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Abstract: This paper presents the discrete-time counterpart of a PI-like output feedback
tracking controller recently proposed for linear continuous-time systems subject to state and
input constraints. The considered approach exploits the internal model principle to design
via robust positive invariance and the Extended Farkas’ Lemma, a constrained set-point
tracking controller. The polyhedral setup allows a bilinear optimization design problem that
simultaneously determines the sets of admissible set-points and the plant’s initial conditions.
The proposal guarantees asymptotic offset-free set-point tracking, local stability, and constraint
fulfillment. Simulation results show the design’s effectiveness.
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1. INTRODUCTION

The output feedback tracking control problem is a signifi-
cant problem in automation and control systems engineer-
ing. We can find examples of applications in the chemical
and robotic industries and the development of intelligent
transportation systems and self-driving cars. The Internal
Model Principle (IMP) (Chen, 2014) represents a seminal
result for reference tracking problems. IMP defines the
conditions under which a stabilizing controller also ensures
tracking. Based on the IMP, different constrained and un-
constrained tracking controllers have been developed in the
literature from diverse points of view. Existing approaches
range from Proportional-Integral (PI) controllers (Car-
valho and Rodrigues, 2019) to Model Predictive Control
(MPC), and Reference and Command Governor solutions
(Limon et al., 2005; Ferramosca et al., 2011; Di Cairano
and Borrelli, 2015; Garone et al., 2017).

Among all the existing regulators, PI-like controllers are
undoubtedly the most used in the industry to solve set-
point tracking problems (Åström et al., 2006). The success
of PI controllers relies upon their simplicity and, compared
to MPC solutions, their minimal computational footprint
for online implementation. Most existing design strategies
concentrate on the constraint-free scenario, where the IMP
has global validity. However, when interested in using PI
controllers in constrained setups, one must apply the IMP
carefully because its validity is restricted to the region
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where the constraints are inactive. Consequently, the de-
sign method should consider constraints to ensure that
the resulting control strategy is viable (Hennet, 1995).
To safeguard both constraints fulfillment and closed-loop
stability, classical solutions leverage Lyapunov stability
theory and the concepts of positive invariance set and
contractivity, see, e.g., Castelan and Hennet (1993); Hen-
net (1995); Blanchini (1999); Tarbouriech et al. (2011);
Blanchini and Miani (2015); Dorea (2009); Dantas et al.
(2018).

Concerning PI-control design methods for constrained con-
trol systems, existing approaches vary according to the
nature of the considered plant’s model. Solutions based
on Algebraic Riccati Equations (ARE) or Linear Ma-
trix Inequalities (LMI) have been developed for linear
systems (Tarbouriech et al., 2000; Flores et al., 2008);
Fuzzy Lyapunov functions have been used for nonlinear
systems represented by Takagi-Sugeno (TS) models (Lopes
et al., 2020); Lyapunov functions have been leveraged
for Linear Parameter-Varying (LPV) systems (Figueiredo
et al., 2020); a “quasi”-LMI approach has been designed
for periodic reference signals and uncertain linear systems
(Flores et al., 2009). Commonly, such solutions only deal
with symmetrical input saturation constraints and define
contractive ellipsoidal (or composite ellipsoidal) invariant
regions. As exceptions to the mentioned literature are
the proposals of Martins et al. (2020) and Santos et al.
(2021), which leverage polyhedral invariant sets and bilin-
ear optimization to design constrained PI-controllers for
monovariable discrete-time and continuous-time systems,
respectively.



In addition, Santos et al. (2023) recently proposed a novel
approach for designing PI-like for linear continuous-time
systems subject to state and input constraints. Differently
from the cited literature, in Santos et al. (2023), the au-
thors exploit the concept of robust positive invariance to
design a locally stabilizing PI-like tracking controller with
a feedforward term capable of dealing with asymmetri-
cal polyhedral state and input constraints. In particular,
they used algebraic robust positive invariance relations to
define a bilinear optimization design problem capable of
simultaneously computing the PI controller parameters,
the set of admissible reference signals, and the polyhedral
state space region where the controller is robust positively
invariant (Blanchini and Miani, 2015).

The present work proposes the discrete-time counterpart of
the results developed recently for continuous-time systems.
Thus, it shares the following features with Santos et al.
(2023): (i) they are not limited to plants having a single
input and single output structure; (ii) the state, input,
and reference constraints can be asymmetric; (iii) the
magnitude of the integral error can be taken into account
in the design and treated as a design parameter; and
(iv) the respective constrained set-point tracking control
problem formulates as a bilinear programming problem.
Moreover, compared to our proposal, the discrete-time
design of Martins et al. (2020) does not consider (i)-(iii).

It is worth noting that the theoretical results and
optimization-based design proposed in the present work
closely follow the ones in Santos et al. (2023). Thus,
the current work’s simple but useful contribution consists
in the design of a constrained PI controller directly in
discrete-time.

The rest of the paper is organized as follows. Section 2
recalls basic definitions and formulates the constrained
tracking design problem. Section 3 proposes the con-
strained PI-like controller’s design, and Section 4 shows
a numerical example that contrasts the discrete and
continuous-time solutions. Finally, Section 5 concludes the
paper.

2. BASIC RESULTS AND PROBLEM STATEMENT

This section first recalls basic definitions for polyhedral
sets, Extended Farkas’ Lemma, and robust positively in-
variant sets. Then, it presents the considered setup and
states the constrained set-point tracking problem.

2.1 Preliminaries

The following definitions are adapted from Hennet (1995);
Blanchini and Miani (2015).

Definition 1. (Convex Polyedral Set) Any closed and
convex polyhedral set P(ϕ) ⊆ Rn can be characterized by a
shaping matrix P ∈ Rlp×n and a vector ϕ ∈ Rlp , with lp
and n being positive integers, i.e.,

P(ϕ) = {x ∈ Rn : Px ≤ ϕ}. (1)

Note that P(ϕ) in (1) includes the origin as an interior
point if ϕ > 0. In the sequel, if ϕ = 1∗ = [1, 1, . . . , 1 ]T ∈
R∗, the resulting polyhedral set P(1∗) will be simply
denoted as P.

Definition 2. (Non-negative Matrix) A matrixM is non-
negative, if Mij ≥ 0,∀i and j.
Lemma 1. (Extended Farkas’ Lemma) Consider two poly-
hedral sets of Rn defined by Pi(ϕi) = {x ∈ Rn, Pix ≤ ϕi},
for i = 1, 2, with Pi ∈ Rlpi×n and positive vectors ϕi ∈
Rlpi . Then, P1 ⊆ P2 if and only if there exists a non-
negative matrix Q ∈ Rlp2×lp1 such that

QP1 = P2,
Qϕ1 ≤ ϕ2. (2)

Definition 3. (Robust Positively Invariant Set) A poly-
hedral set P(ϕ) ⊆ Rn is said to be Robust Positively
Invariant (RPI) for the system xk+1 = f(xk, dk), t ≥ 0,
xk ∈ Rn, dk ∈ ∆(ψ) ⊆ Rnd , where ∆(ψ) is a compact
polyhedral set, if for any initial state x0 ∈ P(ϕ), the state
trajectory xk remains bounded inside P(ϕ),∀ k ≥ 0 and
∀ dk ∈ ∆(ψ).

2.2 Problem Formulation

Consider a Linear Time-Invariant Discrete-Time (LTID)
system given by

xk+1 = Axk +Buk,
yk = Cxk,

(3)

where xk ∈ Rn is the state vector, uk ∈ Rm the control
input vector, and yk ∈ Rp, with p ≤ m, the measurement
vector. The system matrices (A,B,C) are of suitable
dimensions, with (A,B) controllable, (C,A) observable,

and rank

[
A− In B
C 0

]
= n + p = ncl (i.e., the system is

free from transmission zeros at one) (Blanchini and Miani,
2015).

Remark 1. For the sake of notation clarity, in the sequel,
the dependency of x, y, u from k is omitted, and x+ =
xk+1.

The state and input vectors are subject to the following
state and input constraints, represented respectively by
the polyhedrons

x ∈ X = {x : Xx ≤ 1lx}, X ∈ Rlx×n, (4)

u ∈ U = {u : Uu ≤ 1lu}, U ∈ Rlu×m. (5)

For tracking purposes, we also assume that y must track
a set-point reference signal r ∈ Rp, where r is bounded in
an asymmetric hyperrectangle described by the set

R(ρ) = {r : Rr ≤ ρ}, R =

[
Ip
−Ip

]
∈ R2p×2p, (6)

where ρ =

[
ρ1
ρ2

]
∈ R2p and ρi = [ρi1 · · · ρip]T > 0, i = 1, 2.

Finally, the tracking controller’s structure is as follows

u = Ky +KIxI +Krr, (7)

where K,KI ,Kr ∈ Rm×p, xI,k =
∑k−1

j=0 ej ∈ Rp, and
e = r − y.
Remark 2. Note that Ky and KIxI define a Proportional
and Integral effect, respectively, while Krr is a feedforward
term used to improve the set-point response, see (Åström
et al., 2006, Chapter 5).

Consequently, according to the IMP (Fadali and Visioli,
2013; Chen, 2014, Section 9.3), any stabilizing controller



having the structure of (7), guarantees asymptotic offset-
free set-point tracking. However, since the considered sys-
tem is subject to state and input constraints, the validity
of such a result may be restricted to a bounded state space
region where the constraints are inactive. Note that if the
entire state vector can be measured (i.e., y = x), then the
controller (7) has a state feedback term.

The problem of interest is as follows.

Problem 1. (Constrained Set-Point Tracking (CSPT))
Consider the constrained plant’s model (3)-(5), the ref-
erence constraint (6) and the controller’s structure (7).
Design the control gains (K,KI ,Kr) in (7), the vector ρ
in (6), and a RPI set F ⊂ Rn+p such that for any initial
condition xcl,0 = [xT0 xTI,0]

T ∈ F , the set-point reference

r is asymptotically tracked and the constraints (4)-(5) are
fulfilled.

3. PROPOSED CSPT SOLUTION

This section develops a solution for the CSPT Problem 1
using polyhedral robust positive invariance arguments. In
particular, first, the closed-loop dynamics of (3) under (7)
are considered, and the associated constraints are explicit.
Then, by resorting to proper set inclusion conditions and
the Extended Farkas’ Lemma, all the necessary algebraic
conditions characterizing the set of admissible controller’s
parameters, reference’s bounds, and RPI sets F are derived
(see Proposition 1). Finally, the resulting optimization
problem for control design is presented (see opt. (18)).

The following linear system describes the closed-loop dy-
namics of (3) under the actions of the controller (7),[

x+

x+I

]
=

[
A+BKC BKI

−C Ip

]
︸ ︷︷ ︸

Acl

[
x
xI

]
︸ ︷︷ ︸
xcl

+

[
BKr

Ip

]
︸ ︷︷ ︸

Bcl

r. (8)

Furthermore, from (7) the input constraint (5) is trans-
lated into a closed-loop constraint, as follows[
xcl
r

]
∈ Ucl =

{[
xcl
r

]
: U [KC KI Kr]

[
xcl
r

]
≤ 1lu

}
. (9)

Since fast error-tracking dynamics are desirable, to min-
imize the magnitude of the vector xI , impose a further
optional constraint. In particular, we allow the possibility
of bounding each component of xI in the asymmetric
interval −ξ−1

2j ≤ xI,i ≤ ξ−1
1j , with ξij > 0 for i = 1, 2

and j = 1, . . . , p or, equivalently,

xI ∈ XI = {xI : XIxI ≤ 12p}, (10)

with XI =

[
XI1
−XI2

]
∈ R2p×p, XIi = diag{ξij} ∈ Rp×p.

Remark 3. XI will later be considered as decision matrix
variable of the proposed design methodology (see (17)).

Thus, the set of state constraints acting on the closed-
loop system (i.e., (4) and (10)) can be re-written as the
following single constraint

xcl ∈ Xcl =
{
xcl : Xclxcl ≤ 1lxcl

}
, (11)

with Xcl =

[
X 0
0 XI

]
∈ Rlxcl

×ncl , lxcl
= lx + lxI

.

Since the IMP is only locally valid for the considered
constrained system (see Remark 2), the pursued idea is
to characterize an RPI polyhedral set F for (8) where the
state trajectory xcl is confined and constraints (9), (11)
are fulfilled for any admissible reference signal.

Remark 4. Note that in (8), r can be interpreted as
a bounded disturbance. Consequently, the RPI nature of
F can be interpreted from Definition 3 performing the
following substitutions: x+ = f(x, d) ← (8), P(ϕ) ←
F , d← r, and ∆(ψ)← R(ρ).

Let F be described by the polyhedral set

F = {xcl : Fclxcl ≤ 1lf }, (12)

with Fcl ∈ Rlf×ncl and rank(Fcl) = ncl. Thus, it is
possible to state Proposition 1 that defines the algebraic
conditions under which the controller (7) provides a solu-
tion to Problem 1.

Proposition 1. Consider the closed-loop system (8) and
the polyhedral sets (6), (9) and (11). Assume that there
exist matrices F ∈ Rlf×n, FI ∈ Rlf×p, V1 ∈ Rn×lf , V2 ∈
Rp×lf with lf > ncl, non-negative matrices H ∈ Rlf×lf ,
Hr ∈ Rl×lr , T1 ∈ Rlx×lf , T2 ∈ RlxI

×lf , Q ∈ Rlu×lf , Qr ∈
Rlu×lr , and a scalar 0 ≤ λ < 1 satisfying

[F FI ]

[
A+BKC BKI

−C Ip

]
= H [F FI ] ,

[F FI ]

[
BKr

Ip

]
= HrR,

H1l +Hrρ ≤ λ1l,

(13)

[
T1
T2

]
[F FI ] =

[
X 0
0 XI

]
,

T11l ≤ 1lxcl
,

T21l ≤ 1lxcl
,

(14)

Q [F FI ] = U [KC KI ] ,
QrR = UKr,

Q1l +Qrρ ≤ 1lu ,
(15)

[
V1
V2

]
[F FI ] = Incl

. (16)

Then, the polyhedral set F , defined by (12) with Fcl =
[F FI ], is robust positively invariant and such that F ⊆ Xcl

and [KC KI ]F ⊕ KrR(ρ) ⊆ U , where ⊕ denotes the
Minkowski set sum operator. Therefore, for any initial
condition xcl,0 = [xT0 xTI,0]

T ∈ F the output y asymp-

totically tracks any set-point reference r ∈ R(ρ), with cor-
responding closed-loop trajectories fulfilling the prescribed
constraints.

Proof: The proof is adapted from Santos et al. (2023) and
reported in Appending A. 2

Note that for the RPI set F , we assume that lf > ncl.
Then the existence of V that verifies (16) is equivalent to
rank(Fcl) = ncl. Therefore, the first equality in (13) can be
interpreted as a generalized similarity transformation that
relates the spectral sets of Acl and H, given by σ(Acl) =
{µi, i = 1, . . . , n} and σ(H) = {ωj , j = 1, . . . , lf},
respectively. Thus, in the case rank(Fcl) = ncl < lf , we
have σ(Acl) ⊆ σ(H). If 0 ≤ λ < 1, the inequality in (13)



implies that the non-negative matrix H is Schur because
the elements of its spectrum are |ωi| ≤ ω̄ ≤ λ, where ω̄
is necessarily a non-negative real eigenvalue belonging to
σ(H) (Hennet, 1995; Brião et al., 2021). Hence, we can
conclude that Acl is also Schur and |µi| ≤ λ.
Note that under the conditions (13)-(16), for any reference
signal r ∈ R(ρ) and for all xcl,0 = [xT0 xTI,0]

T ∈ F ,
the closed-loop state trajectory remains inside F while
fulfilling all the prescribed state and input constraints.
Consequently, the system evolves in a domain where the
constraints are inactive. Thus, the closed-loop dynamics
is uniquely determined by the unconstrained linear model
(8), whose state matrix Acl is Schur stable. Hence, the
IMP is locally valid for any r ∈ R(ρ) and for all xcl,0 =
[xT0 xTI,0]

T ∈ F .

3.1 Bilinear programming design approach

From Proposition 1, the algebraic relations (13)-(16) define
the constraints under which the controller provides a
solution to Problem 1, where the set of decision variables
for the design of the controller (7) is given by

λ(·) = (K,KI ,Kr, Fcl, H,Hr, T,Q,Qr, V,XI , λ, ρ). (17)

There hence, the resulting bilinear optimization problem
formulates as

maximize
λ(·)

Φ(·),

subject to (13)− (16),

fℓ(·) ≤ φℓ, ℓ = 1, . . . , ℓ̄,

(18)

where Φ(·) is the cost function and fℓ(·) ≤ φℓ are ℓ̄
auxiliary constraints instrumental to imposing limits over
all the non-bounded decision variables.

Concerning the cost function Φ(·), the choice is not unique
and depends on the designer’s objectives. Two possible
options are:

i) Φ(·) = Φ1 = ∥ρ∥1. This choice allows us to maximize
the hyperrectangle R(ρ) of all admissible reference
signals.

ii) Φ(·) = Φ2 = trace(XI1 + XI2). This choice allows
us to minimize the limits of the admissible integral
errors ξ−1

ij > 0, for i = 1, 2 and j = 1, ..., p (see (10)).

It is essential to note that the opt. (18) is bilinear because
it involves multiplication between decision (matrices and
vector) variables. Therefore, (18) can be solved by employ-
ing nonlinear optimization techniques. In this regard, the
extra constraints fℓ(·) ≤ φℓ serve the purpose of reducing
the search space and improving the numerical performance
of the used nonlinear optimizer.

Remark 5. The difference between the conditions of Propo-
sition 1 and the continuous-time counterpart (Proposition
1 in Santos et al. (2023)) is that (13) should be changed
by the algebraic relations that describe the robust positive
invariance of the set F for continuous-time systems. The
other ones, representing the set inclusions and the full-
column rank condition upon Fcl, remain the same. Thus,
a similar bilinear optimization problem (18) applies for
continuous-time systems where, in particular, H and λ
should be a Metzler-type matrix and a negative real scalar,
respectively. Also, if (3) corresponds to a continuous-time

model’s discretization with sampling-period Ts sec., then
the continuous and discrete-time integral-error obeys

xI(t) =

∫ t=kTs

0

e(τ)dτ ≈ TsxI,k. (19)

One possible way to solve the bilinear optimization (18) is
to resort to the nonlinear state-of-the-art solver KNITRO
(Byrd et al., 2006), which has already been successfully
employed for similar problems in Santos et al. (2021);
Brião et al. (2021); Ernesto et al. (2021); Martins et al.
(2020). Thus, one can find the bounds of the decision
space using insights about the plant’s constraint limits and
a trial-and-error approach. For further discussions about
KNITRO and its use, see (Brião et al., 2021, Section 4.2).

Table 1 summarizes the number of variables and con-
straints characterizing (18). Notice that the proposed so-
lution’s complexity increases with the plant’s dimensions
(i.e., system model, state and input constraints, reference
set) and RPI set F complexity, i.e., the number of inequal-
ities lf used to describe F (Santos et al., 2023).

Table 1. Variables, equalities and inequalities
in (18)

# of variables mp3 + lf (ncl + lf + lr + lxcl + lu)
+2p(lu + p+ 1) + n2

cl + 1

# of equalities ncl(lf + lxcl + lu + ncl) + 2p(lf + lu)

# of inequalities lf + lxcl + lu

4. NUMERICAL EXAMPLE

In this section, the proposed tracking controller design’s
effectiveness is validated through simulation results ob-
tained for a linearized model of a two-tank system. In
this example, the state vector cannot be entirely measured,
and the controller’s performance is evaluated for the two
proposed cost functions.

Moreover, the optimization (18) has been solved using
KNITRO (Byrd et al., 2006), where we bounded the
optimization variables (element by element) similarly as
in Santos et al. (2023) for comparative purposes with the
continuous-time design:

H,Hr, T1, T2, Q,Qr in
[
0, 102

]
,

Fcl,K,KI ,Kr in
[
−102, 102

]
,

V in
[
−103, 103

]
.

Example 1. Consider the discrete-time system obtained
from the ZOH-discretization of the continuous-time model
used in Santos et al. (2023) (adapted from Ferramosca
et al. (2011)), with sampling period Ts = 1 second:

xk+1 =

[
0.9970 0.0182

0 0.9814

]
xk +

[
6.6583
9.9070

]
uk,

yk = [ 1 0 ]xk,
(20)

where the state and input constraints are: −0.38 ≤ x1 ≤
0.68, −0.35 ≤ x2 ≤ 0.65, and −2 ≤ u ≤ 2.

We have solved the optimization problem (18) for both
Φ(·) = Φ1 and Φ(·) = Φ2 using λ = 0.9999 and lf =
9. Table 2 summarizes and compares the design results
for both objective functions. In particular, ρ defines the
bounds of the set of admissible reference signals R(ρ), XI

is the shaping matrix of the set constraining the integral



error, and the gains K,KI and Kr define the control law
(7). As expected, for the cost function Φ1, the bounds for
the admissible reference signals R are bigger than the ones
obtained for Φ2. On the other hand, by using Φ2, it is
possible to obtain a smaller integral error and faster set-
point tracking. Indeed, for Φ1, xI ∈ [−14, 17], while for
Φ2, xI ∈ [−11, 11]. However, the cost to pay is a reduced
size for the set of admissible reference R(ρ).

Table 2. Design results using (18): Φ1 vs Φ2

Φi ρ XI [K KI Kr]T

1

[
0.6662
0.3587

] [
0.0574

−0.0682

]
[−0.1544 0.0046 0.0970]T

2

[
0.4600
0.3300

] [
0.0900

−0.0900

]
[−0.0221 0.0007 0.0081]T

The resulting RPI set F is depicted in Figure 1 with
two closed-loop trajectories obtained using the tracking
controller associated to Φ(·) = Φ2. They have been ob-
tained starting from a zero initial condition and consid-
ering the two extreme points of the admissible reference
signals, i.e., rup = ρ1 = 0.4600. and rdown = −ρ2 =
−0.3300. The corresponding equilibrium states are, re-

spectively, xupcl = [0.4600 0.4487 10.5511]
T

and xdown
cl =

[−0.3300 −0.3219 −7.5693]T . The obtained trajectories
confirm that the designed tracking controller allows the
plant to asymptotically track the assigned set-point ref-
erence signals while ensuring that the state trajectory
remains confined in the constraint-admissible RPI set F .
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Figure 1. RPI set F and state trajectories for rup = ρ1 (··)
and rdown = −ρ2 (··).

Finally, it is worth mentioning that the reported numerical
results of ρ and XI agree with the corresponding results
obtained in continuous-time (Santos et al. (2023), Example
1). For comparative purposes, Figure 2 depicts both the
continuous and discrete-time evolution of the output,
y(t) and yk, and integral error, xI(t), and its discrete-
time-approximation xI,k (see Remark 5, eq. (19)). We
observe that the continuous and discrete-time designs yield
similar temporal behaviors for both reference tracking and
integral-error states.
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Figure 2. Top: Output and Reference tracking; Botton:
Integral-error. In both figures, dotted lines refer to
discrete-time evolution, and the superscripts up and
down correspond to the trajectories obtained for
rup = ρ1 and rdown = ρ2, respectively.

5. CONCLUSION

We have proposed the discrete-time counterpart of the
PI-like set-point tracking controller recently presented for
linear continuous-time systems subject to polyhedral state
and control constraints (Santos et al., 2023). The con-
sidered solution leveraged robust positive invariance ar-
guments to define the algebraic conditions under which
the proposed controller ensures set-point tracking and
constraint fulfillment. A peculiar design’s feature consists
of a single bilinear programming problem capable of simul-
taneously computing the controller parameters, the set of
admissible reference signals, and the controller’s domain
of attraction. The numerical example illustrated and com-
pared the proposed design solutions with the continuous-
time counterpart results.

Future works will be devoted to extending the proposed
approach to deal with disturbances and more complex
models for the plant and reference signal, and allowing the
control saturation to obtain larger domains of attraction
(see (Martins et al., 2020)).

APPENDIX A

Proof of Proposition 1:

1) The existence of the non-negative matrices H and Hr,
and the scalar 0 ≤ λ < 1 verifying the conditions (13) are
necessary and sufficient algebraic conditions for the robust
positive invariance of the set F , which is the equivalent
of imposing the one step admissibility condition AclF ⊕
BclR(ρ) ⊆ F (Lucia et al., 2023; Blanchini and Miani,
2015).

2) To guarantee that the system will stay within the closed
loop state constraints, we impose the inclusion F ⊆ Xcl,
which, by applying the Extended Farkas’ Lemma 1, is
equivalent to the existence of the non-negative matrix

T =
[
T ′
1 T

′
2

]′
, that satisfies the relation (14).

3) Likewise, applying Lemma 1, the existence of non-
negative matrices Q and Qr verifying (15), represents the
inclusion [KC KI ]F ⊕KrR(ρ) ⊆ U or, equivalently,



[Q Qr ]

[
F 0
0 R

]
= U [KC KI Kr ] , [Q Qr]

[
1l
ρ

]
≤ 1lu .

4) Finally, condition (16) is equivalent to imposing
rank(Fcl) = ncl and, possibly, that F is compact.

Then, the proof is completed by using local stability
arguments and the IMP.
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Um método baseado em otimizaçao para sintonia de
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Congresso Brasileiro de Automática-CBA, volume 2.
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