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Abstract—Automated segmentation is a computerized 

technique that helps to find tumor location, size, and 

shape. Human segmentation is error prone, time 

consuming, and needs an expert radiologist. In our study, 

we developed a customized 3D U-Net model that 

processes 3D volumetric images for multiclass tumor 

segmentation. This framework is modified in such a way 

that the gradient flow is better for finding accurate 

output. The BraTS 2020 dataset is used to train this 

network with end-to-end learning strategy followed by 

defining the proper skip connection from encoder to 

decoder. In model evaluation, binary cross-entropy with 

Dice loss functions is utilized. Testing samples are 

predicted and classified into three regions: whole tumor 

(WT), tumor core (TC), and enhancing tumor (ET). 

Model performance is evaluated through Dice coefficient 

metrics for each class. 

On the basis of this model, experiments were carried out 

on the BraTS 2020 dataset which could be considered as a 

validated benchmark. The segmentation’s obtained 

results have been validated with ground truth references 

by computing the Dice Metric parameter. Our clinical 

partners have attested that the proposed tool could 

achieve great performances. The aim of this research is to 

make an advanced tool which could help radiologists to 

make a more accurate diagnosis. It could also assist 

clinicians in the early detection of brain tumors.  

 
Keywords— Resonance Imaging (MRI); Deep Learning (DL) 

Segmentation;Gliomas,  Brats dataset; 3D U-Net 

 

1. INTRODUCTION 

Gioblastomas brain tumors are among the most 

aggressive primary brain tumors arising from glial cells 

which cover almost  80  %  of  malignant  brain  tumors  

and  30  %  of  all Central Nervous System (CNS) tumors 

[1].  According to the World Health Organization 

(WHO), Gliomas can  be  characterized  based  on  their  

grade,  into  High-Grade Gliomas (grades III and IV) and 

Low-Grade Gliomas (grades I and  II).The  early  

detection  and  accurate  clinical  diagnostics have 

significance for patients ‘recovery.    
Magnetic  Resonance  Imaging  (MRI)  is  considered  

the  most invasive  technique  for  Glioblastomas  tumors  

characterization and exploration since it provides highly 

detailed images about the shape, size, and location of 

such brain tumors. Moreover, multimodal      MRI      

protocols      can      produce      crucial complementary 

information that yields a valuable diagnosis.Manual  

segmentation  is  time-consuming  and  depends  on  the 

level   of   human   experts   thus   accurate   and   

automatic segmentation   has   a   great   significance   for   

diagnosis   and treatment  planning  by  providing  the  

exact  localization  of tumor  sub-regions  and  by  
monitoring  of  the  tumor  growth progression by 

precisely quantifying their volume. Even the recent 

developing of sophisticated segmentationalgorithms 

thathave been proposed  recently  in  the  literature, such 

machine-learning and deep-learning based-approaches, in 

fully  automated  and  reliable  segmentation  of  

Glioblastomas (GBM) there are often more complicated 

situations where the tumors   ‘intensity   may   overlap   

with   intensities   of   other pathologies  or  healthy  

tissues.  Furthermore, clinical MRI scans are usually 

acquired with different scanned technologies and 

acquisition algorithms causing asymmetrical noise effects, 
inadequate      Signal-to-Noise-Ratio (SNR)      and      data 

heterogeneity  that  may  also  affect  the  final  

segmentation accuracy. 

The segmentation is consisting of partitioning the image 

into several regions, to make it easier and more meaningful 

to interpret. In the context of brain MRIs, segmentation 

makes it possible to characterize the different structures of 

the brain and brain tumors, namely gray matter, white 

matter, cerebrospinal fluid. In clinical practice, the 

accuracy of the data, manipulated by the practitioners, is 

very important for a reliable diagnosis. In terms of image 
analysis, it is necessary for the segmentation to be precise. 

In our research work, we propose to place ourselves in a 

more general framework and to develop a method capable 

of segmenting "more delicate" tumours, that is to say 

inhomogeneous, uncircumscribed tumours, which can 

propagate in a infiltrating towards the different anatomical 

structures such as the case of glioblastomas. These tumors 

are particularly characterized by ill-defined and imprecise 

borders. Given the nature of these tumours, the classic 

segmentation methods reported in the literature may have 

several limitations. Recently, a particular attention is paid 

to the use of deep learning to improve the performance of 
MRI image segmentation. 

The objective is therefore to propose an accurate and 

reliable method of segmentation of brain tumors based on 

deep learning and to detect mainly the entire tumor area, 
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i.e. to isolate it from the main brain structures such as the 

edema, necrosis, tumor core and enhanced tumor [7]. 

 

The remainder of this paper is organized as follows: 

Section 2 presents the related works, section 3  presents  

the  proposed  method  for  brain  tumor  segmentation, 
section  4  explored  the  experimental  results  and  

comparative study  with  existing  segmentation  methods  

and  section  5 concludes the paper 

2. Related work 

Several studies have been proposed in the state-of 

literature for MRI gliomas brain tumors segmentations 

based on Machine Learning (ML) and Deep Learning 

(DL).  

 

In 2020, R. A. Zeineldin et al. [3], residual neural  

network,  dense  convolutional  network, and NASNet 
have been utilized in this study to build    a    fully    

programmed    brain    tumor recognition    and    

segmentation,    this    deep learning architectures have 

been  evaluated online   based   MRI   datasets   of   brain   

tumor segmentation BraTS 2019,  the lack of this study 

was that false positives (FP) indicated was high values of 

both  recall  and  specificity,  which  might  not precisely  

reflect  the  actual  performance.  

 In 2020, X. Feng et al. [4] produced a 3D U-Net 

ensemble   for   brain   tumour   segmentation, 

multimodal brain  tumor  segmentation  (BraTS 2018) 
challenge has been used in the study, the limitation of this 

structure , it hard to pick of  the best model and/or hyper-

parameter set because of  that  most  models perform  

similarly.  It  is indeed  one  disadvantage  of  DCNN  as  

the “black-box”  nature  of  the  network  makes  it 

challenging  to  analyze  the  effect  of  network structure  

and  parameter  except  from  the  final performance.  In 

2021, T.Sadad  et  al.  [5] developed U-Net with  

ResNet50  architecture for   segmentation   of   tumours   

utilizing   the Figshare dataset . 

 

In 2021, F. Isensee et al. [6], nnU-Net utilized,nnU-Net 
pipeline’s  segmentation  performance has  been  

demonstrated  to  be  greatly  enhanced by the addition of 

BraTS specific characteristics such   as   postprocessing,   

data   augmentation, and region-based   training.   For   

the   BraTS challenge 2020 segmentation problem, 

excellent results have been  obtained  using  the  nnU-Net 

configuration's  baseline  setup,  however,  one limitation  

of  this  approach  is  the  lack  spans  a small  number  of  

the  modifications  and  lacks sufficiently  extensive  

experimental  validation thereof.   

 
In 2019  Li Sun et al. produced  a the framework for 

brain tumor segmentation and survival prediction using 

multimodal MRI scans using the 2018 MICCAI BraTS 

training set then applied the trained model for prediction 

on the validation and test set.  compared the segmentation 

result of the ensemble model with the individual model 

on the validation set .The reslts have been  obtained 

demonstrates that the ensemble model performs better 

than individual models in enhancing tumor and whole 

tumor, while CA-CNN performs marginally better on the 

tumor core.[19] 

In 2019 Adel Kermi et al presents a fully automated and 

efficient brain tumor segmentation method based on 2D 

Deep Convolutional Neural Networks (DNNs) which 

automatically extracts the whole tumor and intra-tumor 

regions, including enhancing tumor, edema and necrosis, 
from pre-operative multimodal 3D-MRI. The network 

architecture was inspired by U-net and has been modified 

to increase brain tumor segmentation performance. Among 

applied modifications, Weighted Cross Entropy (WCE) 

and Generalized Dice Loss (GDL) were employed as a 

loss function to address the class imbalance problem in the 

brain tumor data. The proposed segmentation system has 

been tested and evaluated on both, BraTS’2018 training 

and validation datasets, which include a total of 351 

multimodal MRI volumes of different patients with HGG 

and LGG tumors representing different shapes, giving 
promising and objective results close to manual 

segmentation performances obtained by experienced 

neuro-radiologists. On the challenge validation dataset, 

system achieved a mean enhancing tumor, whole tumor 

[20]. 

In 2021, has been trained multiple U-net like neural 

networks (Théophraste Henry et al.), mainly with deep 

supervision and stochastic weight averaging, on the 

Multimodal Brain Tumor Segmentation Challenge 

(BraTS) 2020 training dataset. Two independent 

ensembles of models from two different training pipelines 
were trained, and each produced a brain tumor 

segmentation map. These two labelmaps per patient were 

then merged, taking into account the performance of each 

ensemble for specific tumor subregions. More complicated 

training schemes and neural network architectures were 

investigated without significant performance gain at the 

cost of greatly increased training time. Overall, theirs 

approach yielded good and balanced performance for each 

tumor subregion[21]. 

The Convolutional Neural Networks (CNN) technique [22] 

is well-suited for the segmentation of heterogeneous 

information without parametric distribution hypothesis. 
Havaei et al. [23] built a cascade of two sub-networks with 

different input patch size. The feature maps extracted from 

sub-network with larger input patches are concatenated 

with smaller patches as the input data of the other sub-

network, thus bringing in more global contextual 

information simultaneously. Pereira et al. [24] investigated 

the potential of using deep architectures with 3×3×3 

convolutional kernels for segmentation in MR images after 

intensity normalization. Kamnitsas et al.[25] utilized a dual 

pathway, 11-layers deep, three-dimensional CNN model 

named DeepMedic to classify various tissues in MR 
images. Kleesiek et al.[26] applied 3D filters to take 

advantage of structural information at the cost of the 

computational load increment. The vibration of prediction 

caused by imbalanced distribution of brain tissues even 

deteriorates in 3D models, methods [27]–[28] used to 

address the same issue of ordinary images are unsuitable 

for MR images due to the latter's innate structural features. 

Fausto Milletari et al.[29] proposed a 3D V-net model with 

a novel object function based on Dice coefficient, namely 

dice loss, which achieved better performance in the 

imbalanced distribution. Regard to strong imbalanced 
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distribution, Tsung-Yi Lin el al.[30] proposed another 

object function, namely focal loss, to address the extreme 

foreground-background class imbalance during dense 

object detection [32] . 

   The main Contribution part of our proposed model  

 
 We adopted a three-dimensional model that 

exploits the volumetric MR images to generate a 

highly detailed features map and to incorporate 

the global and local features; 

 

 We optimized the performance of classical 3D- 

Unet model as follows: we adopted the adaptive 

moment estimator (Adam) [29] to improve the 

convergence speed and to find a better minimum 

for the loss function. In general, Adam utilizes 

the first and second moments of gradients for 
updating and correcting the moving average of 

the current gradients. The parameters of our 

Adam optimizer were set as learning rate = 

0.0000001and the maximum batch size = 32. 

 

 

 We adopted dataset Generators from the Keras 

backend instead to fit the data into our proposed 

model. thus, could optimize the network 

performance and accelerate the leaning process 

and reduce the computational and memory 
requirement. 

 

 To deal the huge memory and computational 

requirement issues of such three-dimensional 

models as (3D-Net) we resized the size of input 

MR images dataset from 244*244*155 to 

128*128*3. Furthermore, we exploited small 3D 

small kernel’s size. 

 

 The performance evaluation of the proposed 

model using an open-access benchmark dataset 

confirms that the proposed model could produce 
refined and detailed segmentation results 

outperforming several studies from state-of-the-

art. For instance our model reached 0.99 for 

Enhanced Tumor (ET) sub-regions 

segmentation; 

3. PROPOSED METHOD  

In this work, an efficient lightweight implementation of 

3D U-Net deep networks is proposed with the goal of 

providing accurate real-time segmentation. This has 

been accomplished by altering the input layer of 3D U-

Net to accept lower sizes of input images. The results 
have been quite promising. Instead of working with the 

default size of input images in the original version of 

3D U-Net, which was 572 by 572 pixels, we have 

utilized images of smaller sizes, including 32 by 32 

pixels. In addition, we have incorporated a more 

extensive and deeper stack of convolutional layers into 

the proposed architecture. This has assisted us in 

obtaining more precise information from the input 

images while also reducing the amount of compression. 
 

 

A. Network architecture 

 

The architecture of the proposed 3D U-Net model is 

shown in Fig.1, has the advantage of combining both the 

contextual information from the  up-sampling  path  and  

the  location  information  from  the  down-sampling    
path        to    finally    generate    a    powerful 

segmentation map combining localization and context 

features , which emphases the segmentation accuracy.    

Our network is illustrated based  on  auto encoder 

architecture  consists of a encoding path (left-side) to 

analyze the input    image    then generate  features map  

and a  decoding path (right-side) to reconstruct the 

original resolution [7] 

 
Fig 1 : 3D U-Net architecture [31] 

Encoding part:   
The encoding part also called the Down-sampling path 

consists of 4 convolutional blocks. Each block follows 

the typical architecture of a convolutional network, 

composed of:   

-     3 x 3 x 3 Convolutional Layer, Relu as a activation 

function and same as a padding function  

-      3 x 3 x 3 Convolutional Layer, Relu as a activation 

function and same as a padding function  

-      2x2 x2 Max Pooling applied at the end of each block 

[7].   

Decoding part:   

The decoding part, also known as up-sampling path 
consists of 4 blocks, every block  in the de-coding part 

expect the last block composed of :   

-     3 x 3 x 3 De Convolutional Layer, Relu as a 

activation function and same as a padding function  

-     3 x 3 x 3 De Convolutional Layer, Relu as a 

activation function and same as a padding function  

-     Concatenation layer with the corresponding cropped 

feature map from the encoding path 

Finally, a 1×1×1  convolutional layer and Softmax 
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activation function in the last block [7] .  

 

Skip connection: 

Skip connection has shown its great performance for 

semantic segmentation  of  natural  images,  its  

performance  could  be more  efficient  for  biomedical  
imaging.  It  aims  to  propagate relevant high-level  

spatial  information  at the  same resolution from down-

sampling into the up-sampling  We introduced several 

skip connections in our proposed network for better 

intra-slice context exploration to produce a highly 

detailed segmentation[7] . 

              B. Preprocessing 

Resize: we resized the size of Input volumetric MR 

images to handle 3D models since 3D models e very 

expensive in term of memory and computation 

requirement; we resized the size of input MR images 

dataset from 244*244*155 to 128*128*3 using open cv  

 

Dataset split:we splitted our dataset as follows ( 80 % 

for training our model , 10 % for Validation and 10 % 

for testing). Fig.2 illustrates the dataset distribution  

 

 
Fig 2: Dataset split ratio 

 

Intensity-Normalization:MRI is usually affected by 

noise and artifacts especially during fast acquisition 

algorithms.  Thus,could create non uniform intensity 
distribution between brain tissues, moreover for large 

scale medical image analysis, the data are very likely 

collected from different institutes with various hardware 

and protocols.  These complicated data set always  need  

complex preprocessing  to  correct  the  data  

heterogeneity,  Hence,  we applied data normalization 

for each t MRI scans by subtracting the  mean  of  each  

MR  images  and  dividing  by  its  standard deviation 

across all training patches. Several studies attest that 

intensity normalization has a positive impact to increase 

the segmentation accuracy [7]. 

             C. Training process  

In this section, we discussed the training parameters 

such  as the optimizer.   We adopted the adaptive 

moment estimator (Adam) [29] to improve the 

convergence speed and to find a better minimum for the 

loss function. In general, Adam utilizes the first and 

second moments of gradients for updating and correcting 
the moving average of the current gradients. The 

parameters of our Adam optimizer were set as learning 

rate = 0.0000001and the maximum batch size = 32. 

 

 

4. RESULTS AND DISCUSSION: 

 

In this section we will presents the obtained results and 

evaluate the performance and discuss the obtained results. 

 

A. Implementation details   

 

The proposed model was implemented using Tensor-flow 

and Keras backend and python as  a  developing  

environment.  To train the model we used an Intel Core 

i7-CPU CPU occupied with an (16 GB) GPU NVIDIA 

GeForce GT-X 1060Ti.   

 
B. Dataset 

 

The Magnetic Resonance images used for the model 

training and evaluation are from the Multi-modal Brain 

tumour Segmentation Challenge (BraTS) 2020 [8, 9, 10, 

11, 12]. The BraTS 2020 training dataset contains 494MR 

volumes of shape 240 × 240 × 155.  

MRI is required to evaluate tumor heterogeneity. These 

MRI sequences are conventionally used for glioma 

detection: T1 weighted sequence(T1), T1-weighted 

contrast enhanced sequence using gadolinium contrast 
agents (T1Gd) (T1CE), T2 weighted sequence (T2), and 

Fluid attenuated inversion recovery (FLAIR) sequence. 

From these sequences, four distinct tumor sub-regions can 

be identified from MRI as: The Enhancing Tumor (ET) 

which corresponds to area of relative hyper-intensity in 

the T1CE with respect to the T1 sequence, Non 

Enhancing Tumor (NET), Necrotic Tumor (NCR) which 

are both hypo-intense in T1-Gd when compared to T1, 

Peritumoral Edema (ED) which is hyper-intense in 

FLAIR sequence.  

TThese almost homogeneous sub-regions can be clustered 

together to compose three semantically meaningful tumor 
classes as, Enhancing Tumor (ET), addition of ET, NET 

and NCR represents the Tumor Core (TC) region and 

addition of ED to TC represents the Whole Tumor (WT). 

MRI sequences and ground truth map (the expert neuro-

radiologist segmentation) with three classes [13] are 

shown in Fig. 3 

 

 
Fig 3 : Visual Analysis of BraTs 2020 Training Data. In the 

Ground Truth (GT) Mask, green, yellow and gray represent 

the peritumoral edema (ED), Enhancing Tumor (ET) and 

non-enhancing tumor/necrotic tumor (NET/NCR), 

respectively. 

 
C. Evaluation Metrics 
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    To evaluate the proposed method performance, 

several evaluation metrics have been used. The Dice 

Metric (DM), the Sensitivity, the Specificity and 

Accuracy have been selected to evaluate the 

segmentation’s results. 

 

Loss function  
 

The Dice Metric (DM) and Iou Mtric have been used in 

this paper as Loss function  

 

 Dice metric (DM) 

 

This is essentially a measure of overlap between two 

samples. This measure ranges from 0 to 1 where a Dice 
coefficient of 1 denotes perfect and complete overlap. 

The Dice coefficient was originally developed for 

binary data, and can be calculated as: 

 

𝐷𝑖𝑐𝑒 =
2|𝑋∩𝑌|

|𝑋|+|𝑌|
                        eq. 1 

 

 IOU metric   

 

 To compute the IoU score, divide the intersection   point   

between   the   actual   data (ground truth)  and  

predicted  segmentation  by the  point  of  union  

between  the  actual  data (ground truth) mask and 
predicted segmentation mask.” When assessing how 

much overlap there is between two masks or bounding 

boxes [14], it is a valuable statistic. 

 

 

𝐼𝑜𝑈 =
𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ∩𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 

𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ∪ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
           eq. 2 

 

 

 Sensitivity 

 

The sensitivity (True Positive rate) measures the 
positives ‘proportion that is correctly predicted by the 

segmentation method. It could be defined by the  

 

𝑆𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑡é =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                 eq. 3 

 

Where TP and FN represent respectively the true 

positive and the false negative. 

 

 Specificity 

 

The specificity (True Negative rate) measures the 

negatives’ proportion that is correctly predicted. It 

could be defined by eq, where TN and FP represent 

respectively the true negative and the false positive. 

 
 

𝑆𝑝é𝑐𝑖𝑓𝑖𝑐𝑖𝑡é =
𝑇𝑁

𝑇𝑁+𝐹𝑃
           eq. 4 

 

 Accuracy 

 

The Accuracy metric has been usually used to evaluate 

the classification model efficiency and is defined as 

follows: 

 

Accurcy =
TP

TP+FP
            eq. 5 

 

 

Where TP, TN, FP and FN represent respectively the True 

Positive value, the True Negative value, The False Positive 

value and the False Negative value. 
 

 

D. Segmentation Results  

 

The evaluation of the proposed segmentation approach 

was carried out over the MICCAI 2020 challenge (BraTS 

2020). Fig.4 present respectively segmentation result for 

three different cases from the Brats 2020 dataset. The first 

line of the figure illustrates the input images, the second 

line presents the Ground-truth MR images and the final 

line shows the segmentation results of our proposed 

method.  
 

For segmentation results, we evaluate the following three 

parts:  Whole Tumor (WT) regions involve all tumor four 

labels (1-4) or sub-regions including (Necrosis, edema, 

enhancing and non enhancing tumor, label )  Tumor-Core 

(TC) involves all tumor sub-regions except edema(labels 

1,3and 4)   The Enhancing-Tumor (ET) include only label 

4   

 
 

 

 

                   

                  

                  
 

Fig.4: segmentation results of 3 subject-cases from the 

Brats-2020 dataset 
 

Fig.5 shows the segmentation results of a Brats20 image 

from the validation database 
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Fig.5: (5-a): Glioma segmentation results from the 

validation data base Input MR Image of the four 

subject-cases(1,2,3,4) ;Figure (5-b) ground truth of the 

four subject-cases(1,2,3,4) ;Figure (5-c) Necrotic 

predicted of the four subject-cases(1,2,3,4) ;Figure (5-

d) Edema predicted of the four subject-cases(1,2,3,4) 

;Figure (5-e) Enhancing predicted of the four subject-    
cases(1,2,3,4) ; Figure (4-f) Prediction of all classes 

  

E. performance evaluation 

 

Accuracy of segmentation is confirmed by visual 

assessments by physicians, and by quantitative 

comparison with manual segmentation by an expert. 

The reliability of the algorithm is confirmed by tests on 

images of variable quality, acquired on different 

machines and according to different protocols. 

 
Fig.6: Training segmentation results 

 

In Table 1, we provide the DM coefficients for the three 

regions (complete tumor (WT), tumor nucleus (TC) and 

enhanced tumor (ET)), the sensitivity, specificity, 
accuracy and precision obtained from which the results 

of segmentation are given respectively by fig.6. 

 
 

 

 

Table1: Validation metrics for segmentation results 

 

 

 

We tested the proposed approach on the whole ‘BraTS 
2020’ training database. The quantitative evaluation of the 

segmentation results of the complete tumor, the enhanced 

tumor, and the tumor core, using the previously defined 

validation metrics, is given in Table 1. Fig.7 shows the 

dice loss and accuracy score recorded   for   each   epoch   

for   3D U-Net 
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Fig.7:Dice Loss and Accurcay Graph of 3D U-Net 

In this section, we are interested in performing a 

comparative performance study with the most recent 

approaches reported in the literature using the same 

training database. We calculated the mean value of the 

“DICE” similarity measure of the complete tumor, the 

enhanced tumor and the tumor core. The results are 

presented in Table 2. According to this comparative 

study, the results obtained confirm that the proposed 

segmentation approach outperforms the other methods. 

As indicated in several studies, the most difficult task in 

glioblastoma tumor segmentation is the extraction of 

enhanced tumor sub-regions (Enhancing-Tumor (ET). 
The proposed approach gives promising results on the 

extraction of different regions and outperforms 

comparative approaches. 

 

 

Table 2: Comparative study with state of art 

segmentation method 
 

 

 

The Dice scores of the 3D U-NET method in the three 

categories of ET, TC, and WT are 92.46%, 87.55%, and 

88.04%, respectively. Compared with Attention U-Net, 

VTU-Net, SwinBTS, V-Net, Tran-BTS, U-Netr, 3D U-

Net has obvious improvement. It also has a certain 

improvement compared with methods using transformer 

structures, such as Attention U-Net. We can also see that 

the improvement in the 3D U-Net model in Table 2 is 

relatively limited compared to the SwinBTS, Tran-BTS, 

U-Netr and VTU-Net model, so the standard deviation of 

the Dice score is compared, and it is found that the 
standard deviation of the 3D U-Net model is much lower, 

indicating that the model is in a large number of 

segmentation tasks. The model is much more stable and 

does not exhibit large deviations 

 

 

 

 

5. CONCLUSION  

Through this work, we have proposed a approach for a 

multimodal segmentation of brain tumors via MRI 
images. The proposed approach is based on the deep 

learning of a cascaded Auto-encoder type network 

inspired by the 3D U-Net architecture. Through this 

work we have unveiled the results obtained by our 

segmentation approach. Our approach has achieved a 

segmentation which is judged, according to the 

similarity measures used and the qualitative results 

observed, as very encouraging in view of the increased 

difficulty by the deformations of glial tumors. A 

comparative study with recent methods in the state of the 

art has been carried out at the end of this work 
 

 

 

 

Method Dice coef(%) 

 

ET TC WT 

 

AttentionU-Net (Brats2020) 

[15] 

 

71.83 75.96 85.57 

VTU-Net (Brats2020) 

[16] 

 

76.45 80.39 88.73 

SwinBTS(Brat2020) 

[ 17] 

77.36 80.30 89.06 

V-Net (Brats2020) 

[33] 

68.97 77.90 86.11 

Tran-BTS(Brats2020) 
[34] 

76.31 80.36 88.78 

U-Netr(Brat2020) 

[35] 

71.18 75.85 88.30 

Proposed 

3D U-Net 

 

92.46 87.55 88.04 
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