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Abstract

We consider the problem of representing a set of m
points using disjoint pixels on a grid with bounded
Hausdorff distance. We prove that optimizing the prob-
lem is NP-complete. Additionally, we present a constant
factor approximation algorithm with running time in
O(m2 log δ∗/ logm), where δ∗ is the Hausdorff distance
in an optimal solution, as well as a slower algorithm
with a constant additive error.

1 Introduction

The field of digital geometry concerns itself with the
representation of geometric objects using pixels on a
grid while preserving geometric properties. Examples
are mapping convex regions to a similar-looking ortho-
convex set of pixels or mapping lines to chains of pixels
that still only intersect at most once. Digital geometry
finds application in image processing and storage. For
a survey, see Klette and Rosenfeld [15, 16].

More recently, error bounds under the Hausdorff dis-
tance have been studied. Chun et al. [7] investigate
the problem of digitizing rays originating in the origin
to digital rays such that certain properties are satis-
fied. They show that rays can be represented on the
n × n grid in a consistent manner with Hausdorff dis-
tance O(log n). This bound is tight in the worst case.
By ignoring one of the consistency conditions, the dis-
tance bound improves to O(1). Their research is ex-
tended by Christ et al. [5] to line segments (not nec-
essarily starting in the origin), who obtain the loga-
rithmic distance bound in this case as well. A possi-
ble extension to curved rays was developed by Chun
et al. [6]. Other results with a digital geometry fla-
vor within the algorithms community are those on snap
rounding [8, 11, 14], integer hulls [1, 13], and discrete
schematization [17].

The present submission is inspired by two recent pa-
pers: Mapping Polygons to the Grid with Small Haus-
dorff and Fréchet Distance, by Bouts, Kostitsyna, van
Kreveld, Meulemans, Sonke and Verbeek [3] and Map-
ping Multiple Regions to the Grid with Bounded Haus-
dorff Distance by van der Hoog, van de Kerkhof, van
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Figure 1: An example of a valid mapping of regions to
grid polygons.

Kreveld, Löffler, Staals, Urhausen and Vermeulen [20].
Intuitively the problem discussed in these papers is: for
a given set of regions find a set of pixels from the unit
grid that best represents the input (see Figure 1).

In the following we use the notation H ′(R,P ) for the
maximum between the Hausdorff distance between the
sets R and P and the Hausdorff distance between their
boundaries ∂R and ∂P . Amongst others, Bouts et al. [3]
show that for a given connected region R, one can find
a simply connected grid polygon P in the unit grid such
that the Hausdorff distance H ′(R,P ) is at most a con-
stant. Note that this result holds, no matter the reso-
lution of R. On the other hand they show that, given a
region R, it is NP-hard to find the grid polygon P that
minimizes the Hausdorff distance H ′(R,P ).

Van der Hoog et al. [20] extend this concept to mul-
tiple regions. Whereas the result from [3] was extended
to two regions, for three or more regions there is no con-
stant upper bound on the Hausdorff distance between
the regions and any simply connected grid polygons.
Nonetheless, they show that, if the regions are m β-fat
convex regions, one can construct a set of disjoint grid
polygons within Hausdorff distance H ′ at most O(

√
m),

for β constant. This is tight in the worst case. Note that
points are β-fat convex regions, for any β. Their last re-
sult is that for m convex regions, one can construct a set
of orthoconvex disjoint grid polygons within Hausdorff
distance of O(m), which is again tight in the worst case.

Computation. Previous work focuses on the existence
of solutions with bounded Hausdorff distance, but not
on their efficient computation. When considering the
question of efficiency, we are faced with some additional
modeling questions. The two main ones are:
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1. How do we locate input features (vertices or edges)
on the grid?

2. How do we compactly represent sets of pixels that
correspond to output regions?

Regarding question (1), we note that traditionally, ge-
ometric algorithms are analysed in the Real RAM com-
putation model. In this model, one may work with ar-
bitrary real numbers, but certain natural operations are
not available; in particular the floor operation is known
to be problematic [2]. In the context of digital geometry,
where we have a natural underlying grid, and the whole
objective is to map objects to a grid, such a restric-
tion seems not entirely reasonable. In this work, we will
move away from the Real RAM model and assume that
the input coordinates are all polynomial in the input
size—in other words, the bit complexity is logarithmic—
and that the floor function is available. (Note that un-
der our bit complexity assumption, if desired, the floor
function can also be implemented in logarithmic time
on a Real RAM.)

Regarding question (2), we note that when mapping
large regions (in size, not in description complexity) to
a grid, an explicit representation of the output listing
precisely which pixels are and which are not part of a
set would necessarily be large as well, and may be unre-
lated to the input complexity. Alternatively, one could
compactly represent output regions by providing only
the coordinates of vertices and interpolating boundary
edges onto the grid. Given the complexity of mapping
lines to the grid, however, it is not entirely clear how
to do this in a consistent way. In this work, we make a
first step towards understanding the computational as-
pect of the question by focusing on point regions. For a
single point region and constant Hausdorff distance, the
output is necessarily a set of only a constant number of
pixels, and thus we avoid the issue.

To summarize, in the present submission, we make
the following assumptions:

• The input is a set R of m points in R2, with a
polynomial upper bound on the coordinate sizes;
that is, for every point R ∈ R we have −f(m) <
xR < f(m) and −f(m) < yR < f(m) for some
polynomial function f .

• We have access to a floor operation, which can pro-
vide us with the integer part of any real number in
the range [−f(m), f(m)].

Related Work. Testing whether there exists a set of
pixels within Hausdorff distance δ from R can be seen
as a problem where we are given a set of squares of (L1)-
radius δ, and are asked to place a set of unit squares such
that each square touches an input square. The problem
of placing unit squares in the neighbourhood of points

can be viewed as dual to the problem of placing points
in squares: if we shrink the (L1)-radius of the squares-
to-be-placed by 1

2 and we grow the δ-neighbourhoods of
the points also by 1

2 , a valid solution where points are
placed at integer coordinates at distance at least 2 from
each other corresponds exactly to a valid solution to our
problem.

The problem of placing points in squares such that
the points are not too close to each other has been in-
troduced under the name of distant representatives [10]
and was later also studied in the context of data impreci-
sion [18]. Fiala et al. [10] prove that the problem is NP-
hard (both for disk and square regions), and Cabello [4]
proposes a constant-factor approximation algorithm.

We note that our problem is essentially different, since
for us, valid placements are restricted to a discrete set
of points (the unit grid). Neither the hardness proof nor
the algorithmic result carry over directly to this discrete
setting.

Figure 2: An example of a valid mapping of points to
pixels on the grid.

Contribution. In the present submission, we study the
computational question of mapping point sets to disjoint
pixels on a unit grid with small Hausdorff distance, as
visualized in Figure 2. Van der Hoog et al. [20] observed
that in general the solution constructed with their al-
gorithms might yield a “visually unfortunate” output.
Formally, the algorithm might yield a solution with high
Hausdorff distance, even in the case where the optimal
solution has constant Hausdorff distance. In Section 2,
we show that finding the solution with minimal Haus-
dorff distance to a given set of regions is NP-complete,
even if the regions are just points. Then, in Section 3,
we present an approximation algorithm for points that
produces a solution with Hausdorff distance at most
2
√

2(dδ∗e + 1) ≤ 6
√

2δ∗ and has a running time of
O(m2 log δ∗/ logm), where δ∗ is the maximal Hausdorff
distance in an optimal solution. Finally, we present a
second algorithm which produces a solution with Haus-
dorff distance at most dδ∗e +

√
2 in O(δ∗4m2/ logm)

time.

Notation and Definitions. We denote by Γ the
(infinite) unit grid in two dimensions, whose unit
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squares are referred to as pixels. The (symmetric)
Hausdorff distance between two sets A,B ⊂ R2 is
defined as H(A,B) = max{maxa∈A(minb∈B(|ab|)),
maxb∈B(mina∈A(|ab|))}, where |ab| is the distance be-
tween the points a and b.

Let R = {R1, R2, . . . Rm} be a set of m points in the
plane. In this paper, we treat the problem on how to as-
sign a pixel Pi ∈ Γ to each point Ri ∈ R such that differ-
ent pixels do not meet in any edge or vertex of the grid.
This is consistent with the problem definition from [20].
We call the set P = {P1, P2, . . . , Pm} of such pixels a
valid mapping for R. Our goal is to find a valid map-
ping P that minimizes maxi∈{1,...,m}{H(Ri, Pi)}. See
Figure 2 for an example.

Note that in contrast to [3] and [20], we disregard the
Hausdorff distance between the boundaries H(∂Ri, ∂Pi)
because we have H(∂Ri, ∂Pi) = H(Ri, Pi), for convex
Ri and Pi.

2 NP-completeness

Bouts et al. [3] proved that for a single simply connected
region R it is NP-complete to test if there is a grid-
polygon within Hausdorff distance 1/2. We extend this
result to multiple point-regions. Formally, we show that
for a set of points R it is NP-complete to test if there
is a valid mapping within Hausdorff distance

√
2. Our

proof is inspired both by the construction of Bouts et
al. [3] and the proof by Fiala et al. [10] for a similar
problem in a continuous setting.

We first prove containment in NP. For each point
there are at most 9 options to place the corresponding
pixel. An oracle can guess the correct placement and
then just has to test that no two pixels share a common
grid vertex.

We now show that the problem is NP-hard. We re-
duce from the NP-complete problem monotone rectilin-
ear planar 3-Sat [9].

Rectilinear monotone planar 3-SAT. Input: a 3-Sat
formula with only all positive or all negated variables
per clause, embedded as a graph with rectilinear, non-
crossing edges. The set of vertices consists of variable-,
split- and clause-vertices; variable-vertices are drawn on
a horizontal line that no edge crosses; clause-vertices for
positive (negative) clauses are drawn above (below) this
line; clauses are connected with the variables they con-
tain with an edge or a path of edges and split-vertices.
Output: “Yes” if there exists a satisfying assignment for
the variables, “No” otherwise.

Such a 3-Sat formula embedded as a graph is illus-
trated in Figure 3. Without loss of generality we can
assume that the embedded graph has the following ad-
ditional properties: edges have at most one bend, each
variable-vertex v has degree at most 2 and the incident

v1 v2 v3 v4 v5

v2 ∨ v3 ∨ v4

v1 ∨ v2 ∨ v4

v1 ∨ v4 ∨ v5

¬v2 ∨ ¬v4 ∨ ¬v5

Figure 3: An example of the embedded formula (v2 ∨
v3∨v4)∧(v1∨v2∨v4)∧(v1∨v4∨v5)∧(¬v2∨¬v4∨¬v5).
The split vertices are highlighted in red.

edges are vertical at v, split-vertices w have degree 3
and only one incident edge is horizontal at w, and for
each variable a, all split-vertices corresponding to a are
vertically aligned with the variable-vertex va of a.

For a given monotone rectilinear planar 3-Sat in-
stance that is embedded as described above, let G be
a drawing of the embedding. Without loss of generality
we assume that G is drawn on the unit grid and that
the horizontal line containing all variables is the x-axis.
We scale G such that each vertex is on an even grid ver-
tex (2x, 2y) and such that the distance between any two
vertices, between any vertex and any bend, and between
any two non-incident edges is at least 8.

Construction. We create a set of points R. We only
place points on grid vertices. In the end, we ask the
question whether one can place pixels within Hausdorff
distance

√
2 from the points of R, that is, we ask the

question if for each point in R, we can choose one of
the four adjacent pixels so that no two chosen pixels of
different points share a common vertex. We say a point
Ri has a top-left (top, top-right, . . . ) pixel if Pi is to the
top-left (top, top-right, . . . ) of Ri.

These following two observations are the main tools
for the construction of the gadgets, depicted in Figure 4.
When two horizontally aligned points are at distance 1,
the leftmost (rightmost) point has a left (right) pixel.
For two horizontally aligned points at distance 2, if the
leftmost (rightmost) point has a right (left) pixel, the
rightmost (leftmost) point has a right (left) pixel, too.
This is symmetric for vertically aligned points.
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Figure 4: The bend, split and clause gadgets. The point
R is highlighted in each gadget.

Variable. We first place a point R ∈ R on each even
grid vertex that is intersected by the drawing. For each
variable a in G, there is a point Ra = (2x, 0) in R where
the variable-vertex va is drawn. We call that point Ra

the indicator of a. Intuitively, if Ra has a bottom (top)
pixel, a is true (false). If the point (2x, 2) has a bot-
tom (top) pixel we say it has a pixel toward the variable
(away from the variable). Symmetrically, if the point
(2x,−2) has a top (bottom) pixel we say it has a pixel
toward the variable (away from the variable). This con-
cept propagates throughout the points corresponding to
a.

Bend. Let R = (2x, 2y) ∈ R be a point at the corner
of a bend of an edge e. We assume e connects a vertex
to the left of R with a vertex below R. The other cases
are symmetric. Thus, the points L = (2x − 2, 2y) and
B = (2x, 2y− 2) are in R. We add another point (2x+
1, 2y + 1) to R. Now, if L has a right pixel, B has a
bottom pixel and if B has a top pixel, L has a left pixel.

Split. Let R = (2x, 2y) ∈ R be a point at a split-
vertex. We assume that the horizontal edge incident to

R is to its right and that the split vertex is above the
x-axis and therefore its corresponding variable-vertex.
Thus, the points T = (2x, 2y + 2), Q = (2x + 2, 2y)
and B = (2x, 2y − 2) are in R. The other cases are
symmetric. We add the points (2x + 2, 2y + 1) and
(2x − 1, 2y − 2) to R. If T has a bottom pixel or if Q
has a left pixel, B has a bottom pixel. That is, if a
point on the top or right edges has a pixel toward the
variable, the points on the bottom edge also have pixels
toward the variable.

Clause. Let R = (2x, 2y) ∈ R be a point at a clause-
vertex. We call R the clause-point. We assume the
three edges connect to the left, right and bottom of
R respectively, else the situation is symmetric. As the
distance between two gadgets is least 8, the points (2x−
2, 2y), L = (2x − 4, 2y), (2x + 2, 2y), Q = (2x + 4, 2y)
and B = (2x, 2y − 2) are in R. We move the points
(2x − 2, 2y) and (2x + 2, 2y) to (2x − 2, 2y + 1) and
(2x+ 2, 2y+ 1) and add two points (2x− 3, 2y+ 2) and
(2x+ 3, 2y + 2) to R. It follows that if the clause-point
R has a top-left (top-right, bottom) pixel, L (Q, B) has
a left (right, bottom) pixel. That means that the points
on at least one of the incident edges have pixels toward
the variable.

Put together the points R and a valid mapping P are
shown in Figure 5.

v1 v2 v3 v4 v5

v2 ∨ v3

v1 ∨ v2 ∨ v4

v1 ∨ v4 ∨ v5

¬v2 ∨ ¬v4 ∨ ¬v5

false true true true false

∨ v4

Figure 5: The complete construction of the NP-hardness
reduction. The pixels corresponding to indicators or to
clause-points are highlighted.

Proof of correctness. Let A be an assignment of vari-
ables to {true, false} such that the 3-Sat formula is
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satisfied. For each variable a, if a is true, first, we give
the indicator Ra a bottom pixel. Second, we give each
point R ∈ R that is on an edge corresponding to a a
pixel toward (away from) the variable, if p is above (be-
low) the x-axis. For each variable assigned the value
false we do the inverse. As in each positive (negative)
clause there is a variable that is assigned to true (false),
each clause-point can place its pixel in one of the four
adjacent spots. So overall there is a valid mapping such
that the Hausdorff distance between a point and its cor-
responding pixel is at most

√
2.

Inversely, let there be a set of pixels such that the
Hausdorff distance between any point and its corre-
sponding pixel is at most

√
2. For each variable a, if

the indicator Ra has a bottom (top) pixel, we set a to
true (false). We now prove that in each positive (nega-
tive) clause there is a variable that is assigned to true
(false). Let c be a positive clause such that the incident
edges are on the left, right and bottom of the clause
point R of c. The other cases are symmetric. If R has
a top-left (top-right, bottom) pixel, we know that the
points on the left (right, bottom) edge have pixels to-
ward the variable. Let e be an edge incident to R whose
points have pixels toward the variable. If e connects to
a split-vertex w, the points on the vertical edge e′ in-
cident at the bottom at w also have pixels toward the
variable. We then set e = e′. This repeats until we have
an edge e that connects to the variable-vertex of a. It
follows that the indicator Ra has a bottom pixel and a
has been assigned the value true. The theorem follows.

Theorem 1 If R is a set of m points, it is NP-complete
to decide whether there exists a valid mapping such that
for each point Ri ∈ R with corresponding pixel Pi, we
have H(Ri, Pi) ≤

√
2.

3 Approximation Algorithms

We now turn our attention to approximation. We start
by making some observations. Clearly, the optimal
Hausdorff distance δ∗ for any instance is at least 1

2

√
2,

since the distance is taken between a point and (at least
one) unit square. Therefore, a constant additive approx-
imation in this case automatically translates to a con-
stant multiplicative approximation. We also note that,
due to the discrete nature of the output, we cannot hope
to do better than a constant factor approximation.

To illustrate the complexity of the problem, in Sec-
tion 3.1 we first discuss some natural ideas which do not
lead to a working approximation. Then, in Section 3.2,
we then present an algorithm that achieves a Hausdorff
distance of at most 2

√
2dδ∗e + 2

√
2. In Section 3.3 we

show how to improve the approximation to dδ∗e +
√

2,
at the cost of a slower runtime.

3.1 A First Attempt

As discussed in the introduction, Cabello [4] presents
a constant factor approximation algorithm for placing
n points into respective discs or squares. A first ap-
proach could be to dualize our problem and directly
run their algorithm to place a set of points—however,
we would have no guarantee the points are placed at in-
teger coordinates. We would have to snap the points to
the grid before translating them back to squares. The
Hausdorff distance itself would only increase by at most
1
2

√
2 in this way, which would still result in a constant-

factor approximation, albeit with a slightly higher con-
stant. However, the snapping procedure could also re-
sult in touching or even overlapping pixels, so the solu-
tion would not necessarily be valid.

Another approach would be to find a subdivision of
the grid into cells such that for each cell all the points
contained in it can be assigned separate pixels in that
cell. If the minimal size of the cells depends only on the
Hausdorff distance between the points and an optimal
valid mapping, this approach could lead to an approx-
imation algorithm. Formally, let Γk be a coarsening of
the grid Γ whose cells have k × k pixels. We call these
cells superpixels. The following lemma proves that this
approach does not work either.

Lemma 2 There is a set of points R and a point
R ∈ R, such that (1) there is a valid mapping P within
Hausdorff distance at most 3; (2) for any superpixel with

side length s that contains R and at most
⌊
s
2

⌋2
points

from R, we have s ∈ Ω(|R|).

Proof. A pixel is a set [i, i+ 1]× [j, j + 1], for integers
i, j. We define the set of points R =

{
R =

(
1
4 ,

1
4

)}
∪{ (

2i+ 1
2 , 2j + 1

2

)
,
(
2i+ 1

2 ,−2j − 1
2

)
,
(
−2i− 1

2 ,−2j − 1
2

)
,(

−2i− 1
2 , 2j + 1

2

)
| i, j ∈ {0, . . . , n}

}
, as shown in Fig-

ure 6. Let the four endpoints of a superpixel S
containing R be (a, b), (−c, b), (−c,−d) and (a,−d),
with a, b ≥ 1; c, d ≥ 0. The side length of the superpixel
is s = a+ c = b+ d. If s ≤ n, the superpixel S contains
1+da/2edb/2e+dc/2edb/2e+dc/2edd/2e+da/2edd/2e >
bs/2c2 points. �

3.2 A Constant Factor Approximation Algorithm

We present an algorithm that, for a given set of points
R in R2 determines a valid mapping P, such that the
Hausdorff distance between a point and its correspond-
ing pixel is at most 2

√
2(dδ∗e + 1), for δ∗ being the

minimal possible Hausdorff distance betweenR and any
valid mapping P.

For a coarsening Γk of the grid Γ, let Sk be the set
of superpixels that either contain a point in R or are
adjacent to a superpixel that does.
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Figure 6: Any superpixel with side length i containing
the red point R contains more than bi/2c2 points. For
example, the yellow superpixel has side length 10 and
contains 26 points.

Observation 1 Let x ≥ δ∗ and x ∈ N even. Then
we know that for each point Ri ∈ R in a superpixel
S ∈ Sx, the pixel Pi is in S or in one of the 8 superpixels
adjacent to S. Additionally, each superpixel contains at
most (x/2)2 pixels that are disjoint.

Building on that idea, we create the following test
f(·). For an even number i ∈ N, we want f(i) = true
if for each coarsening Γi, there exists an assignment g :
R → Si of points to superpixels such that:

1. ∀R ∈ R, g(R) is the superpixel containing R or one
of the eight adjacent ones;

2. ∀S ∈ Si, there are at most (i/2)2 points R with
g(R) = S.

We call such an assignment g a correct assignment. Oth-
erwise, if for each coarsening Γi no correct assignment
can be found, we want f(i) = false. If a correct assign-
ment g can only be found for some coarsenings, f(i) can
either be true or false. We define f(0) = false.

Binary Search. We use exponential and binary search
to find an even number i ∈ N with f(i) = true and f(i−
2) = false. We start at i = 2. We iterate calculating
f(i): if f(i) = false, we double i and continue, else we
stop. Then we binary search normally. Note that from
Observation 1 we get f(i) = true, for i ≥ δ∗. Therefore,
this binary search algorithm results in a number I ≤
dδ∗e+ 1 and has a running time of O(F × log δ∗), where
F the the time to run the test f(·).

Test. The calculation of f(i) proceeds as follows. We
use a flow algorithm [12] to determine if a correct as-
signment g exists. We choose a coarsening Γi and cre-
ate a directed acyclic graph G = (V,E) as illustrated
in Figure 7. We set V = {s, t} ∪ {Sin, Sout | S ∈ Si}
as the set of vertices. We define (a, b, c) ∈ E as the
edge between the vertices a ∈ V and b ∈ V with ca-
pacity c ∈ N ∪ {∞}. We set E = {(s, Sin, |S ∩ R|) |
S ∈ Si} ∪ {(Sin, S

′
out,∞) | S, S′ ∈ Si ∧ (S = S′ ∨

S adjacent to S′)} ∪ {(Sout, t, (i/2)2) | S ∈ Si} as the
set of edges.

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

7

1

∞

( i
2 )

2

s t

Figure 7: A set R of 8 points and the corresponding
graph G produced by the algorithm in Section 3.2. The
edges are annotated with their respective capacities.
Edges with capacity 0 are omitted; edges starting at
(Si)in are grayed out if Si is empty.

We then calculate a maximal flow from s to t. We
can assume that the flow in each edge is a natural
number. As |E| ∈ O(|V |), the flow algorithm runs in
O(m2/ logm) time [19] because |V | ∈ O(m = |R|).
If G admits a flow from s to t with flow rate |R|,
the flow induces a correct assignment g as follows:
we repeat the following for every superpixel S ∈ Si.
Let {S1, . . . , S9} = {S′ | S′ ∈ Si ∧ (S = S′ ∨
S adjacent to S′)} be the set containing S and the su-
perpixels adjacent to S. Let U1∪· · ·∪U9 = S∩R be any
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partition of the points in S, where, for j, k ∈ {1, . . . , 9},
we have j 6= k =⇒ Uj∩Uk = ∅ and |Uj | is the flow from
Sin to (Sj)out. For each j ∈ {1, . . . , 9} and each point
R ∈ Uj , we set g(R) = Sj . This results in a correct
assignment g.

Thus, if G admits a flow from s to t with flow rate
|R|, we set f(i) = true. Otherwise f(i) = false. This
test performs as requested and has a running time of
O(m2/ logm).

7/7

1/1

1/4

4/∞

2/∞

1/∞

1/∞

4/4

2/4

1/4

s t

Figure 8: A set R of 8 points and the graph G with a
maximal s-t-flow where edges with flow 0 are omitted,
produced by the algorithm in Section 3.2. The super-
pixels and their respective vertices in G are color-coded.
The pixels P induced by the flow are show in gray.

Placing the Pixels. Let I be the even number that is
the result from the binary search, that is, f(I) = true
and f(I − 2) = false. Let now ΓI be a coarsening and
let g be a correct assignment, calculated by the test
f(I). We place the pixels P as shown in Figure 8: for
each superpixel S ∈ SI , let {RS

1 , R
S
2 , . . . } = {R ∈ R |

g(R) = S} be the points assigned to S. We set the pixel
corresponding to RS

j as
(
2
(
j mod I

2

)
, 2
⌈
2j
I

⌉)
S

, where
(1, 1)S ((I, 1)S , (I, I)S) is the pixel on the bottom-left
(bottom-right, top-right) of S. That way no two pixels
in P touch and for each point R its corresponding pixel
is in the superpixel assigned to R. It follows that the
Hausdorff distance between a point and its correspond-
ing pixel is at most 2

√
2I. Since I is an even number,

I ≤ dδ∗e+ 1, and δ∗ ≥
√

(2)/2, we get:

Theorem 3 Given a set of m points R, we can de-
termine a valid mapping P such that for each point
Ri with corresponding pixel Pi, we have H(Ri, Pi) ≤
2
√

2(dδ∗e+ 1) ≤ 6
√

2δ∗ in O(m2 log δ∗/ logm) time.

3.3 An Algorithm with Constant Additive Error

Contrary to the constant factor algorithm presented in
the previous section, we now present an approximation
algorithm with only a constant additive error: that is,
for a given set R, we determine a valid mapping P, with
H(Ri, Pi) ≤ δ∗ + c for each Ri ∈ R, where c is a con-
stant and δ∗ is the minimal possible Hausdorff distance
between R and any valid mapping P. The algorithm
uses similar ideas to the algorithm in Section 3.2. Let
Γ2 be a coarsening, that is each superpixel only contains
4 pixels forming a square. It follows that when placing
a pixel in each superpixel, the pixels are disjoint. We
define H∗(R,S) = minpixelP∈S H(R,P ) as the Haus-
dorff distance between the point R ∈ R and its closest
pixel in the superpixel S. For i ∈ N, let Si be the set
of superpixels S, such that there is a point R ∈ R with
H∗(R,S) ≤ i. Note that here, the size of the set Si is
dependent on i2.

Observation 2 Let x ≥ δ∗ and x ∈ N. For a given
valid mapping P that minimizes the Hausdorff distance,
for each point Ri ∈ R, the pixel Pi ∈ P is in a super-
pixel S ∈ Sx, with H∗(Ri, S) ≤ x. Additionally, each
superpixel contains at most one pixel.

The observation leads us to create the following test
f(·): we want f(i) = true, if there exists an assignment
g : R → Si of points to superpixels such that:

1. ∀R ∈ R, H∗(R, g(R)) ≤ i;

2. ∀S ∈ Si, there is at most one R with g(R) = S.

We again call such an assignment g a correct assignment.
Otherwise, we want f(i) = false. Note that f(0) = false.

Binary Search. Similarly to Section 3.2, we use expo-
nential and binary search to find a number i ∈ N with
f(i) = true and f(i − 1) = false. We start at i = 1.
We iterate calculating f(i): if f(i) = false, we double i
and continue, else we stop. Then we binary search nor-
mally. Due to Observation 2, we have f(i) = true, for
i ≥ δ∗. This binary search algorithm results in a num-
ber I ≤ dδ∗e and has a running time of O(F × log δ∗),
where F the the time to run the test f(·).

Test. The calculation of f(i) proceeds very similarly
to Section 3.2. We use a flow algorithm [12] to determine
if a correct assignment g exists. We create a directed
acyclic graph G = (V,E), as illustrated in Figure 9.
We set V = {s, t} ∪ R ∪ Si as the set of vertices. We
define (a, b) ∈ E as the edge between the vertices a ∈ V
and b ∈ V with capacity 1. We set E = {(s,R) | R ∈
R}∪{(R,S) | R ∈ R, S ∈ Si ∧ H∗(R,S) ≤ i}∪{(S, t) |
S ∈ Si} as the set of edges.
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Figure 9: A small set R of 3 points and the graph G =
(V,E) produced by the algorithm in Section 3.3 for i =
2. All edges have a capcity of 1. The points in R and
their respective vertices in G are color-coded.

We then calculate a maximal flow from s to t. We
can assume that the flow in each edge is a natural num-
ber. As |V |, |E| ∈ O(i2m), the flow algorithm runs in
O(i4m2/(log i logm)) time [19]. If G admits a flow from
s to t with flow rate |R|, the flow induces a correct as-
signment g as follows: for each point R ∈ R, there is
exactly one superpixel S ∈ Si where the edge (R,S)
has flow 1. We set g(R) = S. This results in a correct
assignment g.

Thus, if G admits a flow from s to t with flow rate
|R|, we set f(i) = true. Otherwise f(i) = false. This
test f(i) performs as requested and has a running time
of O(i4m2/(log i logm)).

Figure 10: A set R of 11 points and the valid mapping
P respecting a correct assignment g produced by the
algorithm in Section 3.3.

Placing the Pixels. Let I be the number that is the
result from the binary search, that is, f(I) = true and
f(I − 1) = false. Let g be a correct assignment, calcu-

lated by the test f(I). We place the pixels P as shown
in Figure 10: for each superpixel S ∈ SI , if there is a
point R assigned to S, we place the pixel corresponding
to R in the top-right pixel of S. That way no two pix-
els in P touch and for each point R its corresponding
pixel is in the superpixel assigned to R. It follows that
the Hausdorff distance between a point and its corre-
sponding pixel is at most I +

√
2. Since I ≤ dδ∗e, we

have:

Theorem 4 Given a set of m points R, we can deter-
mine a valid mapping P such that for each point Ri with
corresponding pixel Pi, we have H(Ri, Pi) ≤ dδ∗e+

√
2

in O(δ∗4m2/ logm) time.

4 Conclusion

Overall we extended the previously known results on
mapping regions to the grid with bounded Hausdorff
distance. Where Bouts et al. [3] showed that, for a given
set of regions, it is NP-hard to find the set of grid poly-
gons that minimizes the Hausdorff distance H ′, even if
for just one region, we show that this is hard, even if all
regions are points. On the other hand, where van der
Hoog [20] focused on worst-case tight algorithms, we
present the first approximation algorithm for mapping
regions to the grid.

An interesting open question is whether the concepts
presented in this paper can be extended to an approxi-
mation algorithm that maps convex regions to the grid.
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