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ABSTRACT

Scheduling of taxis can reduce cost and potentially decreases CO2 emissions. However, with a
rising number of taxis or travel requests, the time for computing schedules increases. A promising
alternative is to estimate trip durations based on historical trip data without calculating routes. Based
on an analysis of the state of the art, in this paper we identify and investigate two limitations of
route-free Estimated Time of Arrival (ETA) models: First, the overall set of features considered by
state of-the-art models is limited. For instance, some potential relevant features (such as weather-
related ones) are not considered at all. Also, different models use different sets of features, such as
the linear distance between pickup and dropoff location, in diverse and partly inconsistent ways. For
those features generally considered, we find different representations, e.g., for trip start time. Second,
while discretization of degree-based coordinates for pickup/dropoff locations via spatial binning is
very common in state-of-the-art ETA models, the chosen grid cell sizes vary widely and apparently
arbitrarily. The contribution of this paper is threefold: First, we propose to enhance route-free
ETA models by additional features and investigate the influence of the feature representation on the
prediction precision based on a benchmark dataset. Second, we compare different grid cell topologies
and sizes as regards their effect on the prediction precision of ETA. Third, we construct and evaluate
three types of Machine Learning (ML) models. Our findings indicate that the results outperform
state-of-the-art static route-free ETA estimation models.

Keywords Estimated time of arrival · travel time estimation · taxi fleet management · machine learning

1 Introduction

Estimating the travel time for a future taxi trip can be beneficial for scheduling fleets, e.g., in taxi ridesharing. Service
providers that manage taxi fleets aim to schedule their taxis optimally to reduce cost and thereby potentially decrease
CO2 emissions. However, for scheduling a fleet, many route alternatives for a set of taxis have to be compared before
the actual serving of passengers starts. The underlying computational problems are known to be NP-hard, which is
especially relevant for service providers that serve thousands of trips per day. By estimating the time of arrival of future
trips, service providers can compare a set of schedules and choose a near-optimal one. That way, a service provider can
serve more passengers with fewer taxis, and minimize the total travel time of its taxi fleet.
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To enable scheduling, many previous models like (Li et al., 2018) made use of a route or its metadata in ETA. However,
other route-free models like (Al-Abbasi et al., 2019), (Jindal et al., 2018), (Singh et al., 2019), and (Wang et al., 2019)
only consider pickup/dropoff location and additional features like the start time for a single trip. In this paper, we study
the route-free instead of route-based ETA due to the following reasons: (1) Route-based ETA is problematic when data
is sparse for certain roads (Wang et al., 2019) as the estimation cannot be backed up by historical data. (2) A data-driven
approach does not require an underlying road network and is, therefore, easier to realize. (3) Moreover, several taxi
trip datasets lack historical trajectories. As we do not depend on the route information, we circumvent the problem of
non-existing trajectories and generalize the ETA approach to additional use cases. (4) Once an ML model is trained the
usage is relatively cheap, so it forms a less expensive alternative to the more complex calculation of routes (Li et al.,
2018). However, the route-free ETA is challenging because the spatial and temporal dependencies of a trip’s duration
still depend on a given urban environment. Hence, influences like daily travel patterns must be learned indirectly, which
makes the problem hard. As we focus on the static ETA (information is limited to those available before the trip) the
problem is even more complicated.

Remarkably, the majority of the considered ETA models use grid indices as a replacement of exact degree-based
coordinates for pickup/dropoff locations. From our perspective, using a grid does necessarily improve the prediction
precision in ETA models because some of the location information present in the degree-based coordinates is unused.
As regards additional features, we observe that several variants for the start time representation are used but not
compared; while some other features like the Euclidean distance of a trip are included by only one model, others like
weather-related ones are ignored.

This works aims to investigate the influence of additional features and the representation of pickup/dropoff locations on
the prediction precision of static route-free ETA in urban environments; Therefore, we collect potential features and
their representations from related work and enhance a historic taxi trip dataset by them. Next, we compare the influence
of the features and their representations on the prediction precision of multiple ML methods commonly used for ETA.
Based on that, we select an optimal set of features for each of the methods. Specifically, three main research questions
are addressed: (RQ1) Does enhancing existing taxi trip datasets by additional features like variants of start time and
distance or weather-related ones improve the prediction precision? (RQ2) Should the degree-based coordinates be used
directly, or should a grid-based proxy be used? (RQ3) How does the topology (square, triangle, or hexagon) and size of
a grid cell influence the prediction precision?

2 Related Work

Route-free Models As part of a ridesharing framework, Al-Abbasi et al. (2019) develop a route-free ETA model that
receives the start time, passenger count, and indices of a 150-meter square grid for pickup/dropoff location as input.
The model is a relatively simple two-layer Fully-Connected Feedforward Neural Network (FCNN) with 64 neurons in
each layer. de Araujo and Etemad (2019) also build a similar FCNN with a different architecture; their FCNN consists
of five layers with 500, 200, 50, 50, and 50 corresponding neurons. The input features are the degree-based coordinates
for pickup/dropoff, the hour and weekday encoded in sine/cosine to capture the circular nature of these features, the
distance between pickup and dropoff, and an estimated travel distance with a map-based locally-linear regressor. As
part of a transportation service, Jindal et al. (2018) develop an FCNN model that can estimate the trip distance as well
as trip duration; for the ETA, the last layer of the trip distance estimator is enhanced by a 10-minute time-bin with
Weekday Separation (WDS). Similar to using grids, temporal binning separates a day into several bins. For instance,
when a 10-minute time-bin is considered, a day is divided into 10-minute time-bins, resulting in 144 time-bins. For
time-bins with WDS, weekend time-bins are added on top of the ones for workdays. Therefore, the information about a
trip starting on a workday or at the weekend is inherently captured. As representation for pickup/dropoff location, Jindal
et al. (2018) use a 200-meter square grid. Based on (Al-Abbasi et al., 2019), Singh et al. (2019) exchange the FCNN by
a Random Forest (RF) to perform the ETA in a ridesharing framework. Singh et al. (2019) use the weekday and start
time of a trip together with the degree-based coordinates as input features. Wang et al. (2019) develop a neighbor-based
method that estimates the duration of a trip by considering trips with similar pickup/dropoff locations and start time.
They use the start time, Euclidean distance, and the indices of a 50-meter square grid as input features.

Route-based Models Kankanamge et al. (2019) apply XGBoost to develop a route-based ETA model. The indices
of a 100-meter square grid for pickup/dropoff, a 10-minute time-bin, the driver and medallion identifier, and multiple
features that are derived from the route like the number of intersections are the input features. Another model proposed
by Li et al. (2018) inputs a 10-minute time-bin, the indices of square grid for pickup/dropoff, and multiple information
extracted from the route into their multi-task representation learning model.
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Table 1: Overview of properties of existing ETA models

Reference Method Route-based Additional Features Grid topology Grid cell size

Al-Abbasi et al. (2019) FCNN 7 Start time, passenger count Square 150 meters
de Araujo and Etemad (2019) FCNN 7 Sine/cosine of weekday and hour,

distance, estimated distance
- -

Jindal et al. (2018) FCNN 7 10-min. time-bin with WDS,
estimated distance

Square 200 meters

Kankanamge et al. (2019) XGBoost (3) 10-min. time-bin, driver identifier,
medallion identifier

Square 100 meters

Li et al. (2018) Representation learning (3) 10-min. time-bin Square -
Singh et al. (2019) RF 7 Weekday, time of day - -
Wang et al. (2019) Neighbor-based 7 Start time, Euclidean distance Square 50 meters

Research Gap An overview of the described ETA models is given in Table 1. Remarkably, except for (de Araujo
and Etemad, 2019; Singh et al., 2019), all mentioned models use grid indices as a replacement of the degree-based
coordinates for the pickup/dropoff locations. While these models achieve impressive prediction precision, they lack a
convincing argumentation for favoring a grid with a certain cell size or topology over degree-based coordinates. While
using a grid can be assumed to be useful for tasks like demand prediction, it is unclear whether it is so for the case of
ETA – and what a good topology or resolution would be in this case. As regards additional features, we observed that
e.g. for the trip start time, several representations – like time-bins or common date/time representation – were used but
not compared. Some features were only included sporadically, like the euclidean distance by Wang et al. (2019). Other
potentially relevant features, like different time-bin variants, other distance measures such as Manhattan distance, and
weather-related features like precipitation (influences vehicle speed [Feng et al., 2020]) are ignored completely.

3 Methodology

3.1 Taxi Trip Dataset

Dataset Description The NYC taxi trip dataset may well be the largest publicly available dataset about taxi trips.
Currently, trips between 2009 and 2020 can be downloaded at City of New York (2020). The number of trips is large;
alone from January 2016 to June 2018, about 780 million trips were recorded with more than a million trips per day at
the end of 2018 (de Blasio and Joshi, 2018). The exact locations are only available for older trips. Therefore, in this
paper, we use the Yellow taxi trip subset from January till May 2016 for training/validation and the same months from
2015 for testing. Overall, we select 3.7M trips for training/validation and 250K for testing randomly.

Outlier Removal In the taxi trip dataset several erroneous or unrealistic trips are included. Therefore, we define
multiple criteria to remove outliers. For each criterion, we report the percentage of records affected; overall, 3.26% of
the trips are excluded by the criteria: (1) Location is outside the study area - 1.78% – Because our approach for ETA is
data-driven, we only handle those areas in which trips were recorded previously. Therefore, we exclude trips that are
not in a square with the bottom left at 40.587917, -74.089829 and top right at 40.901386, -73.68566. (2) Location is not
in a district - 1.84% – Some pickup or dropoff points of trips are not in a community district. With this criterion, we are,
for instance, able to exclude points that were mistakenly recorded on areas of water like the Hudson River. (3) Duration
is unreasonably high - 0.13% – We consider approximately three hours as the longest possible trip duration because this
represents covering the longest possible distance in the grid with the average taxi travel speed for Manhattan central
business district. Therefore, we filter all trips that exceed three hours. (4) Duration is zero or less than 30s - 0.51% –
Moreover, we exclude trips with a duration of zero or close to zero seconds. (5) Distance is zero - 1.52% – We remove
trips in which the distance between their pickup and dropoff point is zero. (6) Duration and distance do not correlate
reasonably - 0.7% – This inconsistency refers to two cases. First, the duration is much higher than the traveled distance.
This might be the case when some sightseeing is done. Second, the duration can be relatively low despite a large
distance.

Additional Features As described previously, different models for ETA consider diverse sets of input features. In
general, we orientate on the additional features from related work - listed in Table 1 - and enhance this set by alternative
representations of the same features and additional features like precipitation that potentially influence the prediction
precision. While we expect that not all features or their representations will increase the prediction precision, we will
back up such intuition in later experiments. Because we perform static ETA, we can enhance the New York City (NYC)
taxi trip dataset only by features that are known before the trip starts. Therefore, we exclude features like the number of
traffic lights on a route or the price, which indirectly capture the length of the route. To investigate RQ1, we consider
the year, month, week, day, weekday, hour, and minute of a trip as time-based features. Also, we compare different
time-bins with sizes from 5 to 55 minutes with and without WDS. Similar to Wang et al. (2019), we also include
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Table 2: Overview of categorized additional features

Category Features

Basic Coordinates, and grid indices for pickup/dropoff
Time-based Year, month, week, day, weekday, hour, minute, and variants for time-bins
Distance-based Haversine and Manhattan distance
Weather-based Barometer, cloudy, humidity, precipitation, snow, temperature, visibility, and wind
Other Community district, passenger count

distance-based features like the Manhattan distance. However, unlike Wang et al. (2019) we do not use the euclidean
distance between pickup and dropoff location, but rather favor the Haversine distance which captures the spherical
shape of the earth. As described by Feng et al. (2020), weather-based features can influence the speed of vehicles.
Consequently, we take into account weather-based features at the hour a trip starts. We consider barometer, cloudy,
humidity, precipitation, snow, temperature, visibility, and wind. Moreover, for instance, Wang et al. (2019) showed that
different regions have dissimilar average speeds. Based on that, we assume an influence of the region on the travel time
and study the influence of using the one-hot encoded identifier of a community district in which a trip starts/ends. A
feature used by Al-Abbasi et al. (2019) and also considered by us is the passenger count. In contrast to Kankanamge et
al. (2019), we are not able to include the driver or medallion identification because these features are not available in
all of the considered subsets of the NYC taxi trip dataset. To evaluate the influence of the grid topology and cell size
(RQ2/3), we consider the degree-based coordinates and square, triangle, and hexagon topology with cell sizes from 5 to
1000 meters for pickup/dropoff location. An overview of the categorized features is outlined in Table 2.

3.2 Experiments

To tackle the raised research questions, we run four experiments: (EXP1) To determine potential additional features
(RQ1), we add every feature to the degree-based coordinates and measure the prediction precision. (EXP2) To evaluate
the influence of the grid topology and cell size (RQ2/3), we compare the prediction precision achieved with degree-based
coordinates to the one accomplished with each of the grid variants. (EXP3) After EXP1 several alternatives for time-
and distance-based features are reasonable. Therefore, we compare those in combination with the selected grid and
choose a final feature set (RQ1). (EXP4) Next, the hyperparameters of all ML methods are tuned and the achieved
prediction precision is reported. In the following, we describe these experiments in more detail. Before that, we outline
the chosen ML methods. In the end, we also list the metrics for evaluating the prediction precision.

ML Methods The main objective of this paper is not to develop new methods but rather to study the influence of
different features and their representation on state-of-the-art ML methods. Therefore, we chose three sophisticated ML
methods: the RF, XGBoost, and FCNN. The RF uses bagging or the learning of multiple models or decision trees and
the combination of these models. The XGBoost, on the other hand, is based on boosting, which means the iterative
building of models based on the errors of the previous ones. The third method, an FCNN, is a popular technique
particularly successful when trained based on large datasets. As shown in Table 1, all three ML methods were used
previously to tackle the ETA problem.

EXP1 - Additional Features To determine additional features that can increase the prediction precision, we add
every non-basic feature solely to the degree-based coordinates (baseline) of the taxi trip dataset. Next, we train ten RF,
XGBoost, and FCNN models for each feature subset to get a more representative prediction precision and compare this
result to the baseline. For the RF and XGBoost, we do not set any hyperparameters because these methods usually
achieve good results without tuning them; the number of trees for both ML methods is set to 100. For the FCNN models,
we use a relatively simple fully-connected feedforward architecture with three layers (128, 64, and 32 corresponding
neurons) and a rectifier linear unit as the activation function for all layers. We set the batch size to 10K and the number
of epochs to 25 to limit the training time. The learning rate is set to 0.1.

We use 500K trips from January to May for training (400K) and validation (100K). To verify the increase of the
prediction precision, we apply a two-sided t-test and compare its p-values p to alpha α, which we set to 0.001 to cover
all common significance levels. Finally, we correct p with the Bonferroni method (see [Armstrong, 2014]) to avoid the
multiple comparison problem. If adding a feature reduces one of the evaluation metrics significantly, we consider it for
EXP3 and EXP4.

EXP2 - Degree-Based Coordinates vs. Grid Indices To study the influence of the representation of the
pickup/dropoff location on the prediction precision, we train models of the three ML methods for several grid
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variants without including any other features and compare the results to the baseline which consists of the degree-based
coordinates. As grid variants, we consider square, triangle, and hexagon topology with grid cell sizes from 5 to 1000
meters. We also analyze the relative change of the training time to better understand the motivations of others that use
grid indices for spatial data. Otherwise, the experimental setup is similar to the one from EXP1.

EXP3 - Combination of Additional Features with Coordinate-Representation After EXP1 several alternative
representations achieve similar results. To choose the most promising alternative for the EXP4, we build ML models and
compare the alternative representations. Similar as before, we build ten models each, verify changes in the prediction
precision with a two-sided t-test, and correct the resulting p-values. In contrast to EXP1 and EXP2, we increase the
number of trips to 1M and the number of trees for the RF and XGBoost to 200. For the FCNN we insert an additional
first layer with 256 neurons.

EXP4 - Hyperparameter Tuning and Larger Scale Based on the results from EXP3, we tune the hyperparameters
with Bayesian optimization; as acquisition function we use expected improvement. We train models on a larger scale
by increasing the size of the training dataset from 0.8M to 1.2M trips. For the RF, as recommended by Probst et al.
(2019), we tune the minimum number of samples for splitting a node and for leaf nodes. Additionally, we tune the
maximum number of features per split and the maximum depth of a tree. The number of trees in the forest is set to
300 to get a reasonable performance gain. Similar to Probst et al. (2019) we do not consider this parameter as tunable
because, in general, a larger number of trees is always desirable. For hyperparameter-tuning of the XGBoost, we
orientate on Wang and Ni (2019) who tune among others the following hyperparameters: (1) the maximum depth of a
tree, (2) the minimum weights of instances needed in a child, (3) the subsample ratio of the training data per tree, (4) the
minimum loss reduction required for making a further partition on a child, and (5) the subsample ratio of features when
constructing a tree. We apply a similar hyperparameter-tuning strategy and set the number of trees also to 300. To tune
the hyperparameters of the FCNN, we consider the number of hidden layers, the number of neurons included in those,
the learning rate of the used Adam optimization algorithm, and the batch size. The final FCNN models are trained for
50 epochs. Once the ML models are trained, we evaluate them on previously unused test data from mid-May to June
2015 and report their results.

Evaluation metrics We select those evaluation metrics that are common for regression tasks and used by other
models to enable comparing their results to ours. Using the Mean Absolute Error (MAE = 1/N

∑
i |yi − ŷi|) and the

Mean Relative Error (MRE =
∑

i |yi − ŷi|/
∑

i yi) is reasonable because multiple models evaluate their performance
based on at least one of them. Similar to Li et al. (2018) we will also use the Mean Absolute Percentage Error
(MAPE = 1/N

∑
i |(yi − ŷi)/yi|), which is robust to outliers and its values are easy to understand.

4 Results

When not stated otherwise, the reported results for the four experiments are verified via a two-sided t-test or significant.
For EXP1 and EXP2, we present only the relative changes of the prediction precision and training time rather than their
concrete values because the models are otherwise hard to compare due to their small size.

EXP1 - Additional Features In Table 3, we visualize the relative change for the MAE, MRE, and MAPE together
with the Bonferroni corrected p-values for the considered features compared to the baseline that consists of the degree-
based coordinates. Negative values indicate an improvement of the prediction precision or a decrease of an evaluation
metric. Features that reduce one of the evaluation metrics significantly are marked with a ρ for the RF, a χ for the
XGBoost, and a ν for the FCNN after the feature name. To limit the size of the table, we only visualize the two most
promising time-bin (TB) variants with and without weekday separation (WDS).

For the RF, the month decreases the MRE significantly (indicated by three asterisks) by 0.81 percentage points. Other
features that decrease one or multiple evaluation metrics for the RF are the week, weekday, hour, and all time-bin
variants. Interestingly, including a distance measure decreases the prediction precision. As regards the remaining
features, only the temperature increases the prediction precision. For the XGBoost, weekday, hour, the time-bin variants,
and the distance measures increase the prediction precision. For the FCNN, only the distance measures increase the
prediction precision. For the RF and XGBoost, we consider solely the features that increase their prediction precision
in EXP3 and EXP4. For the FCNN, we additionally take all features into account that decreased at least one evaluation
metric for one method because learning the trip duration with the relatively small dataset in EXP1 is more challenging
for the FCNN.

EXP2 - Degree-Based Coordinates vs. Grids Indices In Figure 1, we visualize the relative change of prediction
precision measured by the MAPE and training time for square grids with different grid cell sizes or heights compared to
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Table 3: EXP1 - Relative change of the prediction precision compared to the baseline of the degree-based coordinates;
negative values show an improvement of the prediction precision in percentage points. The results are verified via t-test
with Bonferroni-corrected p-values.

RF XGBoost FCNN

Feature ∆MAE ∆MRE ∆MAPE ∆MAE ∆MRE ∆MAPE ∆MAE ∆MRE ∆MAPE

Year 0.0ns 0.04ns 0.06ns 40.03ns 0.0ns 0.17ns 0.23ns 0.19ns 1.95ns

Month ρ -0.8∗ -0.81∗∗∗ -0.3ns 40.24ns 0.0ns 0.46ns 0.31ns 0.19ns -1.0ns

Week ρ -1.09∗∗∗ -0.99∗∗∗ 0.03ns -0.58ns -0.71∗∗ 0.06ns 0.53ns 0.35ns 2.49ns

Day -0.24ns -0.29ns 0.72∗∗ 0.4ns 0.32ns 0.87∗∗∗ 0.21ns 0.15ns 2.09ns

Weekday ρχ -3.38∗∗∗ -3.41∗∗∗ -1.92∗∗∗ -2.82∗∗∗ -2.82∗∗∗ -2.48∗∗∗ 0.43ns 0.17ns -0.78ns

Hour ρχ -13.33∗∗∗ -13.33∗∗∗ -10.39∗∗∗ -12.84∗∗∗ -12.84∗∗∗ -11.66∗∗∗ 0.2ns 0.08ns 1.49ns

Minute -0.21ns -0.11ns 0.69∗∗ 0.61ns 0.46ns 0.92∗ 0.23ns 0.12ns 1.76ns

TB 5 min. ρχ -14.01∗∗∗ -13.91∗∗∗ -10.39∗∗∗ -13.13∗∗∗ -13.23∗∗∗ -11.69∗∗∗ 0.12ns 0.08ns 3.48ns

TB 40 min. ρχ -14.02∗∗∗ -13.88∗∗∗ -10.84∗∗∗ -12.98∗∗∗ -13.05∗∗∗ -11.61∗∗∗ 0.4ns 0.17ns 1.58ns

TB 5 min. WDS ρχ -16.55∗∗∗ -16.55∗∗∗ -13.03∗∗∗ -16.08∗∗∗ -16.19∗∗∗ -14.46∗∗∗ 0.03ns 0.0ns 2.16ns

TB 15 min. WDS ρχ -16.57∗∗∗ -16.4∗∗∗ -12.82∗∗∗ -16.08∗∗∗ -16.01∗∗∗ -14.58∗∗∗ 0.2ns -0.06ns 0.45ns

Haversine χν 0.22ns 0.33ns 0.81∗∗∗ 0.31ns 0.25ns -1.21∗∗∗ -40.12∗∗∗ -40.13∗∗∗ -46.74∗∗∗

Manhattan χν 0.35ns 0.37ns 1.05∗∗∗ 0.38ns 0.32ns -0.92∗∗∗ -38.68∗∗∗ -38.73∗∗∗ -48.38∗∗∗

Barometer -0.26ns -0.26ns 0.81∗∗ 0.47ns 0.43ns 0.95∗∗∗ 0.36ns 0.21ns 4.15∗

Cloudy -0.09ns -0.11ns 0.15ns 0.17ns 0.11ns 0.32ns 0.08ns 0.13ns 0.71ns

Humidity -0.32ns -0.26ns 0.78∗∗∗ 0.67ns 0.46ns 1.24∗∗∗ 0.43ns 0.25ns 2.01ns

Precipitation -0.18ns -0.07ns -0.06ns 0.21ns 0.18ns 0.4ns 0.4ns 0.29ns -1.19ns

Snow -0.19ns -0.18ns -0.36ns 0.02ns -0.04ns 0.14ns 0.22ns 0.06ns 2.36ns

Temperature ρ -1.16∗∗∗ -1.06∗∗∗ 0.21ns 0.1ns 0.0ns 0.61ns 0.39ns 0.25ns 2.66ns

View -0.13ns -0.04ns 0.06ns 0.1ns 0.04ns 0.23ns 0.06ns 0.12ns 1.83ns

Wind -0.15ns -0.11ns 0.63∗ 0.32ns 0.39ns 0.72∗∗ 0.22ns 0.19ns 2.84ns

Community dist. ν -0.05ns -0.07ns 0.03ns -0.17ns -0.21ns -0.29ns 0.9ns 3.7ns 1.96ns

Passenger count 0.03ns 0.04ns 0.39ns 0.25ns 0.21ns 0.49ns 0.23ns 0.19ns 3.37ns

∗∗∗p ≤ 0.001, ∗∗p ≤ 0.01, ∗p ≤ 0.05, nsp > 0.05;
features that decrease an evaluation metric significantly are marked with ρ for RF, χ for XGBoost, and ν for FCNN

Figure 1: EXP2 - Influence of the grid cell size on the MAPE and training time with comparison to the degree-based
coordinates or baseline (BL)

the baseline of degree-based coordinates. The results from all three ML are shown but other evaluation metrics and grid
topologies are omitted because their results are very similar. For the RF, as shown on the leftmost graphic, we observe
that with grid cell sizes larger than 15 meters, the prediction precision decreases compared to the baseline. Interestingly,
at the same time, using the grid indices instead of the degree-based coordinates reduces the training time. For the
XGBoost, we notice a similar behavior regarding the training time; however, the prediction precision is significantly
better when using grid cell sizes between 15 and 250 meters compared to the baseline and smaller/larger grid cell sizes.
For the FCNN, we observe a similar pattern in the prediction precision as for the RF. However, the largest possible
grid cell size that does not decrease the prediction precision is 250 meters. As expected, different grid cell sizes do not
change the training time for the FCNN.

EXP3 - Combination of Additional Features with Coordinate-Representation When we compare the alternative
start time representations gathered in EXP1 for the RF, the time-bin features with the WDS decrease the prediction
precision; we favor the 5-minute time-bin over the 40-minute time-bin and the combination of hour and minute because it
decreases all evaluation metrics. For the XGBoost, we choose the 5-minute time-bin, which achieves the best prediction
precision, even though the difference to the combination of hour and minute is not significant. Moreover, we choose the
Haversine distance instead of the Manhattan distance because it achieves a higher prediction precision. For the FCNN,
the time-bin variants with the WDS decrease the prediction precision. While the difference between the combination of
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Table 4: Comparison of our ML models to others based on different evaluation metrics - we trained ten models each
and report the mean values

Evaluation metric MAE MRE MAPE

Our models RF 182.82 22.2532 28.374
XGBoost 182.0264 22.1566 26.8838
FCNN 175.3038 21.3513 23.119

Other rebuild models Al-Abbasi et al. (2019) 199.4434 24.2913 27.4652
de Araujo and Etemad (2019)∗ 201.5998 24.554 28.1508
Jindal et al. (2018)∗† 185.9265 22.5607 23.8429
Singh et al. (2019) 185.3999 22.5673 28.3598

∗ real trip distance instead of their estimated trip distance; † grid cell size of 150 meters instead of 200 meters

hour and minute is not significant, on average the 5-minute time-bin slightly increases the prediction precision and is
therefore chosen. Based on the same argument, we select the Haversine over the Manhattan distance.

Based on the results of EXP1, EXP2, and EXP3, we choose different feature sets for the ML methods. The final feature
set for the RF consist of the degree-based coordinates, month, week, weekday, a 5-minute time-bin, and the temperature.
For the XGBoost, we use the weekday, a 5-minute time-bin, the Haversine distance, and the indices of a 50-meter square
grid. For the FCNN, the final feature set consists of the month, week, weekday, a 5-minute time-bin, the Haversine
distance, and the degree-based coordinates.

EXP4 - Hyperparameter Tuning and Larger Scale After hyperparameter tuning for the RF, we set the minimum
number of samples for splitting a node to four and the one for leaf nodes to four; the maximum number of features per
split is chosen automatically and the maximum depth of a tree is 89. For the XGBoost, we set the maximum depth
of a tree to eleven, the minimum weights of instances needed in a child to seven, the subsample ratio of the training
data per tree to one, the minimum loss reduction required for making a further partition on a child to zero, and the
subsample ratio of features for a tree to one. As regards the FCNN, we use a four-layer FCNN with 300, 150, 50, and
25 corresponding neurons. The batch size is set to 128 and the learning rate to 0.001. As shown in Table 4, the FCNN
outperforms the other ML models in all evaluation metrics with an MAE of 175s, an MRE of 21 percent, and a MAPE
of 23 percent.

5 Discussion

RQ1 - Additional Features Our results show that including additional features can increase the prediction precision.
We compared several representations for the trip start time, which has in general and as expected a relatively large
influence on the prediction precision. Interestingly, using time-bins with WDS as Jindal et al. (2018) proposed did not
increase the prediction precision for any ML method; time-bin without WDS slightly increased the prediction precision
for all ML methods. Using a distance measure does improve the prediction precision for the XGBoost and FCNN;
remarkably, for the RF doing the same decreases the prediction precision slightly. An investigation of the feature
importances for the RF models with and without the distance shows that those with distance mainly estimate a trip
duration based on it. As a result, the other information about pickup/dropoff location only has a small influence and the
prediction precision decreases due to the decreased information. We tried many different weather-based features with an
hourly resolution; surprisingly, including the precipitation, which influences the traffic speed (Feng et al., 2020), does
not increase the prediction precision for ETA. Only temperature increased the prediction precision. This could be caused
by a correlation between the temperature and traffic density which influences the trip duration. While the community
district no positive influence on the prediction precision, we want to point out that such a district-based feature can be
particularly useful for removing outliers with unrealistic pickup/dropoff locations like in a river. Overall, we observed
that many models used different sets of features and lacked sufficient argumentation for the included/excluded features.
Based on our findings, we recommend using our analysis as a basis for such argumentation. While the concrete feature
representation has only a slight effect, including/excluding a feature, like distance measures, depends on the ML method
chosen.

RQ2/3 - Degree-based Coordinates vs. Grid-Based Proxy Grids with a relatively small grid cell size show similar
prediction precision to the degree-based coordinates. The largest grid cell size that performs equally well with our
relatively small models is 15 meters for the RF and 250 meters for the FCNN. Interestingly, for the XGBoost a grid cell
size of 50 meters performs better than the degree-based coordinates. We expect that these numbers are lower when the
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model size or the training time is increased. Larger grid cell sizes decrease the prediction precision. This pattern was
also observed for the hexagon and triangle grid topology.

Interestingly, when no or not all hyperparameters are fixed and the method chooses them independently, like we did with
RF and XGBoost, increasing the grid cell size can lead to lower training time. While the decreased training time might
be beneficial for some, the inference time of ML models matters more in practice. The inference time, however, does not
depend on the grid cell size but the architecture of the ML model. Moreover, converting the degree-based coordinates
into grid indices requires a transformation step. Except for (de Araujo and Etemad, 2019; Singh et al., 2019), the related
works considered in this paper perform such transformation and favor grid indices over the degree-based coordinates.
Building on our results, we recommend omitting this transformation for the RF and FCNN. Instead, training an ETA
model directly on the degree-based coordinates achieves equally good or increases the prediction precision.

Comparison to Other Models An overview of the comparison between our ETA models and the ones of others
rebuild by us is outlined in Table 4. When comparing our results to others, the rebuild of the model from Al-Abbasi
et al. (2019) achieves an MAE of 199s on our data. Therefore, the model is on average around 24s less precise per
trip than our FCNN model or around 17s when compared to the RF and XGBoost. We observe a very similar result
with the model proposed by de Araujo and Etemad (2019). We did not rebuild their distance estimator due to time
constraints but used the actual trip distance directly as an input. Since the actual trip distance is the input for their
estimator, we do not expect different results when rebuilding their approach completely. Based on the same argument
we also use the actual trip distance for the FCNN-based model proposed by Jindal et al. (2018). As regards the MAE
and MRE, their model is slightly less accurate compared to our RF and XGBoost ones; however, their MAPE is lower.
Nevertheless, our FCNN still performs better in all evaluation metrics. The RF model from Singh et al. (2019) performs
not as good as our FCNN but is close compared to our other models. This result is remarkable given the effort we put
into carefully selecting the input features. As regards our RF, we believe that the small increase in prediction precision
of 2.6s for MAE when using a 5-minute time-bin instead of the combination of hour and minute is compromised by
lower temperatures in the test data from 2015 compared to the training data from 2016 that are unknown by the RF.
Wang et al. (2019) report an MAE of 196s for their neighbor-based model on the same test data; our MAE is 8 to 21
seconds lower. Even though the results for the RF are similar to the ones from Singh et al. (2019), we can outperform
all considered static route-free approaches for ETA with our FCNN.

Limitations and Future Work This work discusses five categories representing around 35 features or feature
representations and additional 30 grid variants. However, other features like accident data might also be beneficial.
Besides that, many more feature representations are possible; for instance, time-based features like the hour can be
converted via a sine/cosine function to make the difference between 11:00 p.m. and 00:00 a.m similar to the distance
between any other neighboring hours as done by de Araujo and Etemad (2019). Moreover, potential features can be
combined in different ways, which might lead to a better model. Therefore, we did not provide a complete overview of
potential features, their representation, or combination, but rather a good orientation for future research. Further, we
used only data from Yellow taxi cabs in New York City. Even though we expect similar results with other datasets,
especially the prediction precision will differ.

We argued that using an ML model is a less expensive alternative to calculating the real route. While this might be
true in theory, we assume that for many smaller scenarios in which trajectories are available, route-based models
are a reasonable alternative. A good starting point might be the work of Yang et al. (2018). As already argued by
Kankanamge et al. (2019), the travel time also depends on the taxi and driver. In the dataset used for training, there was
no information about the driver/taxi available. However, we believe that individualizing ETA might be a promising
direction to further increase the prediction precision. While achieving a high prediction precision is desirable, other
objectives might also be relevant. For instance, we might consider a taxi ridesharing system in which the service
provider uses our best ETA model to plan the schedules of taxis. Previously, we argued in Schleibaum and Müller
(2020) an increase in the usage of a ridesharing system could be achieved by increasing user satisfaction. One option
proposed is to explain decisions of the system by providing insights into its components like ETA. Therefore, future
work could consider the explainability of ETA models.

6 Conclusion

Scheduling is an important part of taxi fleet management that can reduce cost and CO2 emissions. To improve
scheduling, in this paper, we presented several ML models that estimate the duration of a trip in a static route-free
manner in a given urban environment. Moreover, we showed the potential of additional features like the temperature
and choosing the best representation of the start time. Furthermore, we compared different grid variants and conclude
that a relatively small grid cell size can be used. However, using the degree-based coordinates directly achieves the
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same prediction precision for the RF and FCNN and saves a data transformation step. Afterwards, we argued that
other models chose a sub-optimal set of features and their representation. We backed this up by performing better than
previous static route-free ETA models with an FCNN.
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