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Figure 1: Communicating Cobot’s Motion Intent Feedback via Gizmo Approach

ABSTRACT
Nowadays, robots collaborate closely with humans in a growing
number of areas. Enabled by lightweight materials and safety sen-
sors, these cobots are gaining increasing popularity in domestic
care, supporting people with physical impairments in their every-
day lives. However, when cobots perform actions autonomously,
it remains challenging for human collaborators to understand and
predict their behavior. This, however, is crucial for achieving trust
and user acceptance. One significant aspect of predicting cobot
behavior is understanding their motion intent and comprehending
how they "think" about their actions. We work on solutions that
communicate the cobots AI-generatedmotion intent to a human col-
laborator. Effective communication enables users to proceed with
the most suitable option. We present a design exploration with dif-
ferent visualization techniques to optimize this user understanding,
ideally resulting in increased safety and end-user acceptance.
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CCS CONCEPTS
•Computer systems organization→ Robotic control; Robotic au-
tonomy; • Human-centered computing→ Visualization tech-
niques.
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1 INTRODUCTION
Robotic solutions are becoming increasingly prevalent in our per-
sonal and professional lives, and have started to evolve into close
collaborators [3, 7, 10]. These so-called cobots support humans in
various ways that were unimaginable just a few years ago. Enabled
by technological advances, newer lightweight materials, and im-
proved safety sensors, they are gaining increasing popularity in
domestic care, supporting people with disabilities in their everyday
lives [11].
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However, new potential issues arise when cobots are tasked
with (semi-)autonomous actions, resulting in added stress for end-
users [13]. Particularly close proximity collaboration between hu-
mans and cobots remains challenging [8]. These challenges include
effective communication to the end-user of (a) motion intent and
(b) the spatial perception of the cobot’s vicinity [12].

2 RELATEDWORK
In recent years, Augmented Reality (AR) technology has been fre-
quently used for human-robot collaboration [2, 6]. Previous work
focused primarily on the use of Head-Mounded Displays, Mobile
Augmented Reality, and Spatial Augmented Reality for the visu-
alization of cobot motion intent [8, 14, 16]. Rosen et al. showed
that AR is an improvement compared to traditional desktop inter-
faces when visualizing the intended motion of robots [14]. Previous
literature has focused mainly on visualizations of motion intent
for autonomous robotic systems [1, 4, 5, 8, 15, 17], communicating
recommended cobot intention and its control methods has however
not attracted as much attention.

3 TESTBED ENVIRONMENT
In earlier work, we developed an adaptive control interactionmethod
based on a recommendation system generated by a Convolutional
Neural Network [9]. From the cobot’s seven Degrees of Freedom
(DoF), the adaptive control combined several DoFs to provide a
more straightforward control to the user with fewer necessary
mode-switches.

The virtual environment, including a virtual model of the Kinova
Jaco1 robot arm was developed to be compatible with the Oculus
Quest 22 VR headset (see Figure 1). This provided us with a VR
testbed environment for developing and evaluating further feedback
techniques.

4 VISUALIZATION CONCEPTS
Our proposed concepts fall into a spectrum with two extremes —
indicative and explanatory. Indicative: Focus on crucial informa-
tion only, quick and easy solution, suitable for experienced cobot
users. Explanatory: Movements are shown in great detail, high
level of information, especially helpful for new users.

DoF-Indicator: LEDs attached to the cobot’s axis and joints - or
mounted on a bar in front of it - communicate active and nonactive
DoFs (see Figure 2). Likely more suitable for experienced users,
allows understanding of current DoF mapping by the recommenda-
tion system plus resulting movement abilities.

DoF-Combination-Indicator: Movement ability is commu-
nicated by a simplified representation of the cobot only showing
two modalities, e. g. rotating and extending (see Figure 3). The AR
representation (aka "fake joint") either overlays the real cobot or
can be displayed separately in the corner of the AR screen.

Gizmo Visualisation: Arrows, planes and point clouds com-
municate the current movement ability of the cobot (see Figure 4).
This allows for several different design options. A first arrow-based
approach was already successfully evaluated in a previous study [9].

1Kinova Jaco robot arm: https://assistive.kinovarobotics.com/product/jaco-robotic-
arm, last retrieved April 29, 2022
2Oculus Quest 2: https://www.oculus.com/quest-2/, last retrieved April 29, 2022

(a) (b)

Figure 2: DoF-Indicator: (a) LEDs attached to the cobot; (b)
LEDs mounted on a bar.

(a) (b)

Figure 3: DoF-Combination-Indicator: (a) as an AR overlay;
(b) as an icon in the screen corner.

Figure 4: Gizmo Visualization: (left) simple: straight and
curved arrows; (center) planar: planes of movement; (right)
cloud: 3D-cloud of possible boundary positions.

Demonstration: Current movement possibilities are demon-
strated through either the actual cobot or an AR representation.
With both options a quick movement indicates the intended motion.

Future work will see the implementation of the various visualiza-
tion options. Through this, we expect to gain a number of valuable
insights regarding the explainability of AI behavior in the context
of robotic movements.
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