 2. There exist six 
different triplets in each row of the TT. Let us choose to set 

the first row of the check bit TT to log. 0. An ellipse surrounds 
the bits forming the triplets influenced by the setting. Setting 
the bit of the check bit column causes a set of restrictions for 
other row settings. Colored circles denote the triplets in the 
influenced rows. 

 We have to set each check bit row marked by one or more 
used colors at least once. For this reason, it is not given which 
check bit TT row should be set to a logical value to guarantee 
the diversity of the triplet values in the considered columns. 
There is partial freedom in selection which restrictions should 
be followed and kept. A similar limitation holds for setting all 
rows in all check bit TTs. We need to find rules that guarantee 
to keep all necessary restrictions within a (12,4,3) code and 
simultaneously do not inhibit the extension of the number of 
check bits.  

 

Figure 2. The setting of the 1st bit of the check bit TT to 
log. value 0. Six triplets in the 1st row are denoted by one black 
ellipse. The influenced triplets are denoted by red, green, 
orange, blue, violet, and yellow. 

 

LBCs have a very regular structure. It seems helpful to 
start with the LBC and complete it with the nonlinear check 
bits that do not reduce the number of specified codeword bits. 
For example, the LBC with i=4, r=3 has four check bits. The 
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bit TTs of the codeword check bits can be constructed as truth 
tables of all possible three input XORs. There exist 4 XOR 
functions defining the check bit behavior, for example: 

i1ꚛi2 ꚛi3 , i1ꚛi2 ꚛi4  i1ꚛi3 ꚛi4 i2ꚛi3 ꚛi4 
The truth tables are given in Figure 3, where the LBC 

check bit columns correspond to the TTs of the given 
functions. Looking at the TT, we can derive the following 
code properties: 

1. The number of ones equals the number of zeros 
for each TT column. 

2. The logical values on all pairs of bits are evenly 
distributed. This means that each pair of TT 
columns has the logical values (0,0), values (0,1), 
values (1,0) and values (1,1) just on 4 rows. 

3. Let us consider quadruplets of rows arranged 
according to Figure 3 and pairs of all possible 
columns. Then the following cases may occur:  

Case a: All rows in the quadruplet column pair 
have constant values. It implies that four 
different quadruplets exist in the TT with 
different logical values on the pair of 
columns. 

Case b: The rows in the quadruplet column pair 
have two different values. It implies that 
there exist just two quadruplets with the 
same logical values. 

Case c: The rows in the quadruplet column 
pairs have all possible logical values. It 
implies that all four quadruplets have the 
same logical values on the pair of columns. 

4. The logical values on all triplets of bits are evenly 
distributed. Each triplet of TT columns has 
logical values (0,0,0). (0,0,1), (0,1,0), (0,1,1), 
(1,0,0),(1,0,1), (1,1,0) and (1,1,1) just on 2 rows  

Example:  

Let us consider the quadruplets of rows in the first 
information bit TT and the first LBC check bit. The rows of 
the quadruplet column pairs reach the logical values (0,0), 
(1,0), (0,1), and (1,1). The same holds for the resting 
quadruplets of this column pair. It corresponds to case c of the 
3rd  property. Let us consider the quadruplets of the 1st and 3rd 
information bit. The rows of the 1st quadruplet column pairs 
reach the logical values (0,0), (1,0), (0,0), and (1,0). The rows 
of the 3rd quadruplet reach the same logical values. Other 
quadruplets reach other values. It corresponds to case b of the 
3rd property. Let us consider the quadruplets of the 3rd and 4th 
information bit. The 1st quadruplet reaches only the bit pair 
values (0,0), the 2nd values (1,0), the 3rd values (0,1), and the 
4th values (1,1). It corresponds to case a of the 3rd property. 

The TT properties of the LBC mentioned above are 
directly derived from the Boolean expressions defining the 
check bits. Having the LBC code part, we can add the NBC 
check bit TTs that guarantee that the NBC TT column, 
together with every possible pair of LBC columns, reaches the 

state where all possible combinations of the triplet rows are 
contained within the NBC TT.  

Code construction 

Let us consider constructing an NBC with a balanced 
number of ones and zeros and with logical values on all pairs 
of bits evenly distributed. The assembled TT has to reflect 
LBC properties given in LBC property 3. It can be done by 
completing the check bit TT from a limited number of 
quadruplets of bits.  

Figure 3. Resulting(12,4,3) NBC obtained as an extension of the 
LBC by the NBC check bit TTs. The first column shows TT row 
numbers and the considered quadruplets of them. The yellow part 
corresponds to the TTs of the information bits, the green and yellow 
region of the Table corresponds to the LBC, and the yellow, green, 
and blue area to the NBC. 

To reach full coverage of triplets containing LBC column 
pairs described in case a, we have to guarantee that the NBC 
check bit TT has at least one row in each quadruplet equal to 
logical one and one row equal to logical zero. This condition 
is valid for TTs with at least two different quadruplets on the 
concerned positions. To reach full coverage of triplets 
containing column pairs of the LBC described in cases b and 
c, we have to guarantee that the check bit TT quadruplets are 
different at least once in those positions where the quadruplet 
pairs of bits of the LBC are equal. This condition is valid for 

row 

quadruplet 
inf. bits LBC check 

bits 
NBC check 
bits 

1 0 0 0 0 0 0 0 0 0 1 0 1 

2 1 0 0 0 1 1 1 0 0 0 1 1 

3 0 1 0 0 1 1 0 1 1 1 0 0 

4 1 1 0 0 0 0 1 1 1 0 1 0 

5 0 0 1 0 1 0 1 1 1 1 1 1 

6 1 0 1 0 0 1 0 1 0 1 1 0 

7 0 1 1 0 0 1 1 0 1 0 0 1 

8 1 1 1 0 1 0 0 0 0 0 0 0 

9 0 0 0 1 0 1 1 1 0 0 0 0 

10 1 0 0 1 1 0 0 1 1 0 0 1 

11 0 1 0 1 1 0 1 0 0 1 1 0 

12 1 1 0 1 0 1 0 0 1 1 1 1 

13 0 0 1 1 1 1 0 0 1 0 1 0 

14 1 0 1 1 0 0 1 0 1 1 0 0 

15 0 1 1 1 0 0 0 1 0 0 1 1 

16 1 1 1 1 1 1 1 1 0 1 0 1 

 LBC   

 NBC 

 

 

1st 
 

2nd 
 
 

3rd 
 
 

4th 
 
 



TTs where no quadruplet is used twice. Let us consider four 
different quadruplets of bits that have a balanced number of 
ones and zeros. These quadruplets will be placed on the 
corresponding check bit TT rows. An example of the 
quadruplets may be (0,1,0,1), (0,0,1,1), (1,0,1,0), and 
(1,1,0,0). Appropriate placing them into the NBC TT can 
guarantee to keep the number of specified bits  

Example of NBC assembling 

Let us consider the code building blocks (0,1,0,1), 
(0,0,1,1), (1,0,1,0) and(1,1,0,0). Let us choose the 1st NBC TT 
quadruplet equal to (0,0,1,1). Then the second quadruplet has 
to be either (0,1,0,1) or (1,0,1,0). Other quadruplets are not 
suitable as using them would cause a violation of property 2, 
and the number of logical values on code pairs of bits would 
be unbalanced. We choose (0,1,0,1). The next quadruplet 
should be (1.0.1.0) as other quadruplets violate restrictions 
caused by case b of the LBC. The last quadruplet should be 
(1,1,0,0) as we have to avoid repeating any quadruplet already 
used in the TT. The first quadruplet of the next NBC TT can 
be chosen arbitrarily. We choose  (1,01,0). The next 
quadruplet has to be selected either (1,1,0,0,) or (0,0,1,1). We 
choose (1,1,0,0) Then the resting quadruplets are (0,0,1,1) and 
(0,1,0,1). The next two columns are set similarly. The 
resulting NBC is given in Figure. 3. No more check bits can 
be found as placing the quadruplets violates the conditions.  

(136,5,3) code 

The LBC with five information bits is regular: each pair of 
bits has each logical value just eight times within the TT, and 
each triplet has every logical value just on four rows. The LBC 
code length is equal to 16. The high number of rows with 
identical logical values on the LBC columns causes higher 
freedom in placing the quadruplets in the check bit TTs. The 
NBC check bit TTs can be generated using the identical 
quadruplets as in the previous case; each may be used 
repeatedly. They are applied to guarantee maximally uniform 
distribution of logical values within all pairs of truth tables. It 
is not practical to enumerate all placement possibilities. 
Instead, we may select several successful TT patterns that 
contain a unique ratio of the quadruplets and then verify the 
cases of their variations.  

Code construction example 

At first, we find ten check bit TT composed of two or four 
different considered quadruplets. We take into account only 
those TTs with each logical value present within their rows at 
least six times for each pair of the code bit. We exclude those 
TTs with simple quadruplet order variations of other TTs. In 
the second step, we permute the order of quadruplets in the 
successfully found TTs from the previous step. After 
performing all possible 40320 permutations of the first step 
TTs, we obtain a subset of new TTs for each of them. The 
number of NBC TTs is the resulting NBC length. Obtained 
code lengths within an experiment with 30 random settings of 
the ten first successful TTs are plotted in Figure 4. The 
maximum code length obtained by the proposed approach 
equals 136. Figure 4 compares resulting code lengths with an 
entirely random method where the code lengths were chosen 
as maximum code length values after 100 000 attempts.  

Figure 4: The obtained proposed method code lengths (blue 
columns) and the randomly obtained maximum code lengths (red 
columns).  

Using the proposed constraints enables us to find code 
lengths that the random and or exhaustive search cannot 
provide. The search process is substantially more efficient 
than an exhaustive search in the space of all possible NBC 
check bit TTs. An example of the 136-bit NBC structure is 
given in Figure 5. The code word TTs corresponds with the 
columns of the figure. There are 16 bits of the LBC and 120 
NBC check bits. Comparing the code lengths, we can claim 
that the NBC is more than eight times more effective in pattern 
decompression than the LBC. Compared with [18], we can see 
that the clique coverage strategy provides codes with less 
efficient parameters. A code with a length equal to 32 requires 
at least six information bits for three specified bits. 

Code (536,6,3) 

Considering six information bits of the LBC, we have 16 
rows for each pair of the LBC columns where the logical 
values are identical. This fact provides such great freedom in 
choosing the NBC check bit TTs that it is more advantageous 
for the extension of the LBC to find the NBC check bits with 
the help of an entirely random search within a balanced 
number of ones and zeros TTs. The experiments we have done 
have the same results as those described in previous research 
[16]. The maximum code length obtained was equal to 536. 

III. Conclusion 
We have presented a nonlinear block code creation 

strategy based on detailed knowledge of the linear block code 
properties and completing bits that fit the linear part of the 
code to keep the number of specified bits. Based on 
understanding the most promising code bit structures, we 
developed a (136,5,3) code creation method that no exhaustive 
or random search strategy can find within a limited time. To 
reduce the search space of the added check-bit truth tables, we 
select only those that have rows guaranteeing a maximally 
uniform distribution of logical values within all pairs of truth 
tables. Simultaneously, all pairs of the original truth tables 
together with each new truth table exhaustively cover all 
logical values. The code is more than eight times more 
efficient in test pattern decompression than the linear code 
with the same number of information bits. 

 



 
Figure 5:(136,5,3) NBC code structure. Each code bit TT corresponds with one column; logical values in the TT rows are zeros (blue color) and 
ones (yellow color). 
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