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Abstract. RatSLAM is a brain-inspired simultaneous localization and
mapping (SLAM) system based on the rodent hippocampus model, which
is used to construct the experience map for environments. However, the
map it constructs has the problems of low mapping accuracy and poor
adaptability to changing lighting environments due to the simple visual
processing method. In this paper, we present a novel RatSLAM sys-
tem by using more complex semantic object information for loop closure
detection (LCD) and experience map building, inspired by the effec-
tiveness of semantic information for scene recognition in the biological
brain. Specifically, we calculate the similarity between current and previ-
ous scenes in LCD based on the pixel information computed by the sum
of absolute differences (SAD) and the semantic information extracted by
the YOLOv2 network. Then we build an enhanced experience map with
object-level information, where the 3D model segmentation technology
is used to perform instance semantic segmentation on the recognized ob-
jects. By fusing complex semantic information in visual representation,
the proposed model can successfully mitigate the impact of illumination
and fully express the multi-dimensional information in the environment.
Experimental results on the Oxford New College, City Center, and Lab
datasets demonstrate its superior LCD accuracy and mapping perfor-
mance, especially for environments with changing illumination.

Keywords: Brain-inspired simultaneous localization and mapping · Loop
closure detection · Semantic information.

1 Introduction

Simultaneous Localization and Mapping (SLAM) localizes a robot and builds a
map as it explores an unknown environment [1]. This map defines the robot’s
orientation by pose (position and orientation). Recently, the literature has grown
⋆ Corresponding author: Rong Xiao.
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up around introducing mathematical probability filtering into SLAM algorithms,
such as Kalman Filter (KF), Particle Filter (PF), and their improved algorithms
[2]. Since only considering the recursive relationship before the data, it is easy to
cause error accumulation problems and map inconsistencies. In large-scale and
complex environments, it is a big challenge for the mapping performance of the
algorithm. To settle this problem, brain-inspired SLAM models have become a
promising alternative method for robot spatial cognition development by trans-
forming neuroscience research into engineering solutions [3–5]. Among them, the
rodent-inspired simultaneous localization and mapping algorithm (RatSLAM)
has achieved promising performance by emulating the spatial awareness of the
hippocampal system [6]. RatSLAM works indoors and outdoors and requires only
a monocular vision sensor. However, multiple problems still need to be solved
before the RatSLAM model could be used as a practical solution in complex
environments. Specifically, Loop closure detection (LCD) is the critical process
for robots to relocalize themselves and correct accumulative errors. The cogni-
tive map constructed by RatSLAM is composed of many connected experiences,
which describe the spatial structure of the environment. Recently, many differ-
ent methods have been proposed for detecting correct loop closure and building
experience map accurately [7–11]. Although the existing methods can achieve
effective LCD and experience map building in RatSLAM systems, they often re-
sult in relatively low efficiency and poor robustness to lighting changes by only
using pixel information in template matching.

An emerging trend seeks help from semantic information for more accurate
LCD. Imerge semantic information with pixel information not only increases the
computational depth of the LCD but also enhances the brain-inspired feature of
the entire system. People identify the place where they are not only spatially,
but also conceptually [12]. Semantic information is a higher-level concept ob-
tained through vision, which can successfully provide landmarks for the map.
Although semantic information enables scene recognition and human-intelligible
map building, it is still lacking in LCD and experience map building in Rat-
SLAM. Further research on them may help us encode information perceived by
humans and refine brain-inspired SLAM.

In this paper, inspired by the effectiveness of semantic information in the
brain, semantics is added to LCD and experience map building in RatSLAM.
The view template records the experienced scene. We use YOLOv2 to extract
the object information from the vision, and store them in the view template
together with the pixel information. For template matching in LCD, we calcu-
late the template similarity by fusing the semantic similarity computed by the
number and position of recognized objects with the pixel similarity computed
by SAD. Comparing the template similarity with the threshold detects whether
a closed loop is generated, the detected closed loop will correct the experience
map. To improve the legibility of the map, we project the recognized objects to
the corresponding positions on the experience map through 3D model segmen-
tation technology, thus constructing a map with object-level information. By
detecting semantic information, the proposed model can successfully mitigate
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the impact of illumination and fully express the multi-dimensional information
in the environment. The experiment results show that with the fusion of seman-
tic information, our system has higher LCD accuracy and more stable mapping
performance, especially for environments with changing illumination. The main
contributions of this paper can be summarized as:

– For increasing the representation capacity of the system, we store the object
information recognized from the visual scene into the view templates, and
fuse it with the pixel information for template matching in LCD;

– For improving the map display capability and establishing a multi-dimensional
experience map, we project objects identified in the scene onto the map
through 3D model segmentation technology;

– We also have verified the advantages of the semantic-pixel associative rep-
resentation method and comprehensively compared the impact of various
parameters and lighting conditions on performance.

2 Related Work

In traditional RatSLAM system, LCD usually downscales and vectorizes camera
image vectors and then compares them. Current research on LCD can be divided
into two categories: improvement of LCD detection and visual processing. Gu et
al. proposed to replace the templates search module in RatSLAM with the multi-
index hashing-based loop closure detection (MILD) [7] algorithm, building a
more accurate experience map [8]. Xu et al. used the Bag of Words (BoW) model
and the dynamic island mechanism to achieve quick and efficient image retrieval
[13]. In contrast, another type of LCD innovation lies in the processing of visual
information. Zhou et al. used ORB as the feature when matching [9]. Accordingly,
Kazmi et al. used the Gist descriptor as the feature matching method, which can
also reduce the matching error [10]. To be closer to the biological model, Wu et
al. improved the visual space of the image, and deal with the characteristics of
image brightness and saturation from the perspective of the visual model [11].
It has gradually become a trend to extract visual information close to biological
models. But it still has a long way to brain-inspired SLAM, and the application
of semantics in it needs to be further studied.

Besides, there is only a single topology environment display method for map
in RatSLAM. In traditional SLAM, multidimensional representation using se-
mantics has become a hotspot. Nakajima et al. integrated object information to
associate geometric map points with semantic labels [14]. Iqbal et al. inserted
complete object instances into the map instead of classifying already obtained
map elements [15]. Yet the semantic map for RatSLAM is still being explored.

3 Methodology

In this section, we will first review the RatSLAM and its limitations. The pro-
posed novel SLAM system is then introduced. Finally, we will display how to
integrate semantics in LCD and build a multi-dimensional experience map.



4 Yufei Deng et al.

3.1 Revisiting RatSLAM

RatSLAM is composed of three main modules: pose cell, local view cell, and
experience map. The local view cells store the view template in it [16]. If a
new visual scene is encountered, a new local view cell would be created, and
a link would also be built to connect this local view cell with the active pose
cell. When a familiar scene is sensed, the corresponding local view cell would
be activated and inject energy to the connected pose cell. We detect familiar
scenes by calculating the similarity between the visual templates in LCD. The
pose cells are represented the robot’s perception of its current pose (x′, y′, θ′).
Their dynamics are regulated by the path integration and the energy from local
view cells. Finally, the experience map groups the information from local view
cells and pose cells to represent the robot pose uniquely. Due to the alone visual
information in LCD, conventional RatSLAM, despite being simple and effective,
struggles with low precision and poor stability.

3.2 Semantic-pixel Associative RatSLAM

The overview of the proposed semantic-pixel association RatSLAM is presented
in Fig. 1, which includes two major components: LCD and experience map build-
ing. Our system will use semantic information and pixel information in LCD to
eliminate trajectory offset caused by accumulated errors. Here, YOLOv2 net-
work is introduced to obtain semantic information. We then estimate the pose
through pose cells, build an experience map fused with semantic information.
3D models will be projected in the corresponding position according to semantic
information, making a comprehensive representation of the environment.
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Fig. 1: The architecture of our semantic-pixel association RatSLAM system.
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3.3 Integrate Semantic Information in LCD

To improve the accuracy of LCD, our system adds semantic information in con-
ventional template similarity calculation. When a visual scene is an input, it is
annotated by YOLOv2 and stored in the view template. In the LCD, seman-
tic information is firstly used for rough matching, and templates that are less
similar to the current scene are quickly excluded to reduce unnecessary calcula-
tions. Afterwards, we calculate the similarity between the current scene and the
remaining templates and treat the template with the highest similarity as the
matching template. In addition, we set it not to match with the recently saved
templates to reduce the false closure caused by the short interval between two
images. Our proposed LCD method mainly consists of two parts: (1) Semantic
annotation part. We identify objects and store the semantic information and
pixel information in the view template. (2) Template matching part. We com-
pute template similarity using multiple levels of information. The architecture
of the proposed method is shown in the LCD module in Fig. 1.

Semantic Annotation To perform stable and accurate LCD in complex scenes,
it is necessary to perform object detection on RGB images and find out images’
discriminative landmarks, including their categories and positions. YOLOv2 is a
target algorithm introduced in the YOLO family. Its detection framework can be
roughly divided into two parts: feature extraction network and action network.
The feature extraction network is modified based on the DarkNet-19 network.
The detection network consists of 4 convolutional layers, a transfer layer, and a
detection layer [17]. In contrast to other YOLO detectors, YOLOv2 is relatively
basic, but with better performance and a simple structure. It is proved by exper-
iments that even with the basic detector, we can have better performance than
traditional RatSLAM. By using the YOLOv2 network on the images, we obtain
a set of labeled semantic regions S = {s1, s2, . . . , sn}, si = [typei, xi, yi, wi, hi],
where type, x, y, w, h are the label category, center point coordinates, width, and
height values respectively. The semantic information si of each image is stored
in the label set Sk. To facilitate the use of semantic information in LCD, Sk of
the image is added to the original visual template Vk.

Template Matching After semantic annotation, an image is abstracted into a
semantic label set S. Taking the center of the image as the origin, we divide an
image into four quadrants: upper left, lower left, upper right, and lower right.
Any label si in S is classified into one quadrant through its center coordinates.
Count the number of all regions according to the type of semantic label, and
construct a scene descriptor U =

[
Zlu;Zld;Zru;Zrd

]
, Z = [z1, z2, . . . , zn], where

Zlu, Zld, Zru and Zrdrepresent the descriptor information of the four quadrants
of a picture respectively, n is the number of semantic label categories, and zi
represents the number of a certain semantic tag in a quadrant.

After obtaining U , the algorithm calculates the similarity between the current
image and the four quadrants of the template. For the current image a and
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the template b to be matched, according to its scene descriptors, we define the
quadrant similarity calculation method as follows:

ζ(Zi
(a), Zi

(b)) =

∑
ω · |Zi

(a) − Zi
(b)|∑

ω · |Zi
(a) + Zi

(b)|
(1)

where Zi
(a) is the descriptor of an image in the region i and wj represents

the similarity weight of j-type semantic labels. To avoid the impact of the few
semantic labels on template matching, its w is set to 0. w is suppressed so that
the greater the number of labels, the lower the similarity weight. The algorithm
designs label similarity weight is as follows:

ωj =

{
0, cj → 0
1− cj∑n

j cj

(2)

where cj is the total number of labels of j-type. Sum the similarities of the four
quadrants to obtain the semantic similarity between the image and the template:

V ts(a, b) =

4∑
i=1

ζ(Zi
(a), Zi

(b)) (3)

Combined with the V ts with V tp calculated by the SAD algorithm, the tem-
plate similarity V terr between the image and the template is defined as follows:

V terr = α · V ts + β · V tp (4)

where α and β are the weight parameters of semantic similarity and pixel simi-
larity, respectively. The most similar template to the current image, which with
the highest similarity is preferentially selected as the best-matched closed-loop
template. If a closed loop is detected, the system will correct the cognitive map,
otherwise, a new template will be created.

3.4 Experience Map Building with Semantics

In this part, we project the recognized objects onto the map, displaying semantic
information in the environment. Then we construct a topology map, 1displaying
the physical information of the environment.

Objection Positioning When the objects are detected, we perform object in-
stance segmentation by adopting primitive 3D shape priors. Then we reconstruct
and find all 3D points inside the detected box, where the primitive model of the
objects is fitted. The Euclidean region growing segmentation technique [18] is
introduced as the clustering technique adopted in the shape model fitting, re-
turning the centroid and respective convex hull dimensions of all classes except
doors. Whenever doors are recognized, we fit a planar patch using RANSAC [19]
for estimating the pose. The projected pose of each object, denoted by y ∈ R3,
is then represented by the 2D projected centroid from the camera coordinate
system to the global map coordinate system and its orientation.
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Experience Map Building Experience map in RatSLAM system is a semi-
topology map composed of many experiences. When the system is running, the
subsequent experiences are calculated based on the position of the previous ex-
perience and the robot’s motion. When the closure is detected, the update pro-
cedure for experiences will be executed. Then the active pose cell and the local
view cell will be reset to the matched experience. The map will be adjusted by
the matched experience and a new experience will be created.

4 Experimental Analysis

In this section, we verify the proposed method from the following four perspec-
tives. Firstly, LCD with semantic annotation is compared with traditional LCD
in terms of Precision and Recall. Next, we discuss how the weight parameters of
V ts and V tp affect the performance of our proposed method on specific datasets.
We then evaluate the performance of the proposed LCD method facing noisy
data. Finally, for showing the effectiveness of the entire RatSLAM system with
our proposed method, the experiment is performed in real environment datasets.

4.1 Datasets

Experimental verification is performed using two datasets that are widely used to
evaluate LCD algorithms because these datasets provide ground truth loop clo-
sures, which is convenient to measure the correctness of the results. Lab datasets
are recorded to verify the effectiveness of multidimensional cognitive map con-
struction with LCD. The datasets used in experiments are listed:

– Oxford New College (NC) dataset [20]. The left and right cameras each
capture 1073 images, with 423 and 430 real closed loops respectively.

– City Center (CiC) dataset [20]. The left and right cameras each capture 1237
images, each with 561 real closed loops.

– Recorded Lab datasets. The two indoor datasets are gathered from a labo-
ratory with images recorded by the RGB-D sensor, which is controlled to do
semi-automatic environmental exploration. The sensor respectively captures
2893 and 1784 image pairs (RGB and depth).

4.2 Performance Comparison of LCD

Generally, the Precision-Recall (PR) curve is used to evaluate the performance
of the LCD algorithm. Precision reflects the ability of the algorithm to detect
correctly, and Recall reflects the ability to detect comprehensively. By changing
the threshold of the similarity, different Precision and Recall can be obtained,
thereby obtaining the PR curve. Fig. 2 shows the comparison of the PR curves
obtained by our proposed method and the original Ratslam, DBoW2 [21], and
SeqSLAM [22] algorithms for LCD on four datasets, including NC’s, and CiC’s
left and right image datasets. For NC, we set the label type total is 17, while
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Fig. 2: Comparison results of the proposed LCD method, RatSLAM, DBoW2
and SeqSLAM on different datasets.

40 for CiC. α is set to 0.9, 0.8 0.9 0.8 for NC’s, and CiC’s left and right image
datasets respectively, and β is set to 0.09 0.01 0.05 0.09 respectively.

Fig. 2 shows that as the Recall increases, the Precision of the method we
propose drops slowly, while the others drop rapidly. When the Recall is 0.5, the
Precision of our method can still maintain 0.9. This is because in these datasets,
dynamic objects such as vehicles and pedestrians have great interference with
traditional LCD algorithms, and their robustness is relatively poor in the face
of similar structures and local changes. The proposed algorithm calculate the
pixel and semantic similarity of different quadrants, which increases the amount
of matching information, performs stricter similarity calculations according to
areas, and improves the accuracy of the LCD.

4.3 Performance Trade-offs for LCD

To express the proposed method more clearly, we discuss the relationship be-
tween different α and β under the same Th. 9 values of α and β are tested in the
NC’s left and CiC’s right camera image dataset respectively. We set α ∈ [0.1, 0.9]
with an interval of 0.1, and set β ∈ [0.01, 0.09] with an interval of 0.01. Under
the same α condition, Fig. 3 indicates that the smaller the β value, the lower
the Precision, and the higher the Recall. This is because the single semantics
will generate a large number of false matches when the use of pixels in the
image-matching process is greatly weakened. And it also shows that the greater
the β, the increase of the Precision, and the decrease of the Recall. Since the
SAD is sensitive to noise, it will match the image and the template too strictly.
Therefore, when the use of pixels is greatly enhanced, closed loops that should
be matched are not matched. When α is larger, the average performance of LCD
is better, indicating that more semantic information is used in the process of
template comparison, and better LCD results; when α is less than 0.5, the av-
erage performance of LCD crosses, and the difference not much, indicating that
when the α is less than 0.5, its influence on the comprehensive similarity is lower
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than that of the pixel similarity, and the matching is mainly determined by the
SAD. Therefore, the selection of parameters α and β requires a trade-off between
Precision and Recall for LCD.

Fig. 3: PR curves under different similarity parameters.

4.4 Brightness Transformation on LCD

In this section, we conduct experiments under different lighting conditions to
demonstrate the robustness of the proposed algorithm under the influence of
lighting. We find the closed-loop matching images from the CiC’s right image
dataset, and select serial 38 even frames from 0304-0368 as the test dataset. The
brightness of the 38 frames is increased by 10 and decreased by 10 respectively
to obtain the test dataset S1 and the test dataset S2.

Table 1 shows the original algorithm is more obviously affected when the
brightness changes. Compared with the original result, the matching template
has a more obvious change, and more than 90% of the changed templates are
wrong matches. However, our method is less affected by brightness changes, and
the proportion of false matches in templates with matching changes is less than
65%. These results show that our proposed algorithm is still more robust than
the original under changing lighting conditions.

Table 1: Closed-loop detection effect under brightness change
Method brightness changed matched images rate of change match errors error rate
Original +10 14 36.84% 13 92.86%
algorithm -10 21 55.26% 21 100.00%
Proposed +10 6 15.79% 2 33.33%
algorithm -10 14 36.84% 9 64.29%
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(a) Original Lab1 map (b) Improved Lab1 map

(c) Original Lab2 map (d) Improved Lab2 map

Fig. 4: The cognitive map generated from the Lab datasets by the original Rat-
SLAM algorithm and our proposed method.

4.5 Experience Map Building on Lab Dataset

We compare the original algorithm and our method on the recorded Lab datasets
to verify the effectiveness of fusing semantic information for improving mapping
accuracy (see Fig. 4) and expressing the experience map with object information
(see Fig. 5). In Fig. 4 the left column shows the maps constructed by the original
system, and the right column shows the maps constructed by our system. Obvi-
ously, the original system cannot correct the map because LCD relying on pure
pixel information has difficulty in correcting the cumulative error. In contrast,
the proposed RatSLAM algorithm has better map-building effects. Through 3D
modeling of the recognized objects, the map shows the physical environment of
the robot in multiple dimensions. The detected objects are shown in green, white,
blue, and brown representing “door”, “desk”, “water” and “box” respectively. Fig.
5 shows that the mapping of the laboratory is built more comprehensively, and
gives people a better understanding of the environment.

5 Conclusion

In this paper, an improved RatSLAM model incorporating semantic information
has been proposed to improve the performance of LCD and construct an experi-
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(a) Lab1 (b) Lab2

Fig. 5: The multi-demansional maps generated from the Lab datasets.

ence map with semantic information. In this model, we use YOLOv2 to extract
semantic labels in images, integrate semantic information and pixel informa-
tion to create visual templates, calculate the similarity between visual templates
based on pixel level and object level, improve the accuracy of LCD, and re-
duce the interference of lightness. We use 3D model segmentation technology to
project the objects extracted from the image to the corresponding positions on
the map, and build an experience map with semantic information. Experiments
have proved that the performance of LCD has been significantly enhanced in the
RatSLAM system, and the experience map constructed has better accuracy and
comprehensively reflects the environment structure and semantics.
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