
EasyChair Preprint
№ 8903

Nonlinear Compression Block Codes Search
Strategy

Ondřej Novák

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 3, 2022

Nonlinear Compression Block Codes Search Strategy
Ondřej Novák

Institute of Information Technologies and Electronics
Technical University in Liberec

Liberec, Czech Republic
ondrej.novak@tul.cz

Abstract—This paper deals with extending linear

compression codes by nonlinear check bits that improve
the usability of decompressed patterns for testing circuits
with more inputs. The earlier works used a purely random
or partially random search of the nonlinear check-bits
truth tables to construct the first nonlinear structures.
Here, we derive deterministic rules that characterize the
relationship among the nonlinear code check bits. The
efficiency of the rules is demonstrated on different codes
with the number of specified bits equal to three. The code
parameters obtained after applying the rules overperform
the parameters of the linear codes. Keeping the
restrictions makes the search for the check bit truth tables
faster and more efficient than can be got by a simple
random search. The reached nonlinear block code
(136,5,3) is the most efficient code among other loose
compression codes.

Keywords — Test vector compression technique, Pseudo-
exhaustive testing, Binary nonlinear codes, Graph theory,
Minimum clique cover problem, Design for testability.

I. INTRODUCTION
This contribution deals with codes used for test pattern

compression and expansion. The character of the circuits
under test enables us to perform a loose compression and
decompression. Only a few bits with given logical values must
be delivered to specified input positions for testing a circuit
under test [6]. Test patterns have considerable redundancy (a
high number of don't care values in a test pattern), and thus
they can be compressed. In testing a narrow stream of bits into
n-bit test patterns applied to functional combinational circuit
inputs or parallel scan chain inputs [1], [3], [9], [13], [16],
[19], [20]. The compression scheme can be either application-
dependent or universal [11]. Paper [12] abstracts the test
vector redundancy and requires that the decompressor must be
able to set any r-tuple of the generated test vector bits to
arbitrary values. The decompressor is then specified by the
number n of scan chains (decompressed test vectors width),
the number of information bits (input width), and the number
r (number of specified bits) only. This abstraction was used by
other authors afterward. Using the linear block codes (LBC)
theory, we can design either a Built-in Self-test equipment
(BIST) or a decompressor that guarantees that arbitrary r-tuple
within the n bits can be set to a random value. The best-known
linear codes were tabulated [8]. We can find the minimum
number of decompressor inputs that guarantee a given n and r
and vice versa; we can see the maximum value of
decompressor outputs n for given i and r. A code with n, i, and
r may be denoted as an (n, i, r) code.

Codes with a high value of the minimum code distance of
the dual code dmin are well suitable for combinational pattern

compression [20], [5], [4]. The decompressor parameter r
corresponds to the code's value dmin-1, dual to the applied
codewords [20]. Unfortunately, LBCs provide a limited value
of n for all values of r. Search for the best LBCs has a long
history, and there is no hope that some new, substantially
better codes will be discovered.

An extension to codes other than linear is obvious. They
promise much more freedom to choose the decompressor
function and cause a much more extensive search space.
While using the NBC for error correction does not bring
substantially better code parameters than it can be obtained for
linear ones, the compression codes are considerably more
effective when using nonlinear functions. This fact can be
demonstrated by comparing the resulting linear and nonlinear
code parameters given in Table. 1. The NBC codes are much
more potent than the LBCs and are worthy of study.
Comparing the LBC and NBC lengths, we can see that if the
NBC decompressors are easily constructed by hardware
means, they could represent a promising possibility of test
pattern compression and decompression.

TABLE 1. THE MAXIMUM NONLINEAR [16][8] AND LINEAR [8]
CODES

of
informatio

n bits i

of

specified
bits r

Maximum
LBC length

n

Maximum
NBC length n
reached till

now
4 3 8 12
5 3 16 128
6 3 32 536

4 8 18
7 3 64 2500

4 10 63
5 9 13

8 4 13 531
5 12 24

9 4 23 816
5 14 111
6 11 16

10 5 24 232
6 17 54

In recent publications the nonlinear block codes (NBC)
were investigated [14], [15], [16], [18]. These code structures
are not systematically explored enough. The codes have
complex and multiple dependencies among the code bits. It is
impossible to perform an exhaustive search among all codes
of a given size. For this reason, the examples of the larger
codes are obtained with the help of a random generator. Thus,
the prediction of the extremal code lengths cannot be simply

made. Finding some creation rules that may reduce the search
space without losing potentially efficient codes is challenging.

Paper [18] presents a systematic approach to suboptimal
NBC construction. The authors have shown that the minimum
NBC code search can be transformed into a Clique Cover
Number (CCN) solution [10]. The CCN is a minimum number
of graph partitions such that each graph subset induces a
clique. The authors of [18] developed a methodology of
finding i information bits (decompressor inputs) necessary for
a given number r of specified bits within n outputs. The
parameter r represents 2r requirement cubes for each r-tuple of
output bits within n outputs. Each requirement cube requires
at least one output vector with r specific bits within the n
outputs. All possible values of all potential r-bit output vectors
correspond to a complete set of requirements. Requirement
cubes may be identified with graph vertices and requirement
cube's compatibility with the graph's edges. There exist
compatible requirements, which means that these
requirements can be fulfilled using one output vector only.
These requirements form a clique. The compatible
requirements have the same logical values on the
corresponding output positions, or the requirements have a
don't care bit on the places where some requirement has a
defined value. Then, finding the CCN solves the problem of
an NBC with a given n and minimal i. The CCN problem is
NP-hard, in general. Therefore, no efficient algorithms were
found for this kind of problem.

We may formulate the problem of finding a code with r
specified bits as a problem of setting truth tables (TT) of code
check bits. Within all r-tuples of check and information code
bit TTs, there must be at least one row in which an arbitrary r-
tuple of logical values can be found. NBC construction
methodology was proposed in [14]. The check bit TTs were
got by a random search within the space of all TTs with a
balanced number of ones and zeros and checking whether the
condition mentioned above holds. The check bit TTs were
obtained by a step-by-step process. The algorithm was
improved in [15] and [16]. It is advantageous to use an LBC
with a given i and r and extend the code length by nonlinear
code bits. Performing this, we can find particular rules that
improve the probability of check bit TTs that complete the
code words without any corruption of the number of specified
bits. The search of the TTs is done randomly.

We do not know the Boolean expressions characterizing
the TTs as there exists a substantial ambiguity of conditions
that characterize the code structure. We can derive only
examples of the Boolean terms for larger codes as there exist
many parametric solutions to the problem. The search space is
enormous. Let us consider having p check bits. The thorough
examination among all possible check bit TTs has to exercise
(2 exp (2 exp i)) exp p combinations of TTs whether they
fulfill the condition of r specified bits among the whole
codeword. A greedy algorithm was used to speed up the code
search process for larger values of i and p. A step-by-step
creation finds a check bit TT, fixes it, and does not use other
possible TTs to find the complete code structure. There exist
many code variations fulfilling the condition of r specified
bits. For this reason, a random or semi-random search was
performed in our previous code constructions [16]. This kind

of search may hit an efficient code structure due to the high
variability of successful TTs. It is possible to reduce the search
space by preferring some TT shapes that were successful in
the previous check bit TT searches and using variations for the
subsequent check bit TT searches. We have found that using
the rules that are advantageous to be followed to get a required
code substantially helps to improve the code parameters.

This paper proposes a method of NBC creation. It uses an
LBC and extends it by nonlinear check bits. This approach
benefits from the LBC check bit structure as it balances logical
values on all r-tuples and (r-1)-tuples. The regularity of logical
values on (r-1)-tuples makes the following concatenation
NBC check bits easier to keep the number of specified bits.
Additional constraints are used to reduce the check bit TT
search space. Following the rules substantially increases the
obtained medium code length n. This fact is demonstrated by
a randomly driven set of code creation experiments.

II. CODE GENERATION
We develop rules for codes with different numbers of
information bits and the number of specified bits equal to
three.

(4, 3, 3) code

 Let us consider all information bit values; they are given
in 8 rows of the columns i1. i2. and i3. Let us consider adding
one check bit c1. In the beginning, the check bit TT column
values are set to an unknown value denoted by symbol 2. At
this point, there is not any restriction on choosing an arbitrary
bit in a random row to an arbitrary logical value. If the bit is
set, we have to check if it requires setting another bit to a
specific value to keep the existence of all possible triplets
within all code bits. This process is repeated until all bits are
set.

The stages of code formation are illustrated in Fig. 1. Let
us set the 1st row bit to log. 0. It is shown in the 1st step part of
the figure. There exist three triplets of bits on the 1st row; they
are denoted by the black circles (Differently dashed circles or
ellipses mark bits of different triplets.) Setting the 1st bit in c1
to logical 0 implies the logical value 1 in row 2. The logical
value is enforced because only two rows of the TT have the
logical values in columns i2 and i3 equal to values in the
already set row. This situation is denoted by red circles and a
red square in the figure. The same problem is on rows 3 and
5, indicated by green and blue circles and squares. To
guarantee the existence of the values (0, 0, 1) on the
corresponding positions, we set the values in the check bit TT
rows equal to 1. The resulting TTis of the 1st step is shown in
column Result 1. The logical values are given in Result 1 part
of the figure. The Result 1 logical values imply Result 2
values, and the Result 2 values condition Result 3. All the
logical values given in Result 3 TT are necessary to be used in
the code. All triplets containing the bit c1 reach all possible
combinations of logical values. If there were a contradiction
in the requirements, the code would not exist. Two different
codes can be formed depending on the logical value chosen

Figure 1. Step-by-step (4, 3, 3).code formation

in c1, 1st row. Setting the starting bit equal to 1 causes the
check bit TT to have opposite values than we obtained in
Result 3. It is impossible to add another check bit as the
requirements contradict each other. If the starting bit was set
to 0, the resulting check bit TT corresponds to the logical
function i1ꚛi2 ꚛi3. It means that the formed code is linear. If the
starting bit was set to 1, the code is nonlinear.

 (12, 3, 3).code:

The ambiguity problem of restriction rules arises for this
kind of code. It is illustrated in Figure 2. There exist six
different triplets in each row of the TT. Let us choose to set

the first row of the check bit TT to log. 0. An ellipse surrounds
the bits forming the triplets influenced by the setting. Setting
the bit of the check bit column causes a set of restrictions for
other row settings. Colored circles denote the triplets in the
influenced rows.

 We have to set each check bit row marked by one or more
used colors at least once. For this reason, it is not given which
check bit TT row should be set to a logical value to guarantee
the diversity of the triplet values in the considered columns.
There is partial freedom in selection which restrictions should
be followed and kept. A similar limitation holds for setting all
rows in all check bit TTs. We need to find rules that guarantee
to keep all necessary restrictions within a (12,4,3) code and
simultaneously do not inhibit the extension of the number of
check bits.

Figure 2. The setting of the 1st bit of the check bit TT to
log. value 0. Six triplets in the 1st row are denoted by one black
ellipse. The influenced triplets are denoted by red, green,
orange, blue, violet, and yellow.

LBCs have a very regular structure. It seems helpful to
start with the LBC and complete it with the nonlinear check
bits that do not reduce the number of specified codeword bits.
For example, the LBC with i=4, r=3 has four check bits. The

c1i1 i2 i3 c1

0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1

0
0
0
0
1
1
1
1

0
2
2
2
2
2
2
2

2 -> 1
2 -> 1

2 ->1

Information bits Result 1

0
1
1
2
1
2
2
2

1st step

0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1

0
0
0
0
1
1
1
1

0
1
1
2
1
2
2
2

2 -> 0

2 -> 0
2 -> 0

Information bits 2nd step

0
1
1
0
1
0
0
2

Result 2

0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1

0
0
0
0
1
1
1
1

0
1
1
0
1
0
0
2 2 -> 1

Information bits 3rd step

0
1
1
0
1
0
0
1

Result 3

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

 information bits

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

New
check

bit

bit TTs of the codeword check bits can be constructed as truth
tables of all possible three input XORs. There exist 4 XOR
functions defining the check bit behavior, for example:

i1ꚛi2 ꚛi3 , i1ꚛi2 ꚛi4 i1ꚛi3 ꚛi4 i2ꚛi3 ꚛi4
The truth tables are given in Figure 3, where the LBC

check bit columns correspond to the TTs of the given
functions. Looking at the TT, we can derive the following
code properties:

1. The number of ones equals the number of zeros
for each TT column.

2. The logical values on all pairs of bits are evenly
distributed. This means that each pair of TT
columns has the logical values (0,0), values (0,1),
values (1,0) and values (1,1) just on 4 rows.

3. Let us consider quadruplets of rows arranged
according to Figure 3 and pairs of all possible
columns. Then the following cases may occur:

Case a: All rows in the quadruplet column pair
have constant values. It implies that four
different quadruplets exist in the TT with
different logical values on the pair of
columns.

Case b: The rows in the quadruplet column pair
have two different values. It implies that
there exist just two quadruplets with the
same logical values.

Case c: The rows in the quadruplet column
pairs have all possible logical values. It
implies that all four quadruplets have the
same logical values on the pair of columns.

4. The logical values on all triplets of bits are evenly
distributed. Each triplet of TT columns has
logical values (0,0,0). (0,0,1), (0,1,0), (0,1,1),
(1,0,0),(1,0,1), (1,1,0) and (1,1,1) just on 2 rows

Example:

Let us consider the quadruplets of rows in the first
information bit TT and the first LBC check bit. The rows of
the quadruplet column pairs reach the logical values (0,0),
(1,0), (0,1), and (1,1). The same holds for the resting
quadruplets of this column pair. It corresponds to case c of the
3rd property. Let us consider the quadruplets of the 1st and 3rd
information bit. The rows of the 1st quadruplet column pairs
reach the logical values (0,0), (1,0), (0,0), and (1,0). The rows
of the 3rd quadruplet reach the same logical values. Other
quadruplets reach other values. It corresponds to case b of the
3rd property. Let us consider the quadruplets of the 3rd and 4th
information bit. The 1st quadruplet reaches only the bit pair
values (0,0), the 2nd values (1,0), the 3rd values (0,1), and the
4th values (1,1). It corresponds to case a of the 3rd property.

The TT properties of the LBC mentioned above are
directly derived from the Boolean expressions defining the
check bits. Having the LBC code part, we can add the NBC
check bit TTs that guarantee that the NBC TT column,
together with every possible pair of LBC columns, reaches the

state where all possible combinations of the triplet rows are
contained within the NBC TT.

Code construction

Let us consider constructing an NBC with a balanced
number of ones and zeros and with logical values on all pairs
of bits evenly distributed. The assembled TT has to reflect
LBC properties given in LBC property 3. It can be done by
completing the check bit TT from a limited number of
quadruplets of bits.

Figure 3. Resulting(12,4,3) NBC obtained as an extension of the
LBC by the NBC check bit TTs. The first column shows TT row
numbers and the considered quadruplets of them. The yellow part
corresponds to the TTs of the information bits, the green and yellow
region of the Table corresponds to the LBC, and the yellow, green,
and blue area to the NBC.

To reach full coverage of triplets containing LBC column
pairs described in case a, we have to guarantee that the NBC
check bit TT has at least one row in each quadruplet equal to
logical one and one row equal to logical zero. This condition
is valid for TTs with at least two different quadruplets on the
concerned positions. To reach full coverage of triplets
containing column pairs of the LBC described in cases b and
c, we have to guarantee that the check bit TT quadruplets are
different at least once in those positions where the quadruplet
pairs of bits of the LBC are equal. This condition is valid for

row

quadruplet
inf. bits LBC check

bits
NBC check
bits

1 0 0 0 0 0 0 0 0 0 1 0 1

2 1 0 0 0 1 1 1 0 0 0 1 1

3 0 1 0 0 1 1 0 1 1 1 0 0

4 1 1 0 0 0 0 1 1 1 0 1 0

5 0 0 1 0 1 0 1 1 1 1 1 1

6 1 0 1 0 0 1 0 1 0 1 1 0

7 0 1 1 0 0 1 1 0 1 0 0 1

8 1 1 1 0 1 0 0 0 0 0 0 0

9 0 0 0 1 0 1 1 1 0 0 0 0

10 1 0 0 1 1 0 0 1 1 0 0 1

11 0 1 0 1 1 0 1 0 0 1 1 0

12 1 1 0 1 0 1 0 0 1 1 1 1

13 0 0 1 1 1 1 0 0 1 0 1 0

14 1 0 1 1 0 0 1 0 1 1 0 0

15 0 1 1 1 0 0 0 1 0 0 1 1

16 1 1 1 1 1 1 1 1 0 1 0 1

 LBC

 NBC

1st

2nd

3rd

4th

TTs where no quadruplet is used twice. Let us consider four
different quadruplets of bits that have a balanced number of
ones and zeros. These quadruplets will be placed on the
corresponding check bit TT rows. An example of the
quadruplets may be (0,1,0,1), (0,0,1,1), (1,0,1,0), and
(1,1,0,0). Appropriate placing them into the NBC TT can
guarantee to keep the number of specified bits

Example of NBC assembling

Let us consider the code building blocks (0,1,0,1),
(0,0,1,1), (1,0,1,0) and(1,1,0,0). Let us choose the 1st NBC TT
quadruplet equal to (0,0,1,1). Then the second quadruplet has
to be either (0,1,0,1) or (1,0,1,0). Other quadruplets are not
suitable as using them would cause a violation of property 2,
and the number of logical values on code pairs of bits would
be unbalanced. We choose (0,1,0,1). The next quadruplet
should be (1.0.1.0) as other quadruplets violate restrictions
caused by case b of the LBC. The last quadruplet should be
(1,1,0,0) as we have to avoid repeating any quadruplet already
used in the TT. The first quadruplet of the next NBC TT can
be chosen arbitrarily. We choose (1,01,0). The next
quadruplet has to be selected either (1,1,0,0,) or (0,0,1,1). We
choose (1,1,0,0) Then the resting quadruplets are (0,0,1,1) and
(0,1,0,1). The next two columns are set similarly. The
resulting NBC is given in Figure. 3. No more check bits can
be found as placing the quadruplets violates the conditions.

(136,5,3) code

The LBC with five information bits is regular: each pair of
bits has each logical value just eight times within the TT, and
each triplet has every logical value just on four rows. The LBC
code length is equal to 16. The high number of rows with
identical logical values on the LBC columns causes higher
freedom in placing the quadruplets in the check bit TTs. The
NBC check bit TTs can be generated using the identical
quadruplets as in the previous case; each may be used
repeatedly. They are applied to guarantee maximally uniform
distribution of logical values within all pairs of truth tables. It
is not practical to enumerate all placement possibilities.
Instead, we may select several successful TT patterns that
contain a unique ratio of the quadruplets and then verify the
cases of their variations.

Code construction example

At first, we find ten check bit TT composed of two or four
different considered quadruplets. We take into account only
those TTs with each logical value present within their rows at
least six times for each pair of the code bit. We exclude those
TTs with simple quadruplet order variations of other TTs. In
the second step, we permute the order of quadruplets in the
successfully found TTs from the previous step. After
performing all possible 40320 permutations of the first step
TTs, we obtain a subset of new TTs for each of them. The
number of NBC TTs is the resulting NBC length. Obtained
code lengths within an experiment with 30 random settings of
the ten first successful TTs are plotted in Figure 4. The
maximum code length obtained by the proposed approach
equals 136. Figure 4 compares resulting code lengths with an
entirely random method where the code lengths were chosen
as maximum code length values after 100 000 attempts.

Figure 4: The obtained proposed method code lengths (blue
columns) and the randomly obtained maximum code lengths (red
columns).

Using the proposed constraints enables us to find code
lengths that the random and or exhaustive search cannot
provide. The search process is substantially more efficient
than an exhaustive search in the space of all possible NBC
check bit TTs. An example of the 136-bit NBC structure is
given in Figure 5. The code word TTs corresponds with the
columns of the figure. There are 16 bits of the LBC and 120
NBC check bits. Comparing the code lengths, we can claim
that the NBC is more than eight times more effective in pattern
decompression than the LBC. Compared with [18], we can see
that the clique coverage strategy provides codes with less
efficient parameters. A code with a length equal to 32 requires
at least six information bits for three specified bits.

Code (536,6,3)

Considering six information bits of the LBC, we have 16
rows for each pair of the LBC columns where the logical
values are identical. This fact provides such great freedom in
choosing the NBC check bit TTs that it is more advantageous
for the extension of the LBC to find the NBC check bits with
the help of an entirely random search within a balanced
number of ones and zeros TTs. The experiments we have done
have the same results as those described in previous research
[16]. The maximum code length obtained was equal to 536.

III. Conclusion
We have presented a nonlinear block code creation

strategy based on detailed knowledge of the linear block code
properties and completing bits that fit the linear part of the
code to keep the number of specified bits. Based on
understanding the most promising code bit structures, we
developed a (136,5,3) code creation method that no exhaustive
or random search strategy can find within a limited time. To
reduce the search space of the added check-bit truth tables, we
select only those that have rows guaranteeing a maximally
uniform distribution of logical values within all pairs of truth
tables. Simultaneously, all pairs of the original truth tables
together with each new truth table exhaustively cover all
logical values. The code is more than eight times more
efficient in test pattern decompression than the linear code
with the same number of information bits.

Figure 5:(136,5,3) NBC code structure. Each code bit TT corresponds with one column; logical values in the TT rows are zeros (blue color) and
ones (yellow color).

IV. REFERENCES
[1] S. Bahl et al., "Unifying scan compression,"

2014iEEEinternational Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT),
Amsterdam, 2014, pp. 191-196.

[2] Chalupa, D., Pospichal, J.. Analysis of iterated Greedy
Heuristic for Vertex Clique Covering, Computing And
informatics, Slovakia, 37, Jul. 2018

[3] Chandra, R. Kapur, and Y. Kanzawa, "Scalable Adaptive
Scan (SAS)," Design, Automation & Test in Europe
Conference & Exhibition, Nice, 2009, pp. 1476-1481.

[4] S. Chattopadhyay, "Efficient circuit-specific pseudoexhaustive
testing with cellular automata," Test Symposium 2002. (ATS'
02). Proceedings of the 11th Asian, pp. 188-193, 2002, ISSN
1081-7735.

[5] Golan, P.: Pseudoexhaustive Test Pattern Generation for
Structured Digital Circuits. Proc.IX International Conference
on Fault-Tolerant Systems and Diagnostics FTSD9, Brno,
Czechoslovakia, 1986, pp. 214-220

[6] Hamzaoglu and J.H. Patel, "Reducing Test Application Time
for Full Scan Embedded Cores," Proc. Int’l Symp. Fault-
Tolerant Computing, pp. 260-267, 1999.

[7] M. Keila, L. Stewart: "Approximating the minimum clique
cover and other hard problems in subtree filament graphs,"
Discrete Appl. Math., 154 (14) (2006), pp. 1983-1995

[8] http://mint.sbg.ac.at/index.php, January 10, 2022
[9] Krishna, C.V., and NA. Touba, "Adjustable Width Linear

Combinational Scan Vector Decompression," Proc.
International Conf. Computer-Aided Design iCCAD 03), IEEE
CS Press, pp. 863-866.

[10] Luce, R. Duncan; Perry, Albert D. "A method of matrix
analysis of group structure," Psychometrika, 14 (2)95–
116, doi:10.1007/BF02289146 (1949)

[11] K.J. Lee, J.J. Chen, and C.H. Huang, "Using a Singleinput to
Support Multiple Scan Chains," Proc. Int’l Conf. Computer-
Aided Design, pp. 74-78, 1998.

[12] S. Mitra, K.S. Kim, XPAND: An Efficient Test Stimulus
Compression Technique, IEEE Trans. Computers 55, 2006, pp.
163-173

[13] S. S. Muthyala and N. A. Touba, "Improving test compression
with scan feedforward techniques," 2014international Test
Conference, Seattle, WA, 2014, pp. 1-10.

[14] O. Novák, "Extended binary nonlinear codes and their
application in testing and compression," 2017 22ndiEEE
European Test Symposium (ETS), Limassol, 2017, pp. 1-2.

[15] O. Novák, M. Rozkovec, J. Plíva, "Decompressors using
nonlinear codes, "Microprocessors and Microsystems, Volume
76, 2020, 103076, ISSN 0141-9331

[16] O. Novák, "Search Strategy of Large Nonlinear Block
Codes," 2021 24th Euromicro Conference on Digital System
Design (DSD), 2021, pp. 527-534

[17] S. Samaranayake, E. Gizdarski, N. Sitchinava, F. Neuveux, R.
Kapur, and T.W. Williams, "A Reconfigurable Shared Scan-In
Architecture," Proc. IEEE VLSI Test Symp., pp. 9-14, 2003.

[18] Jan Schmidt and Petr Fišer: "Nonlinear codes for test patterns
compression: the old school way," 14thinternational Workshop
on Boolean Problems, Bremen, DE, 2020

[19] M.A. Shah and J.H. Patel, "Enhancement of the Illinois Scan
Architecture for Use with Multiple Scaninputs," Proc. Int’l
Symp. VLSI, pp. 167-172, 2004.

[20] R. Srinivasan, S. K. Gupta, and M. A. Breuer, "Novel test
pattern generators for pseudoexhaustive testing," in IEEE
Transactions on Computers, vol. 49, no. 11, pp. 1228-1240,
Nov 2000.

[21] V. Tenentes, X. Kavousianos, and E. Kalligeros, "State Skip
LFSRs: Bridging the Gap between Test Data Compression and
Test Set Embedding foriP Cores," 2008 Design, Automation,
and Test in Europe, Munich, 2008, pp. 474-479.

http://mint.sbg.ac.at/index.php

	I. introduction
	II. Code generation
	III. Conclusion
	IV. References
	[3] Chandra, R. Kapur, and Y. Kanzawa, "Scalable Adaptive Scan (SAS)," Design, Automation & Test in Europe Conference & Exhibition, Nice, 2009, pp. 1476-1481.

