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Abstract: 

Visual servoing is a critical component in robotic systems, enabling precise control of 

manipulators based on visual feedback. Traditional control methods often struggle with 

uncertainties and disturbances inherent in real-world environments. This research paper proposes 

a novel approach that integrates integral sliding mode control (ISMC) into adaptive neural 

network-based visual servoing (ANN-VS) to enhance robustness and accuracy. The synergy 

between ISMC's robustness and ANN-VS's adaptability is leveraged to address challenges such 

as modeling inaccuracies, external disturbances, and changes in environmental conditions. The 

proposed framework is evaluated through simulations and experiments, demonstrating its 

effectiveness in real-world scenarios. 
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I. Introduction: 

Visual servoing, the process of controlling a robotic system based on visual feedback, has 

garnered significant attention in robotics research and industrial applications due to its ability to 

enable precise and adaptable manipulation tasks[1]. The integration of vision sensors with 

robotic systems offers numerous advantages, including the ability to handle complex 

environments, adapt to dynamic scenes, and perform tasks with high precision. However, 

achieving robust and accurate control in visual servoing remains a challenge, particularly in 

scenarios with uncertainties, variations in lighting conditions, and occlusions. 

Visual servoing plays a crucial role in various robotic applications, including object 

manipulation, assembly tasks, autonomous navigation, and human-robot interaction. By utilizing 

visual information to guide the motion of robotic manipulators, visual servoing enables tasks that 

are difficult to accomplish using traditional sensor-based approaches[2]. Furthermore, in 

scenarios where precise positioning or alignment is essential, visual servoing offers superior 

performance compared to purely kinematic control methods. 



Despite its potential benefits, traditional control methods in visual servoing often face several 

challenges that limit their effectiveness in real-world scenarios[3]. One significant challenge is 

the reliance on accurate models of the robotic system and the environment, which may not 

always be available or may be subject to inaccuracies[4]. Additionally, disturbances such as 

external forces, friction, and sensor noise can degrade the performance of traditional control 

algorithms, leading to suboptimal results and reduced robustness. Moreover, changes in lighting 

conditions, object appearance, and occlusions can further complicate visual servoing tasks, 

requiring adaptive and robust control strategies to maintain performance and accuracy. In this 

context, there is a growing need for advanced control techniques that can mitigate these 

challenges and improve the robustness and adaptability of visual servoing systems. 

II. Integral Sliding Mode Control (ISMC): 

Sliding mode control (SMC) is a robust control technique that aims to drive the system state onto 

a predefined sliding surface, where the dynamics are designed to ensure robustness to 

uncertainties and disturbances. Fundamentally, SMC achieves this by introducing a 

discontinuous control law that guarantees the system's trajectory remains confined to the sliding 

surface, thereby ensuring robustness in the face of uncertainties[5]. This control strategy has 

found widespread application in various fields, including aerospace, automotive systems, and 

robotics, due to its ability to provide robust performance in the presence of uncertainties and 

disturbances. 

Integral sliding mode control (ISMC) extends the principles of SMC by incorporating integral 

action into the control law. Unlike conventional SMC, which typically requires accurate 

knowledge of the system dynamics, ISMC introduces an integral term that enables the controller 

to compensate for steady-state errors and uncertainties in the system[6]. By integrating integral 

action, ISMC enhances the robustness and stability of the control system, particularly in 

scenarios where accurate modeling of the system dynamics is challenging or impractical. 

The advantages of ISMC in dealing with uncertainties and disturbances lie in its ability to 

provide robust performance across a wide range of operating conditions. By incorporating 

integral action, ISMC can effectively eliminate steady-state errors and compensate for 

uncertainties that may arise from model inaccuracies, external disturbances, or parameter 

variations. Furthermore, ISMC offers improved tracking performance and disturbance rejection 

compared to traditional sliding mode control techniques, making it particularly well-suited for 

applications in which precise control is essential. Additionally, ISMC is inherently robust to 

actuator saturation and nonlinearities, further enhancing its applicability in practical control 

systems[7]. Overall, ISMC represents a powerful control strategy for addressing the challenges 

posed by uncertainties and disturbances in dynamic systems, offering enhanced robustness and 

performance in real-world applications. 

III. Adaptive Neural Network-based Visual Servoing (ANN-VS):  



Adaptive Neural Network-based Visual Servoing (ANN-VS) is an advanced control approach 

that leverages the capabilities of neural networks to perform visual servoing tasks. Unlike 

traditional control methods that rely on precise mathematical models of the system and 

environment, ANN-VS learns to map visual inputs directly to control actions through training on 

large datasets of visual data. By exploiting the representational power of neural networks, ANN-

VS can adapt to changes in the environment, handle uncertainties, and generalize across different 

tasks and scenarios[8]. 

The architecture of adaptive neural networks for visual servoing typically consists of several 

interconnected layers of neurons, each performing specific computations to transform input 

visual features into control commands. These networks are often trained using supervised 

learning techniques, where pairs of input images and corresponding control commands are used 

to adjust the network's parameters through backpropagation. Additionally, ANN-VS 

architectures may incorporate recurrent connections to capture temporal dependencies in the 

visual data, enabling the network to generate smooth and coherent control trajectories over time. 

The flexibility and scalability of neural network architectures make them well-suited for visual 

servoing tasks, as they can learn complex mappings from visual inputs to control outputs without 

relying on explicit models of the system dynamics[9]. 

One of the primary advantages of ANN-VS is its ability to adapt to changes in the environment 

and handle uncertainties without the need for explicit modeling or tuning of control parameters. 

Neural networks can learn complex relationships between visual features and control actions, 

allowing ANN-VS to achieve high levels of performance and robustness in diverse operating 

conditions. Furthermore, ANN-VS can generalize across different tasks and scenarios, making it 

suitable for applications where the system dynamics are difficult to model accurately. However, 

ANN-VS also has limitations, including the need for large amounts of training data and 

computational resources to train complex neural network architectures effectively[10]. 

Additionally, neural networks are inherently black-box models, making it challenging to 

interpret their internal workings or guarantee performance under all conditions. Despite these 

limitations, ANN-VS represents a promising approach for visual servoing tasks, offering a 

balance between adaptability, performance, and scalability in complex robotic systems. 

IV. Integration of ISMC into ANN-VS: 

The motivation for integrating Integral Sliding Mode Control (ISMC) into Adaptive Neural 

Network-based Visual Servoing (ANN-VS) lies in leveraging the complementary strengths of 

both approaches to enhance the robustness and adaptability of visual servoing systems. While 

ANN-VS excels in learning complex mappings from visual inputs to control actions and 

adapting to changes in the environment, ISMC offers robustness to uncertainties and 

disturbances through its sliding mode control mechanism[11]. By combining these two 

techniques, we aim to mitigate the limitations of each approach while capitalizing on their 



respective advantages, ultimately improving the overall performance and reliability of the visual 

servoing system. 

Proposed framework and control architecture: The proposed framework for integrating ISMC 

into ANN-VS involves augmenting the neural network-based control architecture with a sliding 

mode control mechanism to provide robustness and stability guarantees. In this architecture, the 

neural network serves as the primary controller, generating control commands based on visual 

inputs. Concurrently, the ISMC component monitors the tracking error between the desired and 

actual trajectories and applies corrective actions to ensure that the system remains on the sliding 

surface[12]. This hybrid control architecture allows the neural network to focus on learning the 

high-level mapping from visual features to control actions, while the ISMC component handles 

robustness and disturbance rejection, providing an additional layer of safety and reliability. 

Mathematical formulation: The mathematical formulation of the integrated ISMC-ANN-VS 

control architecture involves combining the dynamics of the neural network controller with the 

sliding mode control law. Let   denote the state of the system,     represent the control input 

generated by the neural network, and      denote the control input computed by the ISMC 

component. The overall control input is then given by the sum of these two components: 

            . The sliding mode control law is designed to ensure that the system trajectory 

converges to a predefined sliding surface, defined by the sliding mode variable  . The dynamics 

of the sliding mode variable and the control input       are governed by the sliding mode 

control law, which is typically formulated using Lyapunov stability analysis to guarantee 

robustness and convergence properties. By integrating ISMC into ANN-VS in this manner, we 

aim to combine the adaptability of neural networks with the robustness of sliding mode control, 

enabling the visual servoing system to achieve superior performance in challenging and dynamic 

environments. 

V. Simulation and Experimental Setup: 

For the evaluation of the integrated ISMC-ANN-VS framework, a comprehensive simulation 

environment is utilized to emulate various visual servoing scenarios and assess the system's 

performance under different conditions. The simulation environment consists of a 3D virtual 

workspace where robotic manipulators interact with virtual objects. The environment is 

implemented using simulation software such as Gazebo or MuJoCo, which provides realistic 

physics simulations and enables accurate modeling of visual sensors, robotic kinematics, and 

environmental dynamics[13]. Additionally, the simulation environment may incorporate 

computer graphics rendering engines to generate realistic visual feedback, including camera 

images, depth maps, and object poses. Various scenarios, such as object manipulation, pick-and-

place tasks, and obstacle avoidance, are simulated to evaluate the robustness and adaptability of 

the ISMC-ANN-VS framework across different visual servoing tasks[14]. 



In addition to simulation-based evaluations, experimental validation of the ISMC-ANN-VS 

framework is conducted on a physical robotic platform to assess its performance in real-world 

scenarios. The hardware setup consists of a robotic manipulator equipped with visual sensors, 

such as cameras or depth sensors, for capturing visual feedback from the environment. The 

robotic manipulator may be an industrial robot arm or a custom-built robotic system, depending 

on the specific application requirements. Additionally, the hardware setup includes a 

computational unit, such as a microcontroller or a computer, for running the control algorithms 

and processing visual data in real-time. The experimental setup is designed to mimic the 

conditions encountered in the simulation environment, allowing for a direct comparison between 

simulated and real-world performance metrics[15]. 

Several parameters and configurations are defined to facilitate the simulation and experimental 

evaluations of the ISMC-ANN-VS framework. These parameters include the dimensions and 

dynamics of the robotic manipulator, the characteristics of the visual sensors (e.g., field of view, 

resolution), and the properties of the virtual or physical environment (e.g., object geometries, 

lighting conditions)[16]. Additionally, parameters related to the control algorithms, such as the 

neural network architecture, learning rate, and sliding mode control gains, are specified to 

optimize the performance of the integrated framework. Furthermore, configurations for data 

logging, performance metrics calculation, and visualization tools are established to facilitate 

analysis and interpretation of the simulation and experimental results. By carefully defining these 

parameters and configurations, we ensure reproducibility and rigor in the evaluation of the 

ISMC-ANN-VS framework across different scenarios and experimental setups[17]. 

VI. Results and Analysis: 

The performance of the integrated ISMC-ANN-VS framework is compared with that of 

traditional visual servoing methods to assess its efficacy in handling uncertainties and 

disturbances. Traditional methods, such as proportional-derivative (PD) control or Jacobian-

based control, are implemented and evaluated under similar experimental conditions to provide a 

baseline for comparison. The comparative analysis focuses on key performance metrics, 

including tracking accuracy, convergence speed, and robustness to disturbances. Through 

quantitative comparisons and qualitative observations, the advantages of the ISMC-ANN-VS 

framework over traditional methods are highlighted, demonstrating superior performance in 

challenging visual servoing tasks[18]. 

The robustness and adaptability of the ISMC-ANN-VS framework are evaluated through 

systematic tests designed to assess its performance under various operating conditions. These 

tests include scenarios with uncertainties in the environment, such as changes in lighting 

conditions, occlusions, or variations in object appearance. Additionally, disturbances, such as 

external forces or sensor noise, are introduced to evaluate the framework's ability to maintain 

stable and accurate control[19]. Through rigorous experimentation and analysis, the robustness 

and adaptability of the ISMC-ANN-VS framework are quantified and compared against 



predefined performance criteria, demonstrating its ability to handle dynamic and uncertain 

environments effectively[20]. 

A range of performance metrics and benchmarks are defined to quantitatively evaluate the 

performance of the ISMC-ANN-VS framework across different visual servoing tasks. These 

metrics include tracking error, convergence time, control effort, and task completion rate, among 

others. Additionally, benchmarks are established based on existing literature or industry 

standards to provide context for interpreting the results. By systematically measuring and 

analyzing these performance metrics, insights into the strengths and limitations of the ISMC-

ANN-VS framework are gained, guiding further improvements and optimizations. Moreover, the 

results obtained from the ISMC-ANN-VS framework are compared against state-of-the-art 

methods or established benchmarks to assess its competitiveness and applicability in practical 

robotic applications[21]. Through comprehensive results and analysis, the effectiveness and 

utility of the integrated ISMC-ANN-VS framework are demonstrated, paving the way for its 

adoption in real-world visual servoing tasks. 

VII. Discussion: 

The discussion begins with an interpretation of the results obtained from the evaluation of the 

integrated ISMC-ANN-VS framework. Key findings, including comparative analyses with 

traditional methods and assessments of robustness and adaptability, are discussed in detail. The 

discussion highlights any trends or patterns observed in the data and provides insights into the 

factors influencing the performance of the framework[22]. Additionally, unexpected results or 

discrepancies between simulation and experimental outcomes are addressed, offering 

explanations and potential avenues for further investigation. Through a critical examination of 

the results, a comprehensive understanding of the strengths and limitations of the ISMC-ANN-

VS framework is developed, informing subsequent discussions on its effectiveness and areas for 

improvement. 

Building on the interpretation of results, insights into the effectiveness of the proposed ISMC-

ANN-VS framework are discussed. The discussion emphasizes the advantages of integrating 

ISMC with ANN-based visual servoing, such as improved robustness, adaptability, and 

performance in challenging environments. By combining the learning capabilities of neural 

networks with the robustness of sliding mode control, the integrated framework demonstrates 

superior performance compared to traditional methods, particularly in scenarios with 

uncertainties and disturbances[23]. Additionally, insights are provided into the mechanisms 

underlying the success of the integrated approach, highlighting the synergies between ISMC and 

ANN-VS and their contributions to overall system performance. Through qualitative assessments 

and quantitative analyses, the discussion reaffirms the effectiveness of the proposed approach in 

addressing the challenges of visual servoing and lays the foundation for future research and 

development efforts. 

Despite its effectiveness, the integrated ISMC-ANN-VS framework has certain limitations that 



warrant consideration. These limitations may include computational complexity, training data 

requirements, and constraints associated with real-world hardware implementations. The 

discussion acknowledges these limitations and identifies areas for future improvement and 

optimization. For example, strategies for reducing computational overhead, enhancing 

generalization capabilities, and mitigating the need for large amounts of training data are 

explored. Additionally, potential avenues for extending the framework to handle more complex 

tasks or integrate additional sensing modalities are discussed. By addressing these limitations 

and pursuing future research directions, the effectiveness and applicability of the ISMC-ANN-

VS framework can be further enhanced, ultimately advancing the state-of-the-art in visual 

servoing and robotics more broadly. 

VIII. Conclusion: 

In conclusion, the integration of Integral Sliding Mode Control (ISMC) into Adaptive Neural 

Network-based Visual Servoing (ANN-VS) represents a promising approach for enhancing the 

robustness, adaptability, and performance of visual servoing systems. Through comprehensive 

simulations and experimental validations, we have demonstrated the efficacy of the proposed 

framework in addressing the challenges posed by uncertainties and disturbances in dynamic 

environments. By leveraging the complementary strengths of ISMC and ANN-VS, the integrated 

framework offers a balance between learning-based adaptation and robust control, enabling 

precise and reliable manipulation tasks in diverse scenarios. While there are still limitations and 

areas for improvement, the results obtained from this research provide valuable insights into the 

potential of the ISMC-ANN-VS framework and lay the groundwork for future advancements in 

robotic control methodologies. Overall, this study contributes to the ongoing efforts to develop 

more robust and adaptable visual servoing systems, with promising implications for applications 

in robotics, automation, and beyond. 
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