F EasyChair Preprint
 № 3708

The Riemann Hypothesis

Frank Vega

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

THE RIEMANN HYPOTHESIS

FRANK VEGA

Abstract

Robin criterion states that the Riemann Hypothesis is true if and only if the inequality $\sigma(n)<e^{\gamma} \times n \times \log \log n$ holds for all $n>5040$, where $\sigma(n)$ is the sum-of-divisors function and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. This is known as the Robin inequality. We obtain a contradiction just assuming the smallest counterexample of the Robin inequality exists for some $n>5040$. In this way, we prove that the Robin inequality is true for all $n>5040$. Consequently, the Riemann Hypothesis is also true.

1. Introduction

As usual $\sigma(n)$ is the sum-of-divisors function of n Cho+07]:

$$
\sum_{d \mid n} d
$$

where $d \mid n$ means the integer d divides to n. Define $f(n)$ to be $\frac{\sigma(n)}{n}$. Say Robins (n) holds provided

$$
f(n)<e^{\gamma} \times \log \log n
$$

The constant γ is the Euler-Mascheroni constant, and log is the natural logarithm. The importance of this property is:

Theorem 1.1. $[\mathrm{RH}]$ Robins (n) holds for all $n>5040$ if and only if the Riemann Hypothesis is true Rob84.

We demonstrate that there is a contradiction just assuming the existence of the smallest number $n>5040$ such that Robins (n) does not hold. By contraposition, we show that Robins (n) holds for all $n>5040$ and thus, the Riemann Hypothesis is true.

2010 Mathematics Subject Classification. Primary 11M26; Secondary 11A41, 11A25.

Key words and phrases. Riemann hypothesis, Robin inequality, sum-of-divisors function, prime numbers.

2. A Basic Case

We can easily prove that Robins (n) holds for certain kind of numbers:
Lemma 2.1. [less-than-7] Robins(n) holds for all $n>5040$ when $q \leq 5$, where q is the largest prime divisor of n.

Proof. Let $n>5040$ and let all its prime divisors be $q_{1}<\cdots<q_{m} \leq 5$, then we need to prove

$$
f(n)<e^{\gamma} \times \log \log n
$$

that is true when

$$
\prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1} \leq e^{\gamma} \times \log \log n
$$

is also true. Certainly, for $n \geq 2$ Cho+07.:

$$
f(n)<\prod_{q \mid n} \frac{q}{q-1}
$$

For $q_{1}<\cdots<q_{m} \leq 5$,

$$
\prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1} \leq \frac{2 \times 3 \times 5}{1 \times 2 \times 4}=3.75<e^{\gamma} \times \log \log (5040) \approx 3.81
$$

However, we note that for $n>5040$

$$
e^{\gamma} \times \log \log (5040)<e^{\gamma} \times \log \log n
$$

and therefore, the proof is complete when $q_{1}<\cdots<q_{m} \leq 5$.

3. Some Useful Inequalities

The following lemma is a very helpful inequality:
Lemma 3.1. [1-ineq] For $0<x<1$, we have

$$
\frac{x}{1-x} \leq \frac{1}{y+y^{2}+\frac{y^{3}}{2}}
$$

where $y=1-x$.
Proof. For $k>-1$, we know $1+k \leq e^{k}$ Koz21. Therefore,

$$
\frac{x}{1-x} \leq \frac{e^{x-1}}{1-x}=\frac{1}{(1-x) \times e^{1-x}}=\frac{1}{y \times e^{y}}
$$

However, for every real number $y \in \mathbb{R}$ Koz21:

$$
y \times e^{y} \geq y+y^{2}+\frac{y^{3}}{2}
$$

and this can be transformed into

$$
\frac{1}{y \times e^{y}} \leq \frac{1}{y+y^{2}+\frac{y^{3}}{2}} .
$$

Consequently, we show

$$
\frac{x}{1-x} \leq \frac{1}{y+y^{2}+\frac{y^{3}}{2}}
$$

This is another inequality that we use:
Lemma 3.2. [2-ineq] For $x \geq 2$,

$$
\frac{x}{x-1} \geq e^{\frac{1}{x}}
$$

Proof. If we apply the logarithm to the both sides of the inequality, then we obtain that

$$
\log \frac{x}{x-1} \geq \frac{1}{x}
$$

We know that

$$
\log \frac{x}{x-1}=\log \left(1+\frac{1}{x-1}\right)
$$

For $x>-1$ Koz21]:

$$
\frac{x}{x+1} \leq \log (1+x)
$$

We use this property to show that:

$$
\log \left(1+\frac{1}{x-1}\right) \geq \frac{\frac{1}{x-1}}{1+\frac{1}{x-1}}=\frac{1}{(x-1) \times\left(1+\frac{1}{x-1}\right)}=\frac{1}{x}
$$

Therefore, the proof is complete.
Here, it is another practical inequality:
Lemma 3.3. [property] Suppose that $n>5040$ and let $n=r \times q$, where q denotes the largest prime factor of n and $r>1$ is a natural number. We have that

$$
f(n) \leq\left(1+\frac{1}{q}\right) \times f(r)
$$

Proof. Suppose that n is the form of $m \times q^{k}$ where m and q are coprimes such that m and k are natural numbers. We have that

$$
f(n)=f\left(m \times q^{k}\right)=f(m) \times f\left(q^{k}\right)
$$

since f is multiplicative and m and q are coprimes Voj20. However, we know that

$$
f\left(q^{k}\right) \leq f\left(q^{k-1}\right) \times f(q)
$$

because of we notice that $f(a \times b) \leq f(a) \times f(b)$ when $a, b \geq 2$ Voj20. In this way, we obtain that

$$
f\left(q^{k-1}\right) \times f(q)=f\left(q^{k-1}\right) \times\left(1+\frac{1}{q}\right)
$$

according to the value of $\left.f(q)=\left(1+\frac{1}{q}\right) \right\rvert\, \operatorname{Voj} 20$. In addition, we analyze that

$$
f(m) \times f\left(q^{k-1}\right)=f\left(m \times q^{k-1}\right)=f(r)
$$

because f is multiplicative and m and q are coprimes Voj20]. Finally, we obtain that

$$
f(n)=f(m) \times f\left(q^{k}\right) \leq f(m) \times f\left(q^{k-1}\right) \times f(q)=f(r) \times\left(1+\frac{1}{q}\right)
$$

and as a consequence, the proof is done.

4. Proof of Main Theorem

Theorem 4.1. [main] Robins(n) holds for all $n>5040$.
Proof. Suppose that n is the smallest integer exceeding 5040 that does not satisfy the Robin inequality. Let $n=r \times q$, where q denotes the largest prime factor of n. We prove that Robins (n) holds for all $n>5040$ when $q \leq 5$ according to the lemma 2.1 [less-than-7]. As result, this implies that $q>5$ for this possible counterexample. Recall that p_{1}, p_{2}, \ldots denote the consecutive primes. An integer of the form $\prod_{i=1}^{s} p_{i}^{e_{i}}$ with $e_{1} \geq e_{2} \geq \cdots \geq e_{s} \geq 0$ we will call an Hardy-Ramanujan integer [Cho+07]. A natural number n is called superabundant precisely when, for all $m<n$

$$
f(m)<f(n)
$$

If n is superabundant, then n is an Hardy-Ramanujan integer [AE44]. Moreover, the smallest counterexample of Robin inequality greater than 5040 must be a superabundant number AF09]. Consequently, it is necessary that $r \geq 2 \times 3 \times 5=30$. In this way, the following inequality

$$
f(n) \geq e^{\gamma} \times \log \log n
$$

should be true. We know that

$$
\left(1+\frac{1}{q}\right) \times f(r) \geq f(q \times r) \geq f(n) \geq e^{\gamma} \times \log \log n
$$

due to the lemma 3.3 [property]. Besides, this shows that

$$
\left(1+\frac{1}{q}\right) \times e^{\gamma} \times \log \log r>e^{\gamma} \times \log \log n
$$

should be also true, because of $f(r)<e^{\gamma} \times \log \log r$. Certainly, if n is the smallest counterexample exceeding 5040 of the Robin inequality, then Robins (r) holds [Cho+07]. That is the same as

$$
\left(1+\frac{1}{q}\right) \times \log \log r>\log \log n
$$

We have that

$$
\left(1+\frac{1}{q}\right) \times \log \log r>\log (\log r+\log q)
$$

where we notice that

$$
\log (a+c)=\log \left(a \times\left(1+\frac{c}{a}\right)\right)=\log a+\log \left(1+\frac{c}{a}\right)
$$

for $a \geq 1$ and $c \geq 1$. This follows as

$$
\left(1+\frac{1}{q}\right) \times \log \log r>\log \log r+\log \left(1+\frac{\log q}{\log r}\right)
$$

since $\log r \geq 1$ and $\log q \geq 1$ for $q>5$ and $r \geq 30$. This is equal to

$$
(1+q) \times \log \log r>q \times \log \log r+q \times \log \left(1+\frac{\log q}{\log r}\right)
$$

and thus,

$$
\log \log r>q \times \log \left(1+\frac{\log q}{\log r}\right)
$$

This implies that

$$
\begin{array}{r}
\frac{\log \log r}{\log \left(1+\frac{\log q}{\log r}\right)}= \\
\frac{\log \log r}{\log \frac{\log r+\log q}{\log r}}= \\
\frac{\log \log r}{\log \frac{\log n}{\log r}}= \\
\frac{\log \log r}{\log \log n-\log \log r}= \\
\frac{\log \log r}{\log n \times\left(1-\frac{\log \log r}{\log \log n}\right)}= \\
\frac{\frac{\log \log r}{\log \log n}}{\left(1-\frac{\log \log r}{\log \log n}\right)}>q
\end{array}
$$

should be true. If we assume that $y=1-\frac{\log \log r}{\log \log n}$, then we analyze that

$$
\frac{1}{y+y^{2}+\frac{y^{3}}{2}} \geq \frac{\frac{\log \log r}{\log \log n}}{\left(1-\frac{\log \log r}{\log \log n}\right)}
$$

because of lemma 3.1 [1-ineq]. As result, we have that

$$
\frac{1}{y+y^{2}+\frac{y^{3}}{2}}>q
$$

and therefore,

$$
\frac{1}{1+y+\frac{y^{2}}{2}}>q \times y
$$

Since we have

$$
1+y+\frac{y^{2}}{2}>1
$$

then

$$
\frac{1}{1+y+\frac{y^{2}}{2}}<1
$$

Consequently, we obtain that

$$
1>q \times y
$$

which is the same as

$$
e>e^{q \times y}
$$

For $y>0$, we have that $1+y \leq e^{y}$ Koz21 and therefore,

$$
e>e^{q \times y} \geq(1+y)^{q}=\left(2-\frac{\log \log r}{\log \log n}\right)^{q}
$$

that is

$$
\sqrt[q]{e}>\left(2-\frac{\log \log r}{\log \log n}\right)
$$

and finally,

$$
1>\left(2-\frac{\log \log r}{\log \log n}\right) \times \frac{1}{e^{\frac{1}{q}}}
$$

According to the lemma 3.2 [2-ineq], we know that

$$
\frac{q}{q-1} \geq e^{\frac{1}{q}}
$$

which is equivalent to

$$
\frac{q-1}{q} \leq \frac{1}{e^{\frac{1}{q}}}
$$

In this way, we obtain that

$$
\left(2-\frac{\log \log r}{\log \log n}\right) \times \frac{1}{e^{\frac{1}{q}}} \geq\left(2-\frac{\log \log r}{\log \log n}\right) \times \frac{q-1}{q}
$$

and thus,

$$
1>\left(2-\frac{\log \log r}{\log \log n}\right) \times \frac{q-1}{q} .
$$

This the same as

$$
\frac{\log \log r}{\log \log n} \times \frac{q-1}{q}>2 \times \frac{q-1}{q}
$$

which is equal to

$$
\frac{\log \log r}{\log \log n} \times \frac{q-1}{q}+\frac{2}{q}>2 .
$$

We know that

$$
\frac{q-1}{q}>\frac{\log \log r}{\log \log n} \times \frac{q-1}{q}
$$

since we can assure that $a>c$ and $b>c$ when $c=a \times b$ such that $0<a<1$ and $0<b<1$. In fact, we note that $0<\frac{\log \log r}{\log \log n}<1$ and $0<\frac{q-1}{q}<1$. Consequently, we would have that

$$
\frac{q-1}{q}+\frac{2}{q}>2 .
$$

However, this is contradiction because of

$$
\frac{q-1}{q}<1
$$

and

$$
\frac{2}{q}<1
$$

for $q>5$. Indeed, if we sum the previous inequalities, then we can see that

$$
\frac{q-1}{q}+\frac{2}{q}<1+1=2 .
$$

Hence, we obtain a contradiction when $n>5040$ is the possible smallest number such that Robins (n) does not hold. By contraposition, we have that Robins (n) holds for all $n>5040$.
Theorem 4.2. [conclusion] The Riemann Hypothesis is true.
Proof. This is a direct consequence of theorems 1.1 [RH] and 4.1 [main].

References

[AE44] Leonidas Alaoglu and Paul Erdős. "On highly composite and similar numbers". In: Transactions of the American Mathematical Society 56.3 (1944), pp. 448-469. DOI: doi: 10.2307/1990319.
[AF09] Amir Akbary and Zachary Friggstad. "Superabundant numbers and the Riemann hypothesis". In: The American Mathematical Monthly 116.3 (2009), pp. 273-275. Doi: doi:10. 4169/193009709X470128.
[Cho+07] YoungJu Choie et al. "On Robin's criterion for the Riemann hypothesis". In: Journal de Théorie des Nombres de Bordeaux 19.2 (2007), pp. 357-372. DOI: 10.5802/jtnb.591.
[Koz21] László Kozma. Useful Inequalities. http://www. Ikozma. net/inequalities_cheat_sheet/ineq.pdf. Accessed on 2021-07-07. 2021.
[Rob84] Guy Robin. "Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann". In: J. Math. pures appl 63.2 (1984), pp. 187-213.
[Voj20] Robert Vojak. "On numbers satisfying Robin's inequality, properties of the next counterexample and improved specific bounds". In: arXiv preprint arXiv:2005.09307 (2020).

CopSonic, 1471 Route de Saint-Nauphary 82000 Montauban, France E-mail address: vega.frank@gmail.com

