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Abstract—In present paper the tracking control problem of lin-
ear discrete-time systems with disturbance in a finite time interval
is considered. We constructed a new system so that the problem
can be turned into finite-time boundedness(FTB) problem of the
output vector. Then a finite-time state feedback controller of the
system is derived by designing the state feedback controller for
the new system via the linear matrix inequality(LMI) approach.
Based on this result, a finite-time bounded tracking controller of
the original system is obtained. Finally, a numerical example is
presented to illustrate the feasibility of the controller.

Index Terms—discrete-time, finite-time bounded tracking Con-
trol, disturbance, state feedback controller, LMI approach

I. INTRODUCTION

Many researchers have studied asymptotic stability of dy-
namical systems since its emergence at the end of the 19th

with the fundamental theorem of Lyapunov in [1]. But there
is an important property which concerns this kind of stability:
finite-time stability. Now we call a system is to be finite-
time stable(FTS) if its state dose not exceeds some bounds
during a fixing time-interval. In many practical applications,
for example, in robot control systems, communication network
systems, or biochemical reaction systems, people are more
interested in what happens over a finite-time interval rather
than the asymptotical property in a infinite time. To discuss
this transient performance, Dorato [2] firstly defined finite-time
stability for linear deterministic systems. Recently, significant
contributions have been given in this field, especially in the
case of linear systems.

With the development of linear matrix inequality(LMI)
theory, the researches on FTS yielded fruitful results. In
[3-4], Amato et al. extended the concept of FTS to the
linear continuous-time system with external disturbances and
gave the concept of finite-time boundedness(FTB), and the
discrete-time system was also investigated in [5-6]. The further
researches we refer the readers to [7-10].

Tracking control is one of the dynamic problem and most
significant topic, both in control field and practice. In general,
the tracking problem is very much difficult in contrast to
stability problem[11-12]. One of the most important problem

about tracking control is the controller design[13-14]. Tracking
controller is generally regarded as a device to control the
response of a system to track a desired trajectory in an
exact manner. According to the desired values, there are two
categories for tracking problem[15]: output tracking problem
and state tracking problem. The tracking control design is
already proposed in the continuous-time domain[16]. Now,
many controllers are designed in discrete-time domain. In
contrast to continuous-time, discrete-time approach has many
advantages(e.g. better implementation, adaptable). It can han-
dle a very much wider class of control laws over continuous-
time domain[17-18].

Throughout this paper, R
n represents n−dimensional real

Euclidean space. The matrix P T represents the transposed
matrix of P . For a symmetric matrix, P = P T > 0 means
that matrix is positive definite. P > Q means that P −Q > 0.
λmax(A)(λmin(A)) denotes the maximal (or minimal) eigen-
value of a real symmetric matrix A. By diag(· · · ) we denotes
a block-diagonal matrix.

The rest of this paper is organized as follows. In Section
II, we provide the considered system description and some
definitions and results. In section III, we constructed a new
system according to the orginal system so that the problem
can be turned into FTB problem of the output vector. Section
IV is the main part of this paper. A finite-time state feedback
controller of the system is derived by designing the state
feedback controller for the new system via the LMI approach.
Based on this, a finite-time bounded tracking controller of the
original system is obtained. In section V simulation results
provided to illustrate the feasibility of the controller.

II. DEFINITIONS AND PRELIMINARY RESULTS

The paper is concerned with the trajectory tracking control
problem for a class of linear discrete-time systems, whose
dynamics can be described by

x(k + 1) = Ax(k) + Ew(k), x(0) = x0 (1)



where x(k) ∈ R
n is the state vector, w(k) ∈ R

p is the
disturbance generated by the exosystem

w(k + 1) = Sw(k), w(0) = w0 (2)

and all matrices are bounded of compatible dimensions.
The finite-time bounded(FTB) of system with exosystem

was described as follows: system (1)-(2) is said to be finite-
time bounded with respect to (δx, δw, ε, R, N), where N ≥
1, δw > 0, ε > 0, δx > 0, and R > 0, if

xT (0)Rx(0) ≤ δ2, wT (0)w(0) ≤ δ2

w ⇒ xT (k)Rx(k) ≤ ε2,

∀k ∈ {1, 2, · · · , N}.
For convenience, hereinafter, the state vector of system

(1)-(2)is also said to be finite-time bounded with respect to
(δx, δw, ε, R, N). The object of this paper is to discuss the
finite-time bounded tracking of system (1) with exosystem
(2). Now we first propose a definition of finite-time bounded
tracking.

Consider the discrete-time system

x(k + 1) = Ax(k) + Ew(k)

w(k + 1) = Sw(k)

y(k) = Cx(k),

(3)

where x(k) ∈ R
n, w(k) ∈ R

p and y(k) ∈ R
q are the state

vector, the disturbance vector, and the output vector of the
system, respectively. A ∈ R

n×n, E ∈ R
n×p, S ∈ R

p×p and
C ∈ R

q×n are known constant matrices.
In some practical problems, it is hoped that the output of

system (3) is always located in a neighborhood of a reference
signal under some certain conditions. This kind of problem
is referred to as ”finite-time bounded tracking problem”. Let
the reference signal be r(k) ∈ R

q generated by the following
system

r(k + 1) = Mr(k), r(0) = r0. (4)

The error signal e(k) is defined as

e(k) = y(k) − r(k). (5)

The concept mentioned above can be described by the follow-
ing definition.

Definition 1 System (3) is finite-time bounded tracking
of the reference signal r(k) with respect to (δe, δw, ε, R, N),
where N ≥ 1, δx > 0, δw > 0, ε > 0, and R > 0, if

eT (0)Re(0) ≤ δ2

e , wT (0)w(0) ≤ δ2

w ⇒ eT (k)Re(k) ≤ ε2,

∀k ∈ {1, 2, · · · , N}.
To deduce an LMI feasibility problem, the Schur comple-

ment lemma is also needed.
Lemma 1 Symmetric matrix

(

X11 X12

X12 X22

)

< 0 if and only

if one of the following two conditions is satisfied:

(1) X11 < 0, S22 − ST
12

S−1

11
S12 < 0.

(2) X22 < 0, S11 − S12S
−1

22
ST

12
< 0.

III. CONSTRUCTION OF THE ERROR SYSTEM

Now consider the following discrete-time system with dis-
turbance generated by an exosystem

x(k + 1) = Ax(k) + Ew(k) + Bu(k)

w(k + 1) = Sw(k)

y(k) = Cx(k),

(6)

where x(k) ∈ R
n, u(k) ∈ R

m, w(k) ∈ R
p and y(k) ∈ R

q are
the state vector, the input vector, the disturbance vector, and
the output vector of the system, respectively. A ∈ R

n×n, B ∈
R

n×m, E ∈ R
n×p, S ∈ R

p×p and C ∈ R
q×n are known

constant matrices.
The difference operator ∆ of vector and matrix is defined

as
∆ν(k + 1) = ν(k + 1) − ν(k).

Taking the operator ∆ on both sides of the first equation of
(6), one can follows

∆x(k + 1) = A∆x(k) + E∆w(k) + B∆u(k). (7)

Applying ∆ to e(k + 1) = y(k + 1)− r(k + 1) and noting
that ∆e(k + 1) = e(k + 1) − e(k), we have

e(k + 1) = e(k) + ∆y(k + 1) − ∆r(k + 1)

= e(k) + C∆x(k) − ∆r(k + 1)

= e(k) + CA∆x(k) + CB∆u(k)

+ CE∆w(k) − ∆r(k + 1).

(8)

Introduce the formal state vector

X(k) =

(

e(k)
∆x(k)

)

and matrices

Ā =

(

I CA

0 A

)

, B̄ =

(

CB

B

)

, Ē =

(

CE

E

)

, R̄ =

(

−I

0

)

,

then by (7) and (8) we get

X(k + 1) = ĀX(k) + Ē∆w(k) + B̄∆u(k) + R̄∆r(k + 1).

Combine the terms ∆w(k) and ∆r(k + 1) in above equation
and take them as the external disturbance, we have

X(k + 1) = ĀX(k) + B̄∆u(k) +
(

Ē R̄
)

(

∆w(k)
∆r(k + 1)

)

.

(9)

Let W (k) =

(

∆w(k)
∆r(k + 1)

)

, Ẽ =
(

Ē R̄
)

, S̄ =

(

S 0
0 M

)

.

Define a new exosystem and output as follows, respectively,

W (k + 1) = S̄W (k), (10)
Y (k) = C̄X(k), (11)

where k = 1, 2, · · · , N, C̄ =
(

I 0
)

. Combine (9)-(11) one
can get a new system with a new exosystem

X(k + 1) = ĀX(k) + ẼW (k) + B̄∆u(k)

W (k + 1) = S̄W (k)

Y (k) = C̄X(k)

(12)



Now we set a formal reference signal R(k) = 0, k =
1, 2, · · · , N . Obviously, e(k) = Y (k) − R(k). Thus, an error
system can be gotten as follows:

X(k + 1) = ĀX(k) + ẼW (k) + B̄∆u(k)

W (k + 1) = S̄W (k)

Y (k) = C̄X(k)

e(k) = Y (k) − R(k)

(13)

IV. DESIGN OF THE CONTROLLER

Consider the following state feedback controller

∆u(k) = FX(k),

where F =
(

Fe Fx

)

will be determined later. By (13) it
follows

X(k + 1) = (Ā + B̄F )X(k) + ẼW (k)

W (k + 1) = S̄W (k)

Y (k) = C̄X(k)

e(k) = Y (k) − R(k)

(14)

Let rT (0)r(0) = δ2

r . Then

W T (1)W (1) =
(

∆wT (1) ∆rT (2)
)

(

∆w(1)
∆r(2)

)

= ∆wT (1)∆w(1) + ∆rT (2)∆r(2)

≤ 2(λmax(ST S) + 1)δ2

w + 2(λ2

max(MT M)

+ λmax(MT M) + 1)δ2

r .

Let λ0 = max{λmax(ST S), λmax(MT M)}, and δ2

W =
2(λ0 + 1)δ2

w + 2(λ2

0
+ λ0 + 1)δ2

r , it follows that

W T (1)W (1) ≤ δ2

W .

Theorem 1. The closed-loop system (14) is finite-time
bounded tracking of the reference signal R(k) with respect
to (δe, δW , ε, R, N), if for a given scalar γ > 1, there exist
matrices P1 > 0, P2 > 0 and scalars λ1 > 0, λ2 > 0 such that

(

(Ā + B̄F )T C̄T P1C̄(Ā + B̄F ) − γC̄T P1C̄

ẼT C̄T P1C̄(Ā + B̄F )

(Ā + B̄F )T C̄T P1C̄Ẽ

ẼT C̄T P1C̄Ẽ − γP2

)

< 0 (15)

R < P1 < λ1R, (16)
0 < P2 < λ2I, (17)

λ1δ
2

e + λ2

N
∑

i=1

λi
0
δ2

W <
ε2

γN−1
. (18)

Proof Construct the Lyapunov function as follows:

V (e(k)) = eT (k)P1e(k).

Then

V (e(k + 1)) = eT (k + 1)P1e(k + 1)

= (C̄X(k + 1))T P1(C̄X(k + 1))

= (C̄((Ā + B̄F )X(k) + Ẽ∆W (k)))T

· P1(C̄((Ā + B̄F )X(k) + Ẽ∆W (k)))

= (C̄(Ā + B̄F )X(k) + C̄Ẽ∆W (k))T

· P1(C̄(Ā + B̄F )X(k) + C̄Ẽ∆W (k))

=
(

XT (k) W T (k)
)

(

(Ā + B̄F )T C̄T

ẼT C̄T

)

· P1

(

C̄(Ā + B̄F ) C̄Ẽ
)

(

X(k)
W (k)

)

=
(

XT (k) W T (k)
)

·

(

(Ā + B̄F )T C̄T P1C̄(Ā + B̄F )

ẼT C̄T P1C̄(Ā + B̄F )

(Ā + B̄F )T C̄T P1C̄Ẽ

ẼT C̄T P1C̄Ẽ

)

·

(

X(k)
W (k)

)

.

By (15) one can obtain

V (e(k + 1)) ≤ γV (e(k)) + γW T (k)P2W (k)

≤ γV (e(k)) + λmax(P2)γW T (k)W (k) (19)

Using recurrent calculation with (19) we have

V (e(k)) ≤ γV (e(k − 1)) + λmax(P2)γW T (k − 1)W (k − 1)

≤ γ2V (e(k − 2))

+ λmax(P2)γ
2W T (k − 2)W (k − 2)

+ λmax(P2)γW T (k − 1)W (k − 1)

≤ · · ·

≤ γk−1V (e(1))

+ λmax(P2)

k−1
∑

i=1

γiW T (k − i)W (k − i). (20)

Taking γ > 1 into account, one can get from (20) that

V (e(k)) ≤ γk−1[V (e(1))

+ λmax(P2)

k−1
∑

i=1

W T (k − i)W (k − i)]. (21)

Since for all k ∈ {1, 2, · · · , N} (21) holds, we have

V (e(k)) ≤ γN−1[V (e(1))

+ λmax(P2)

N−1
∑

i=0

W T (N − i)W (N − i)]. (22)



Note that λmax(S̄T S̄) = λ0, so

N−1
∑

i=0

W T (N − i)W (N − i) =

N
∑

i=1

W T (i)W (i)

≤

N
∑

i=1

λi
0
W T (1)W (1)

≤

N
∑

i=1

λi
0
δW . (23)

Denoting P1(R) = R−
1

2 P1R
−

1

2 , then

V (e(1)) =e(1)T P1e(1)

≤λmax(P1(R))e(1)T Re(1). (24)

Substituting (23) and (24) into (22) yields the following
estimation:

V (e(k)) ≤ γN−1

·

(

λmax(P1(R))e(1)T Re(1) + λmax(P2)

N
∑

i=1

λi
0
δW

)

.

(25)

Since condition (16) is equivalent to I < R−
1

2 P1R
−

1

2 < λ1I ,
i.e. I < P1(R) < λ1I , it follows

1 < λmin(P1(R)) ≤ λmax(P1(R)) < λ1. (26)

In addition, condition (17) implies

0 < λmin(P2) ≤ λmax(P2) < λ2.

Thus, if (16) and (17) hold, it can be followed from (25) that

V (e(k)) ≤ γN−1

(

λ1δ
2

e + λ2

N
∑

i=1

λi
0
δW

)

. (27)

By (26) one can get

V (e(k)) =e(k)T P1e(k)

≥λmin(P1(R))e(k)T Re(k)

≥e(k)T Re(k).

Thus, by (18) we have

e(k)T Re(k) ≤ γN−1

(

λ1δ
2

e + λ2

N
∑

i=1

λi
0
δW

)

< ε2. (28)

The proof is completed.
Next we will give a sufficient condition that guarantees the

system (6) is finite-time bounded tracking of the reference
signal r(k) with respect to (δe, δw, ε, R, N)

Theorem 2. The closed-loop system (6) is finite-time
bounded tracking of the reference signal r(k) with respect
to (δe, δw, ε, R, N), if for a given scalar γ > 1, there exist

matrices Q1 > 0, P2 > 0 and scalars λ′

1
> 0, λ2 > 0 such

that








−γQ1 0 0
0 0 0
0 0 −γP2

Q1 + CBL CA + CBFx H

Q1 + LT BT CT

AT CT + F T
x BT CT

HT

−Q1









< 0, (29)

λ′

1
R−1 < Q1 < R−1, (30)

0 < P2 < λ2I, (31)
(

λ2d
2 − ε2

γN−1 δe

δe −λ′

1

)

< 0. (32)

where H =
(

CE −I
)

, d =
∑N

i=1
λi

0
δ2

W , δ2

W =
2(λ0 + 1)δ2

w + 2(λ2

0
+ λ0 + 1)δ2

r , λ0 =
max{λmax(ST S), λmax(MT M)}. In this case the controller
is ∆u(k) = Fee(k) + Fx∆x(k) with Fe = LQ−1

1
.

Proof Let

P2 =

(

P11 P12

P21 P22

)

, U = I + CBFe, V = CA + CBFx.

Note that

Ā =

(

I CA

0 A

)

, B̄ =

(

CB

B

)

, Ē =

(

CE

E

)

, R̄ =

(

−I

0

)

,

Ẽ =
(

Ē R̄
)

, C̄ =
(

I 0
)

, F =
(

Fe Fx

)

.

Plug above equations into the following inequality:
(

(Ā + B̄F )T C̄T P1C̄(Ā + B̄F ) − γC̄T P1C̄

ẼT C̄T P1C̄(Ā + B̄F )

(Ā + B̄F )T C̄T P1C̄Ẽ

ẼT C̄T P1C̄Ẽ − γP2

)

< 0, (33)

we have








UT Q−1

1
U − γQ−1

1
UT Q−1

1
V

V T Q−1

1
U V T Q−1

1
V

(CE)T Q−1

1
U (CE)T Q−1

1
V

−Q−1

1
U −Q−1

1
V

UT Q−1

1
CE −UT Q−1

1

V T Q−1

1
CE −V T Q−1

1

(CE)T Q−1

1
CE − γP11 −(CE)T Q−1

1
− γP12

−Q−1

1
CE − γP21 Q−1

1
− γP22









< 0.

That is








UT Q−1

1
U − γQ−1

1
UT Q−1

1
V

V T Q−1

1
U V T Q−1

1
V

(

(CE)T

−I

)

Q−1

1
U

(

(CE)T

−I

)

Q−1

1
V

UT Q−1

1

(

CE −I
)

V T Q−1

1

(

CE −I
)

(

(CE)T

−I

)

Q−1

1

(

CE −I
)

− γP2









< 0.



Let H =
(

CE −I
)

, then




UT Q−1

1
U − γQ−1

1
UT Q−1

1
V UT Q−1

1
H

V T Q−1

1
U V T Q−1

1
V V T Q−1

1
H

HT Q−1

1
U HT Q−1

1
V HT Q−1

1
H − γP2





< 0.

Pre- and postmultiplying above inequality by the symmetric
matrix diag(Q1, I, I) and its transpose, respectively, we have





Q1U
T Q−1

1
UQ1 − γQ1 Q1U

T Q−1

1
V

V T Q−1

1
UQ1 V T Q−1

1
V

HT Q−1

1
UQ1 HT Q−1

1
V

Q1U
T Q−1

1
H

V T Q−1

1
H

HT Q−1

1
H − γP2



 < 0.

Obviously, it Is equivalent to the following inequality:




−γQ1 0 0
0 0 0
0 0 −γP2





−





(UQ1)
T

V T

HT





(

−Q−1

1

) (

UQ1 V H
)

< 0.

Since −Q1 < 0, by lemma 1 we get








−γQ1 0 0 Q1U
T

0 0 0 V T

0 0 −γP2 HT

UQ1 V H −Q1









< 0.

Replacing U and V by I + CBFe, CA + CBFx in above
inequality, respectively, one can follow that









−γQ1 0 0
0 0 0
0 0 −γP2

(I + CBFe)Q1 CA + CBFx H

Q1(I + CBFe)
T

(CA + CBFx)T

HT

−Q1









< 0.









−γQ1 0 0
0 0 0
0 0 −γP2

Q1 + CBFeQ1 CA + CBFx H

Q1 + Q1F
T
e BT CT

AT CT + F T
x BT CT

HT

−Q1









< 0. (34)

Set L = FeQ1. By (34) one can see that (15) is finally
converted to an equivalent LMI (29):








−γQ1 0 0
0 0 0
0 0 −γP2

Q1 + CBL CA + CBFx H

Q1 + LT BT CT

AT CT + F T
x BT CT

HT

−Q1









< 0.

Since Q1 = P−1

1
, by (16) one can obtain

1

λ1

R−1 < Q1 < R−1. (35)

So Q1 needs to satisfy the condition

1

λ1

R−1 − Q1 < 0.

Let λ′

1
= 1

λ1

, then (35) is converted into a computationally
tractable condition (30).

Since λ′

1
= 1

λ1

, (18) can be written as

1

λ′

1

δ2

e + λ2

N
∑

i=1

λi
0
δ2

W <
ε2

γN−1
.

Since λ′

1
> 0, by lemma 1, it follows that

(

λ2d
2 − ε2

γN−1 δe

δe −λ′

1

)

< 0.

This completes the proof.

V. NUMERICAL EXAMPLE

Consider the discrete-time system

x(k + 1) = Ax(k) + Ew(k) + Bu(k)

w(k + 1) = Sw(k)

y(k) = Cx(k),

where A =

(

1 0
0.5 0.75

)

, B =

(

−0.2 0
−0.1 1

)

, E =
(

1 0.5
−0.25 0.5

)

, S =

(

0.6 0.3
0 −0.9

)

, C =

(

1 −0.1
0.3 0.6

)

.

Let δe = 0.1, δw = 0.1, ε = 11, R =

(

1 0
0 1

)

, N = 10.

The reference signal is r(k) ∈ R
q generated by the following

system

r(k + 1) = Mr(k) =

(

1 0
0 0.5

)

r(k), r(0) = r0,

and δ2

r = rT (0)r(0) = 0.01. Then by a simple calculation we
have

λ0 = max{λmax(ST S), λmax(MT M)} = 1.

So δ2

W = 2(λ0 + 1)δ2

w + 2(λ2

0
+ λ0 + 1)δ2

r = 0.1, and d2 =
∑N

i=1
λi

0
δ2

W = 1.



Using the LMI toolbox in Matlab to solve the LMIs (29)-
(32) in Theorem 2, the feedback gain matrices are given by

Fx =

(

5.0000 0.0000
0.0000 −0.7500

)

,

Fe = LQ−1

1
=

(

4.7620 0.7939
0.9524 −1.5080

)

.

This numerical example illustrates the feasibility of the con-
troller in Theorem 2.
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