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THE RIEMANN HYPOTHESIS

FRANK VEGA

Abstract. Robin criterion states that the Riemann Hypothesis
is true if and only if the inequality σ(n) < eγ × n× log log n holds
for all n > 5040, where σ(n) is the sum-of-divisors function and
γ ≈ 0.57721 is the Euler-Mascheroni constant. This is known as
the Robin inequality. We obtain a contradiction just assuming the
smallest counterexample of the Robin inequality exists for some
n > 5040. In this way, we prove that the Robin inequality is true
for all n > 5040. Consequently, the Riemann Hypothesis is also
true.

1. Introduction

As usual σ(n) is the sum-of-divisors function of n [Cho+07]:∑
d|n

d

where d | n means the integer d divides to n. Define f(n) to be σ(n)
n

.
Say Robins(n) holds provided

f(n) < eγ × log log n.

The constant γ is the Euler-Mascheroni constant, and log is the natural
logarithm. The importance of this property is:

Theorem 1.1. [RH] Robins(n) holds for all n > 5040 if and only if the
Riemann Hypothesis is true [Rob84].

We demonstrate that there is a contradiction just assuming the ex-
istence of the smallest number n > 5040 such that Robins(n) does not
hold. By contraposition, we show that Robins(n) holds for all n > 5040
and thus, the Riemann Hypothesis is true.
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2. A Basic Case

We can easily prove that Robins(n) holds for certain kind of numbers:

Lemma 2.1. [less-than-7] Robins(n) holds for all n > 5040 when q ≤ 5,
where q is the largest prime divisor of n.

Proof. Let n > 5040 and let all its prime divisors be q1 < · · · < qm ≤ 5,
then we need to prove

f(n) < eγ × log log n

that is true when
m∏
i=1

qi
qi − 1

≤ eγ × log log n

is also true. Certainly, for n ≥ 2 [Cho+07]:

f(n) <
∏
q|n

q

q − 1
.

For q1 < · · · < qm ≤ 5,
m∏
i=1

qi
qi − 1

≤ 2× 3× 5

1× 2× 4
= 3.75 < eγ × log log(5040) ≈ 3.81.

However, we note that for n > 5040

eγ × log log(5040) < eγ × log log n

and therefore, the proof is complete when q1 < · · · < qm ≤ 5. �

3. Some Useful Inequalities

The following lemma is a very helpful inequality:

Lemma 3.1. [1-ineq] For 0 < x < 1, we have

x

1− x
≤ 1

y + y2 + y3

2

where y = 1− x.

Proof. For k > −1, we know 1 + k ≤ ek [Koz21]. Therefore,

x

1− x
≤ ex−1

1− x
=

1

(1− x)× e1−x
=

1

y × ey
.

However, for every real number y ∈ R [Koz21]:

y × ey ≥ y + y2 +
y3

2
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and this can be transformed into
1

y × ey
≤ 1

y + y2 + y3

2

.

Consequently, we show

x

1− x
≤ 1

y + y2 + y3

2

.

�

This is another inequality that we use:

Lemma 3.2. [2-ineq] For x ≥ 2,
x

x− 1
≥ e

1
x .

Proof. If we apply the logarithm to the both sides of the inequality,
then we obtain that

log
x

x− 1
≥ 1

x
.

We know that

log
x

x− 1
= log(1 +

1

x− 1
).

For x > −1 [Koz21]:
x

x+ 1
≤ log(1 + x).

We use this property to show that:

log(1 +
1

x− 1
) ≥

1
x−1

1 + 1
x−1

=
1

(x− 1)× (1 + 1
x−1)

=
1

x
.

Therefore, the proof is complete. �

Here, it is another practical inequality:

Lemma 3.3. [property] Suppose that n > 5040 and let n = r × q,
where q denotes the largest prime factor of n and r > 1 is a natural
number. We have that

f(n) ≤ (1 +
1

q
)× f(r).

Proof. Suppose that n is the form of m×qk where m and q are coprimes
such that m and k are natural numbers. We have that

f(n) = f(m× qk) = f(m)× f(qk)

since f is multiplicative and m and q are coprimes [Voj20]. However,
we know that

f(qk) ≤ f(qk−1)× f(q)
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because of we notice that f(a× b) ≤ f(a)× f(b) when a, b ≥ 2 [Voj20].
In this way, we obtain that

f(qk−1)× f(q) = f(qk−1)× (1 +
1

q
)

according to the value of f(q) = (1+ 1
q
) [Voj20]. In addition, we analyze

that

f(m)× f(qk−1) = f(m× qk−1) = f(r)

because f is multiplicative and m and q are coprimes [Voj20]. Finally,
we obtain that

f(n) = f(m)× f(qk) ≤ f(m)× f(qk−1)× f(q) = f(r)× (1 +
1

q
)

and as a consequence, the proof is done. �

4. Proof of Main Theorem

Theorem 4.1. [main] Robins(n) holds for all n > 5040.

Proof. Suppose that n is the smallest integer exceeding 5040 that does
not satisfy the Robin inequality. Let n = r × q, where q denotes
the largest prime factor of n. We prove that Robins(n) holds for all
n > 5040 when q ≤ 5 according to the lemma 2.1 [less-than-7]. As
result, this implies that q > 5 for this possible counterexample. Recall
that p1, p2, . . . denote the consecutive primes. An integer of the form∏s

i=1 p
ei
i with e1 ≥ e2 ≥ · · · ≥ es ≥ 0 we will call an Hardy-Ramanujan

integer [Cho+07]. A natural number n is called superabundant pre-
cisely when, for all m < n

f(m) < f(n).

If n is superabundant, then n is an Hardy-Ramanujan integer [AE44].
Moreover, the smallest counterexample of Robin inequality greater
than 5040 must be a superabundant number [AF09]. Consequently,
it is necessary that r ≥ 2 × 3 × 5 = 30. In this way, the following
inequality

f(n) ≥ eγ × log log n

should be true. We know that

(1 +
1

q
)× f(r) ≥ f(q × r) ≥ f(n) ≥ eγ × log log n

due to the lemma 3.3 [property]. Besides, this shows that

(1 +
1

q
)× eγ × log log r > eγ × log log n



THE RIEMANN HYPOTHESIS 5

should be also true, because of f(r) < eγ × log log r. Certainly, if n
is the smallest counterexample exceeding 5040 of the Robin inequality,
then Robins(r) holds [Cho+07]. That is the same as

(1 +
1

q
)× log log r > log log n.

We have that

(1 +
1

q
)× log log r > log(log r + log q)

where we notice that

log(a+ c) = log
(
a× (1 +

c

a
)
)

= log a+ log(1 +
c

a
)

for a ≥ 1 and c ≥ 1. This follows as

(1 +
1

q
)× log log r > log log r + log(1 +

log q

log r
)

since log r ≥ 1 and log q ≥ 1 for q > 5 and r ≥ 30. This is equal to

(1 + q)× log log r > q × log log r + q × log(1 +
log q

log r
)

and thus,

log log r > q × log(1 +
log q

log r
).

This implies that

log log r

log(1 + log q
log r

)
=

log log r

log log r+log q
log r

=

log log r

log logn
log r

=

log log r

log log n− log log r
=

log log r

log log n× (1− log log r
log logn

)
=

log log r
log logn

(1− log log r
log logn

)
> q
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should be true. If we assume that y = 1− log log r
log logn

, then we analyze that

1

y + y2 + y3

2

≥
log log r
log logn

(1− log log r
log logn

)

because of lemma 3.1 [1-ineq]. As result, we have that

1

y + y2 + y3

2

> q

and therefore,
1

1 + y + y2

2

> q × y.

Since we have

1 + y +
y2

2
> 1

then
1

1 + y + y2

2

< 1.

Consequently, we obtain that

1 > q × y
which is the same as

e > eq×y.

For y > 0, we have that 1 + y ≤ ey [Koz21] and therefore,

e > eq×y ≥ (1 + y)q = (2− log log r

log log n
)q

that is
q
√
e > (2− log log r

log log n
)

and finally,

1 > (2− log log r

log log n
)× 1

e
1
q

.

According to the lemma 3.2 [2-ineq], we know that
q

q − 1
≥ e

1
q

which is equivalent to
q − 1

q
≤ 1

e
1
q

.

In this way, we obtain that

(2− log log r

log log n
)× 1

e
1
q

≥ (2− log log r

log log n
)× q − 1

q
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and thus,

1 > (2− log log r

log log n
)× q − 1

q
.

This the same as
log log r

log log n
× q − 1

q
> 2× q − 1

q

which is equal to
log log r

log log n
× q − 1

q
+

2

q
> 2.

We know that
q − 1

q
>

log log r

log log n
× q − 1

q
since we can assure that a > c and b > c when c = a × b such that
0 < a < 1 and 0 < b < 1. In fact, we note that 0 < log log r

log logn
< 1 and

0 < q−1
q
< 1. Consequently, we would have that

q − 1

q
+

2

q
> 2.

However, this is contradiction because of

q − 1

q
< 1

and
2

q
< 1

for q > 5. Indeed, if we sum the previous inequalities, then we can see
that

q − 1

q
+

2

q
< 1 + 1 = 2.

Hence, we obtain a contradiction when n > 5040 is the possible smallest
number such that Robins(n) does not hold. By contraposition, we have
that Robins(n) holds for all n > 5040. �

Theorem 4.2. [conclusion] The Riemann Hypothesis is true.

Proof. This is a direct consequence of theorems 1.1 [RH] and 4.1 [main].
�
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