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Abstract—Generative Adversarial Networks (GANs) have
gained prominence in medical imaging due to their ability
to generate realistic images. Traditional GANs, however, often
fail to capture intricate topological features such as holes and
connectivity components in real images. This study applies
TopoGAN, a recently developed model tailored for medical imag-
ing. TopoGAN dynamically learns and incorporates topological
features like connectedness and loops, addressing a real-world
medical data augmentation problem. Utilizing a topological GAN
loss function based on Persistent Homology and a new success
metric, TopoGAN minimizes the topological discrepancy between
synthetic and actual images. Experimental results, showcasing a
Wasserstein distance of 0.0021 and a Dice coefficient of 0.995,
highlight the model’s efficacy in producing qualitatively rich
synthetic images. This approach not only improves the realism of
generated images but also enhances performance in downstream
tasks such as image segmentation, offering a groundbreaking
solution with significant implications for medical image analysis,
diagnosis, and treatment planning.

Index Terms—Topological data analysis, Persistent Homology,
Generative Adversarial Network, Mathematics, Medical imaging.

I. INTRODUCTION

Generative adversarial networks (GANs) [1] have emerged
as a powerful technique in the realm of medical imaging,
demonstrating remarkable success in generating realistic im-
ages. GANs employ dual network architecture, training a
generator to synthesize images resembling real ones, while
simultaneously training a discriminator to differentiate be-
tween fake and genuine images. This adversarial interplay
facilitates the convergence of the generator towards generating
synthetic images that align with the distribution of real images

[1]–[4]. However, a crucial challenge in GAN design lies in
bridging the gap not only in appearance but also in semantics
between the synthetic and real image distributions. Traditional
GAN approaches primarily focus on matching the first-order
moments of the image distributions within a CNN-based
feature space [1], [2], [5], [6]. Recent advancements have
explored incorporating higher- order statistics, such as second-
order statistics of image features, to better align the synthetic
and real image distributions.

In the context of medical imaging, Kossaifi et al. have
introduced a novel approach by integrating a statistical shape
prior specifically for face images into the generator [7]. This
approach aims to capture and leverage higher-order informa-
tion, thereby enhancing the semantic realism of the generated
images. The underlying intuition suggests that the more intri-
cate and high-order information a generator can assimilate, the
more faithful and meaningful the synthesized medical images
become. By extending GAN methodologies to encompass
higher-order statistical measures and incorporating domain-
specific priors, the field of medical imaging stands to benefit
from enhanced image synthesis, enabling the generation of
images that not only possess realistic appearances but also
exhibit compelling semantic characteristics relevant to various
medical applications.

In this paper, we overview TopoGAN, a topology-based
GAN model specifically designed for medical imaging and
apply it to a real-world data augmentation problem. TopoGAN
represents the first GAN to actively learn and incorporate the
crucial aspect of topology from real data. By

directly capturing structural complexity, such as the pres-



ence of connected components and holes, TopoGAN offers a
unique and powerful approach to understanding and generating
medical images. Through this innovative model, we aim to
unlock new possibilities in medical image analysis, diagnosis,
and treatment planning by leveraging the intrinsic topological
properties of the data. Our key technological contribution
is a novel topological GAN loss that explicitly matches the
topology of synthetic and real image distributions, according
to the notion of persistent homology [6], [8]–[10]. This study
examines the real-world performance of a revolutionary Gen-
erative Adversarial Network (GAN) model that dynamically
learns and incorporates the topological features of real images,
such as their connectedness and looping nature, to address the
deficiencies of existing GANs in reproducing fine structural
characteristics seen in actual images.

II. METHODS AND MATERIALS

To address the limitations of traditional GAN models,
particularly in the topological discrepancies between synthetic
and real images, we examine a relatively new GAN model
specialized for medical imaging scenarios such as Computed
Tomography (CT). This model centers around a unique loss
function that targets topological feature spaces explicitly, mit-
igating discrepancies between synthetic and actual image dis-
tributions. The loss function, leveraging persistent homology,
emphasizes topological features across various scales, ensuring
synthesized images maintain essential structural similarities.
This enhances the reliability and accuracy of the comparative
analysis between synthetic and real images in multidimen-
sional spaces.

To validate the effectiveness of our model, we employ novel
GAN evaluation metrics that focus on assessing the topological
realism of the generated images. Unlike conventional metrics
that prioritize visual similarity, our evaluation criteria delve
deeper into the structural aspects, ensuring that the synthetic
images are visually convincing and structurally coherent with
real-world data. This allows for quick validation of model
results and assurance that data augmentation through GANs
is biologically-sound.

Through this model and new evaluation metrics, we aim to
set a new standard in the quality of synthetic images generated
by GANs, specifically in the realm of medical imaging. The
approach promises to contribute significantly to advancements
in data augmentation, diagnostic accuracy, and treatment plan-
ning by producing images that more faithfully represent the
intricate topological features seen in actual medical images.

TopoGAN matches synthetic and real image distributions
for image and topology features using a topology-based loss
term based on persistent homology, in addition to the conven-
tional generator and discriminator. This loss term measures
how close generated images are to real images in terms of
topology, and hence minimization forces more topologically
accurate images to be generated.

Discriminator Loss: argmax
D

Ex∼pdata [logD(x)] + Ez∼pz
[log(1−D(G(z)))]

Generator Loss: argmax
G

Ez∼pz
[log(1−D(G(z)))] + λLtopo(pdata, G)

* λ represents the weight of the topological GAN loss.
As we generate binary images, the generator outputs a

real- valued grey-scale image as the synthetic mask, and
the discriminator treats the input image (real or synthetic)
as a real-valued grey-scale image ranging between 0 and 1.
Following mask synthesis a separately trained pix2pix network
fills in textures based on the mask.

The Philips computerized tomography device was used to
capture cardiac CT images for 17 individuals (both males and
females) with A-fib, aged between 50 and 62. This device
recorded ten sets of timed frames at the same location using
various contrast agents, spanning an entire cardiac cycle. Each
data set comprised 409 images, each with a resolution of
512×512 pixels [11], [12].

III. RESULTS

The efficacy of TopoGAN in generating topologically ac-
curate synthetic images was rigorously tested through a series
of experiments. One of the most compelling pieces of ev-
idence supporting the model’s effectiveness is demonstrated
in Figure 1, where synthetic images were found to accurately
replicate the structural topology seen in actual medical images.
Quantitative metrics further substantiate this claim: the calcu-
lated Wasserstein distance between synthetic and real images
was found to be a minimal 0.0021, indicating an extremely
close match between the two distributions.

Additionally, the Dice coefficient, a statistical measure used
to gauge the similarity between two samples, was recorded at
an exceptionally high 0.995. Such high scores confirm that
the generated images are visually similar and have a deep
structural resemblance to real medical images. Beyond the
generation of synthetic images, TopoGAN has also shown con-
siderable promise in enhancing performance in downstream
applications.

Notably, this model combined with our novel evaluation
methodology significantly improved the quality of image
segmentation tasks. Traditional GAN models have struggled
with this application due to their inability to capture intricate
topological features, which are often critical in medical imag-

Fig. 1. A plot of a square



ing. However, the topological awareness of TopoGAN seems
to overcome these limitations, leading to more accurate and
reliable segmentation results.

These outcomes have profound implications for the field
of medical imaging. They not only validate the effectiveness
of incorporating topological features into GAN models but
also signify a major step forward in enhancing the utility of
synthetic images in medical applications. From data augmen-
tation to diagnosis and treatment planning, TopoGAN’s ability
to generate topologically accurate synthetic images opens new
horizons for research and clinical practice.

IV. CONCLUSION

Our research benchmarks a groundbreaking topology-based
data augmentation GAN to a real-world data augmentation
problem through the use of new metrics. The study demon-
strates that this methodology can effectively produce synthetic
images that closely mirror the intricate topological properties
seen in real-world medical images.

The implications of this work are myriad. By offering a
more accurate representation of real images, our model sets the
stage for advancements in various facets of medical imaging,
including data augmentation, machine learning algorithms,
and diagnostic tools. Furthermore, the approach promises to
revolutionize medical education by providing more realistic
and topologically accurate images for study and analysis.

In essence, this research not only fills a critical gap in
current synthetic image generation techniques but also offers a
robust solution for capturing the complex topological features
that are often pivotal for accurate medical image interpretation
and subsequent clinical applications.
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