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Abstract— Recent years have shown exponential growth in 

video processing and transfer through the Internet and other 

applications. With the restriction on bandwidth, processing and 

storage there is an extensive demand for end-to-end video 

compression. Many conventional methods have been developed 

to compress video. However, with the extensive use of Artificial 

Intelligence, AI, such as Deep Learning (DL) have emerged as a 

best-of-breed alternative for performing different tasks have been 

also been used in the option of improving video compression in 

last years, with the primary objective of reducing compression 

ratio while preserving the same video quality. Evolving video 

compression research based on Neural Networks (NNs) focuses 

on two distinct directions: First; enhancing current video codecs 

by better predictions integrated even in the same codec 

framework, and second; holistic end-to-end VC systems 

approaches. Although some of the outcomes are optimistic and 

the results are well, no breakthrough has been reported 

previously. This paper review of new research work, including 

samples of few influential articles that demonstrate and further 

describe the various highlighted issues in the aria of using DL 

for end to end video compression. 

Keywords—Deep Learning, Neural Networks, Convolutional 

Neural Networks, Video Compression, Intra-Prediction, Inter 

Prediction. 

I. INTRODUCTION 

The outcrop of digital technology has led to the 

emersion of new ways to share information and knowledge 

on a global scale through the Internet. Most of the social 

networks rely mostly on image and video sharing, while 

online video streaming platforms have become very popular 

in recent years. It is predicted that in 2022 video streaming 

and downloads will exceed 82% of all consumer Internet 

traffic as expectations continue to grow [1]. 

Compared to pictures and other multimedia signals, video 

contains a large amount of information. For this reason, VC 

or encoding is an important tool that aims to reduce the size 

of digital video by taking advantage of the intrinsic 

redundancy [2]. These typically include spatial-temporal 

and information-based repetition. Recent developments in 

this area have resulted in compression rates as high as 

1000:1, as is the case for the HEVC (High Efficiency Video 

Compression) video standard and further research and 

development is ongoing [3]. 

Traditionally, for VC, most algorithms use block-based 

predictive schemes along with residual compression. They 

make use of the advances in image coding to compress both 

key frames and the residuals between predicted and actual 

blocks [4]. However, this type of investigation is heavily 

guided by hand-crafted improvements and techniques. It is 

thus limited by the extent of the human understanding 

regarding the properties and statistical dependencies in both 

image and video [5]. 

There have been ups and downs in the popularity of NNs 

since they first appeared, as they compete with other AI 

methods for classification and prediction jobs. Over the last 

few years, the number of Deep Neural Networks (DNNs) 

applications has exploded, due largely to advancements in 

computer power and parallel processing via Graphics 

Processing Units (GPUs) [6]. As a best-of-breed option to 

replace traditional analytics algorithms in a number of 

applications, including identification, recognition, and 

classification, DL has risen to prominence in recent years 

[7]. DNN architectures appear to be a logical choice for VC 

algorithms that largely rely on predictions and filtering, 

given their performance and applications. Researchers are 

working on two main areas: learning-based optimization 

modules integrated with existing video/image codecs, and a 

purely learning compression framework [8]. There are 

several types of neural networks, each of which is well-

suited to a specific categorization, recognition, or generating 

task. Fully Connected (FC), Convolutional Neural Networks 

(CNNs), and Long Short Term Memory (LSTM) Neural 

Networks are the most commonly utilized NNs variations 

for VC. Regression tasks are best handled by FC networks, 

whereas pattern detection is handled by CNNs, and learning 

from historical time series is handled best by LSTM [9]. VC 

uses these networks a lot because of their alignment with 

these characteristics. 

In the remaining sections, we explore a variety of VC and 

DL ideas. Firstly, we provide a brief introduction to VC and 

evaluation metrics. Next, the DL with its types are 

illustrated. Then, we show how the various deep neural 

network layers that are key to deep compression systems 

work, especially in intra-prediction, inter-prediction and 

deep end-to-end VC framework. Finally, the adopted dataset 

and our assessment are discussed.  

II. VIDEO COMPRESSION 

A video is a sequence of consecutive images acquired by 

projecting a real-world scene in a 2-D plane using a video 

capturing sensor or by creating a sequence of artificially 

generated images (animation). Each individual image, 

known as a frame or picture, is displayed with a certain 

frequency defined by the frame rate, generally expressed in 

frames per second (fps) or hertz (Hz). Frame rates can range 

from 24 fps to 30 fps, depending on the application, with 24 

frames per second being the most common frame rate used 

in the film industry [10].  

VC systems are composed of two main parts, an encoder 

and a decoder. The former is responsible for generating the 



compressed stream of bits (bitstream) from the input raw 

video file. The ratio between the bitrate of the compressed 

bitstream and the raw video file is known as the 

compression ratio. As the reverse process, the decoder is 

responsible for receiving a compressed bitstream as input 

and generating a raw displayable video file. Given that the 

bitstreams generated by the encoder need to be interpreted 

by the decoder, which is usually located in another device, 

these two systems need to be exactly compatible. For 

instance, for a video streaming service, encoding is 

performed at the data servers, while decoding is executed at 

the receiving device, such might be a television, a personal 

computer or even a mobile phone [11]. 

When it comes to compression, either lossless or lossy 

compression can be applied. Redundancy removal in video 

or image data using lossless compression. A reconstruction 

method which allows for perfect reconstruction at the cost 

of compression ratios of only shallow depth is provided. 

Lossy compression is irreversible since codecs reverse the 

reconstruction process to an approximation of the input data. 

Lossy codec research strives to reduce the compromise 

between compression and quality [12]. 

III. EVALUATION METRICS 

Evaluation metrics are focused on answering specific 

questions and addressing certain goals. Common metrics 

used to measure image quality compare two images: input 

and output. The purpose of image quality measurements is 

to rate the image quality in a way that is comparable to 

human judgement. This means that the perception of the 

human visual system should be approximated as accurately 

as possible using image quality measurements [13].  

Compression approaches for both images and videos, in 

particular, are focused on optimizing for the peak signal-to-

noise ratio (PSNR). Mean Square Error (MSE) is used, and 

the result is expressed in decibels (dB), for the input image 

X, and the output image Y, the syntax of PNSR defined as 

[14]: 

 

Where M is the maximum value (Pixel) in the original 

image. The image pixel-wise statistical attributes are being 

compared only using this metric [14]. However, as 

previously discussed, PSNR has been an effective 

compression tool in the previous decades, but this 

technology lacks sufficient evidence that it outperforms 

SSIM (Structural SIMilarity) in regards to finding specific 

coding artifacts and other distortions, especially when 

compared to PSNR [15]. 

The SSIM is a more complicated metric that incorporates 

convolutional methods that apply a search window across an 

image and attempt to find a quality index of the image that 

isn't only calculated from pixel-by-pixel measurements but 

uses a broader receptive field to achieve better results. A 

general improvement is achieved with SSIM, but recently 

developed Multi Scale Structural Similarity (MS-SSIM) 

improves upon it by taking use of several applications of the 

SSIM metric at progressively lower scales of the image [16].  

IV. DEEP LEARNING OVERVIEW 

DL is a type of machine learning (ML) that use numerous 

layers of increasingly complex algorithms to gradually 

reveal more detailed information from the raw input. In ML, 

a computational method is studied in order to understand its 

data-driven functionality, allowing it to learn how to do 

certain tasks using previous knowledge. Many applications, 

for instance, recommendation systems, search engines, 

digital assistants, and digital photography, employ these 

principles. The field of ML has evolved to incorporate other 

disciplines with quick technological breakthroughs and 

practical applications in the real world. Although ML 

algorithms are widely employed today, in the past the 

algorithms needed domain knowledge and specific features 

to help them interpret raw data. NNs have had a resurgence 

in recent years due to access to far more powerful computer 

equipment and massive datasets [17]. 

DL, or multi-layered neural networks, tends to have a more 

profound impact than shallower methods, hence it is 

referred to as DL. ML techniques have been mostly 

overcome by DL algorithms in nearly all computer vision 

applications. Additionally, these technologies are even able 

to surpass human participants in activities like as visual 

recognition or strategic games. Rather than developing a 

separate algorithm for each task, DL uses techniques that 

may be employed in a wide range of scenarios [18]. DNNs 

that have multiple layers or deep representations are said to 

have a “deep” or “profound” meaning. NNs excel in 

learning complex models with a large number of hidden 

variables and relationships, even with noisy data. Because of 

this, considerable study has been done on employing DL in 

both compression tasks, especially in image and VC [19]. 

DL takes a more holistic approach, studying the process of 

designing DNN structures as well as analyzing their 

performance. NNs and the optimization process will be 

discussed in detail in the next sections, followed by an 

overview of common DL approaches, which will highlight 

different ways for image and VC [20]. 

Most of the actions presented can be interchangeably used 

to produce alternative designs, however when developing 

networks, common design choices are demonstrated to 

deliver effective results. The typical cases are usually 

divided into classes of networks which share common 

characteristics, to facilitate the identification of networks 

[21]. Following, we present the three most popular types of 

DNNs used today. 

A. Convolutional Neural Network 

Computer vision, which is the field of computer systems 

design to recognize and learn from visual representations 

such as image, videos or other forms of multi-dimensional 

one specific form of DL model, Convolutional Neural 

Network (CNN) has been increasingly accepted by the 

community of computer vision [22]. CNN consist of a 

number of stacked convolutional layer and pooling layers, 

optionally. There are several trainable filters or kernels of a 

defined size (e.g., 3 x 3 or 5 x 5) in each convolutional layer 

that are successively applied to the outputs of previous 

layers. On the other hand, pooling layers combine the 

outcomes of these convolutions locally within nearby 

regions, decreasing the spatial dimensions of the 



representations and generating translational shift invariance. 

In addition, every convolution or pooling is applied to a 

block that is moved by a fixed number of positions, 

controlled by the step [23]. 

B. Recurrent Neural Network 

A Recurring Neural Network (RNN) is named because 

neural network mathematics are repeated at every stage. 

This architecture takes account of the expected impact of the 

past on what happens in the future, which is why it is 

suitable for sequential data [24]. Neurons in the RNN have a 

"state" that can be understood as memory; they can recall 

important things that have happened and utilize this to 

predict next things. If your data are time series, the 

characteristics at t-4, t-3, ... and t-1 may be taken to estimate 

what happens at t. Trends and patterns previously witnessed 

are probably essential for anticipating what happens next 

[25]. 

C. Deep Auto Encoder 

Autocoders are an unsupervised learning technique in 

which it use NNs to learn representation. The encoding is 

verified and enhanced by trying to regenerate the encoding 

input. The auto encoder learns how to represent a set of 

data, often to reduce dimensionality, by training the network 

to disregard inconsequential input [26]. 

Autoencoders always consist of an encoder unit and a 

decoder unit, which need to be simultaneously trained but 

can be utilized separately.  

Autoencoders can be used to efficiently transform data into 

smaller spaces by ensuring the latent space is less than the 

original inputs. Due of their apparent parallels with a 

compression system, auto-encoders play a highly essential 

role in investigating various compression challenges via 

NNs [27]. 

V. VIDEO COMPRESSION USING DL 

The last decades have seen the emergence of a number 

of classic VC techniques, such as H.264 and H.265. This 

approach is used by predictive coding algorithms the vast 

majority of the time. They are manually designed, therefore 

they cannot be collaboratively optimized end-to-end. Intra 

prediction with residual coding, inter prediction as well as 

mode decision, entropy coding, and post-processing are 

some of the most often suggested DL-based approaches for 

VC. Rather than creating an end-to-end compression 

system, these techniques are utilized to upgrade a specific 

module of the standard VC algorithms. So, in this section 

we present the some of related research to intra-prediction, 

inter-prediction and end-to-end framework compression. 

A. Intra-Prediction with DL 

Intra-prediction is the most heavily researched field for 

enhancing VC methods using DNNs. I-Frames are images 

that contain the content of the pixels, which are compressed 

to save space. When partitioning the input video frame into 

Macro-Blocks, an intra-prediction encoding technique is 

applied, which reduces the need for I-frames, which 

generally have the highest bitrate. This is done by 

finding the previously scanned pixels in the next frame and 

correlating the data in each block. Once correlation is 

discovered, the following block pixels are predicted and 

only residual errors (differences) are supplied, resulting in 

better compression efficiency [28]. 

The latest research in the field has found that NNs perform 

very well at predicting future outcomes, which means in the 

last four years academics have been exploring the ways NNs 

can be used to do a better job of predicting the future. When 

it comes to classic prediction modes, the key benefit is the 

flexibility and adaptability of NNs due to the non-linear 

activation functions. Intra-prediction is only effective in the 

spatial domain, which is why it is possible to use it just as 

well for photos [29]. 

Classification CNN and supervised learning are used to 

assess blocks of images in [30] and train the network to 

determine the most likely best HEVC mode. These various 

modes, in particular the 33 angular Intra-Prediction modes, 

the DC mode, and the planar mode, are all considered 

possibilities. After completing the training process, the 

network is programmed. As can be seen in the block 

diagram (diagram, illustration), two convolutional, one max 

pooling, and two fully-connected layers are applied to each 

32x32 block. Compared to a baseline of randomly selected 

modes, the RD-Loss values have been determined in this 

method.  

In classic HEVC coding interstitial prediction approaches, 

ignoring the richer context between the current block and its 

surrounding blocks and so leading to inaccurate prediction is 

a concern, especially when there is a poor spatial link 

between the current block and the reference lines. To 

combat this challenge, W. Cui and et al. [31] suggested that 

an intra prediction neural network benefits from the rich 

context of the present block, thereby resulting in improved 

prediction accuracy. This network can be used to associate 

current block locations with reference block locations. 

R. Birman  and et al. [32], twelve linked NNs are employed 

to perform the prediction. MSE is reduced by three times 

when using computations that carry out three times as many 

operations as ordinary computation modes. The system 

investigated various trained network configurations to 

determine the original pixel values. One of these twelve 

network is built for forecasting one pixel at a time, while 

another one is built for forecasting four pixels. Adam 

optimizer was used to develop the Stochastic Gradient 

Decent (SGD) method, which is a refinement of the 

previous version of the network. The Authors have 

employed Python in order to build the network. 

An idea of a novel block-wise prediction paradigm based on 

CNNs for lossless video coding is proposed by I. Schiopu 

and et al. [33], according to the analysis done by the authors. 

This is the first time that modern ML techniques have been 

used to replace all of the classic HEVC-based angular intra-

prediction modes. Lossless HEVC Intra Prediction on the 

TUT-VTSEQ and HEVC-VTSEQ datasets shows a bit rate 

decrease of 5.8%. 

C. Ma and et al. [34] are proposed method to perform the 

coefficient prediction to eliminate the coefficient 

redundancy. The trained CNNs are used to forecast the 

coefficients and apply it to HEVC intra-predicted residuals. 

To assist with coefficient prediction, an indication is 

provided to the decoder on whether to apply coefficient 

prediction or not at the coding unit level. While both the 

quantization and entropy coding phases precede the 

coefficient prediction step, the authors add this coefficient 



prediction step as an additional layer of complexity. 

Gradient descent algorithms are used to train the network. 

For the training data, UCID and DIV2K are employed. In 

the results, the technique achieved a mean BD-rate 

reduction ratio of 1.8% in Y, 4.1% in U, and 4.5% in V. 

Notably, the average drop in bit-rate (BD-rate) for 4K test 

sequences is 2.9%, 6.5%, and 6.6%. 

B. Inter-Prediction Based On DL 

 Inter frame is a picture in a VC sequence that is 

described by referencing one or with reference to several 

other frames around it. The temporal redundancy between 

nearby frames in this prediction can lead to greater 

compression rates. A frame that is interceded is divided into 

macroblocks, or blocks. The encoder first encodes the raw 

pixel values for each block, and then searches for a 

previously encoded frame that is comparable to the one it is 

encoding [35]. The Inter-Prediction mechanisms that have 

been employed use two different types of prediction: bi-

directional temporal prediction, which is based on the 

buffering of video frames and also future and past frame for 

the prediction, and forward temporal prediction, which uses 

a P-Frame to identify a matching block in the previous video 

frames (B-Frame). Further precision was also attained by 

incorporating the usage of matching block partial pixel 

displacements in the process [36]. 

The most popular current research focus was on utilizing 

CNNs to identify matching blocks characteristics and 

applying those to reduce the remaining prediction error of 

Inter-Prediction. When doing inter-prediction, CNNs are 

utilized to collect similarity of characteristics between 

consecutive frames [37]. 

Z. Zhao and et al., [38] present a technique to employ a 

CNN network that implements bi-directional motion 

correction weighting with improved accuracy. Training a 

CNN network to blend previous and future frames yields a 

projected frame that is more accurate than the one which 

uses a simple average of past and future frames. 

Approximately 10.5% BD-rate savings have been expected 

from the suggested approach and an average of 3.1% BD-

rate savings compared to HEVC. 

Another approach to improving Inter-Prediction accuracy 

was provided by J. K. Lee and et al., [39]. Full CNN 

Connected networks were trained to interpret motion 

compensated (Inter-Prediction) block pixel values from the 

previous frame as well as the next-neighboring block pixels. 

Utilizing the simplified motion compensated block, the 

network results have been better than those obtained using 

the temporal and spatial domain pixels combined into a 

single network input layer. Also, the author suggests using a 

virtual reference frame that uses video interpolation 

convolutional neural network for this. This frame correlates 

with the current frame more closely than any of the 

reference frames forward or back, allowing for smaller 

Motion Vectors and lower block residual values. 

The proposed solution has obtained an average of 1.4% 

HEVC BD-rate decrease. 

Binary arithmetic coding, also referred as context-adaptive 

binary arithmetic coding, is utilized as the entropy coding 

method in HEVC. As they are unable to dynamically adapt 

to estimate the likelihood of syntax elements, the manually 

created binarization and context models should not be used. 

C. Ma and et al., [40] apply NNs to estimate the syntax 

elements' probabilities, and these probabilities are 

subsequently combined with the syntax element values to 

form an arithmetic coding engine. LDP-defined systems 

exclusively concern themselves with the syntactic parts of 

inter prediction information, such as merge flags, merge 

indexes, reference indexes, motion vector differences, and 

motion vector prediction indexes. This system has three new 

qualities. The first step is to bypass the surrounding syntax 

parts and directly feed them into the neural network. A 

second important feature of unified NNs is that they are 

better suited for prediction block sizes of varying sizes. In 

order to enhance parallelism, dependency among the 

syntactic elements has been removed from the current 

prediction unit. Stochastic gradient descent is used to train 

all the networks. The CDVL video data and SJTU training 

data are prepared using the video sequences. HM12.0 is 

very helpful for compressing video sequences since it 

produces training data at the decoder. 

J. Lee et al. [41]. Propose a new video coding strategy that 

will use a CNN that reflects a convolutional neural network 

to enable improved motion prediction in (HEVC). They also 

designed a CNN and video prediction network (VPN), 

which uses a virtual private network to boost their ability to 

code effectively. Both end-to-end layer 2 VPNs are used to 

evaluate image at the same time. The virtual reference frame 

(VRF) is superior to the traditional reference frame because 

it provides more relevant details. The strategies described in 

this paper are used in the HEVC coding system. The VRF 

scheme succeeds in rate-distortion optimization among 

candidate sets using HEVC reference image without adding 

detail. The authors change the HEVC inter-prediction 

processes of AVS and MC prediction adaptively using 

PUIDFR as the reference point. This technique will leverage 

multi-hypothesis weighted prediction techniques in HEVC. 

It can be found in both RA and LD setups. High-definition 

(HD) and ultra-high-definition (UHD) videos are used for 

training, sourced from YouTube. As a result, compared to 

HEVC, 5.7% and 2.9% LD and RA coding improvement, 

respectively.  

To improve bi-prediction accuracy in complex scenarios, H. 

Tao and et al., [42] has developed a novel inter prediction 

strategy that incorporates deep frame prediction network 

components. It should be noted that the suggested network 

uses multi-scale motion alignment, temporal and spatial 

correlation fusion, and frame synthesis modules. Through a 

network that can identify and precisely extract motion 

components, which can be manipulated across various 

scales, the system may utilize temporal and spatial 

correlation to produce a prediction frame that is driven by 

data. This helps us provide another prediction frame for bi-

prediction because the system is included into VTM-6.2. 

Because of this, it is highly recommended that you include 

the prediction created by the proposed network in your 

reference list to broaden the range of references. According 

to this plan, on average, bi-prediction has allowed BD-rate 

savings of 1.8% 

To enhance interpolation of reference samples required for 

fractional-precision motion correction, L. Murn and et al., 

[43] presents a unique neural network-based inter-prediction 

technique. A single neural network is required to be trained, 

after which a quarter-pixel interpolated filter set is created. 



By using a training framework, each network branch may be 

thought of as matching a certain fractional shift. on average, 

lower resolution sequences under the, low-delay P, low-

delay B and random-access configurations achieve an 

average of 2.25%, 1.27% and 0.77% BD-rate savings 

respectively, although the complexity of the learned 

interpolation schemes is significantly reduced compared to 

full CNNs. 

C. End to End Compression Framework Based on DL 

The end-to-end framework learning with non-linear 

transformation methods are not widely employed 

traditionally. These methods are intended to enforce DNN 

for video codec. But they only modify a few modules in the 

conventional framework instead of improving the system 

comprehensively [44]. There are two main problems in 

building standardized end-to-end video coding. Current 

learning-based video coding schemes cannot manipulate the 

advantages of end-to-end enhancement and are not 

conducive to multi-algorithm learning. Combining the 

benefits of traditional compressed data and neural network 

approaches is critical. It is necessary to find a scheme for 

motion detection or VC [45]. So, in this section we present 

some research work related to end-to-end compression 

framework that used DL. 

G. Lu and et al., [46] taking the advantage of both 

traditional architectural methods in the classic model of VC 

and the solid non-linear capabilities of neural networks, they 

suggest the end-to-end model of video coding for the DNNs. 

Learning-based optical flow prediction is applied for 

obtaining the motion information. Next, the authors employ 

two auto encoders to encode the prediction motion 

information and remaining information, respectively. The 

whole modules are introduced to coordinate with others by 

considering the exchange between reducing the compressed 

bits and resolution of the decoded video. 

A. Djelouah and et al., [47] presents an inter-frame 

compression approach to neural V that can smoothly build 

on different available neural image codecs. Their real end-

to-end fix performs time prediction by optical flow-based 

motion compensation in image pixels. The primary point is 

that decoding efficiency and reconstruction quality can be 

enhanced by encoding the necessary information into a 

latent recognition that directly decodes into motion and 

blending coefficients. Residual information between the 

original image and the interpolated frame is needed to 

account for the remaining prediction errors. Propose to 

compute residues directly in latent space instead of in pixel 

space as this allows the same image compression network to 

be reused for both key frames and intermediate frames. 

O. Rippel and et al., [48] propose a learned end-to-end video 

coding technique for low-latency systems, where there is 

just forward-looking information in each frame. They 

postulate two important points. The primary innovation of 

this design is a novel VC architecture that (1) generalizes 

motion estimation to deal with compensation learned by the 

model that is other than simply translation, (2) retains a state 

for additional information learned by the model instead of 

strictly relying on previously transmitted reference frames, 

and (3) merges the compression of all transmitted signals 

(such as optical flow and residual). Secondly, they provide a 

framework for using ML to do spatial rate control: a method 

for varying bitrates on a frame-by-frame basis. This is an 

important component for video coding, as they did not 

previously realize ML was possible with a computer. 

M. Akin and et al., [49] offer a first-time end-to-end 

implementation of motion-compensated, hierarchical and bi-

directional trained optical codec. The researchers developed 

centralized bi-directional flow prediction, flow compression, 

and frame estimation within a convolutional neural network 

system. All the system frameworks are constructed by 

learning filters and used by single DT- loss in the end. 

Scale-space flow and scale-space warping, which are 

extensions of flow and bilinear warping, are introduced by 

E. Agustsson and et al., [50] as generalizations of these 

earlier concepts for application in motion correction in 

learnt VC. Bi-linear warping cannot adequately simulate 

regions that are slow or irregular in motion because of 

stripped off or a combination of both, as demonstrated by 

our study. 

J. Pessoa and et al., [51] avoids explicit motion prediction 

and instead attempts to compresses videos by optimizing an 

auto-encoder architecture that is designed to capture both 

spatiotemporal structure and entropy. In addition to 

developing a 3D latent-space representation of video, they 

also implement a rate-distortion optimization structure that 

provides temporal consistency across frames, eliminating 

undesirable artifacts in the output video sequence. An end-

to-end feature learning system using spatiotemporal auto-

encoders for video use, where loss function optimizations 

account for reconstruction distortion and an entropy-coded 

quantized latent representation bit-rate (which includes an 

estimate of the length of the auto-encoder's latent 

representation). 

N. Zou and et al., [52] have designed an end-to-end learning 

system for VC. Instead of basing their system on pixel-space 

motion, the system creates and stores latent representations 

of individual frames. Attention mechanisms are 

incorporated at the decoder to attend to the latent space of 

frames, which are combined to make the predicted current 

frame. By applying relevance masks that depend on the 

feature channels, spatial-varying channel allocation is 

achieved. The model is trained to minimize the bitrate by 

minimizing two losses: one for arithmetic coding and the 

other for context modeling. 

F. Racapé and et al., [53] provides an end-to-end ANN-

based compression architecture that uses bidirectional 

prediction. This codec handles video sequences broken into 

Groups of Pictures (GOPs) where each frame is being 

encoded in Intra or Inter mode. This allows for efficient 

hierarchical GOP temporal networks by leveraging previous 

and future decoded frames to anticipate inter frames. The 

authors investigate the benefits of improving the 

compression of motion information prediction residuals 

using specialized auto-encoder models with GOP-

conditioned layers. The network is completely retrained. 

VI. ADOPTED DATASETS 

To take advantage of current advances in AI technology, 

video coding algorithms are increasingly using DL methods 

such as CNNs, which have proven to deliver significant 

coding advantages over traditional approaches based on 

classic computer vision theory. Using these learning-based 



compression approaches, a lot more training material is 

required even than traditional compression or existing ML 

methods. These should have a wide range of material in a 

variety of formats and textures [54].  

ML algorithms rely heavily on training datasets to get the 

best results. In order to ensure good model generalization 

and avoid potential over-fitting problems, a well-designed 

training dataset is required. There is no publicly available 

database exists that is specifically designed for learning 

video coding, as far as we are aware. The majority of the 

time, researchers have used training datasets created for 

other purposes (like super-resolution, frame interpolation, 

and classification) in their research until now [55]. The 

following list summarizes notable free image and video 

training datasets. 

There are several notable free image and video training 

datasets available on the Internet for free, for example 

ImageNet [56], DIV2K [57], Vimeo [58], REDS [59], 

MCML [60], SJTU [61]) and others. These databases differ 

in terms of the number of image/videos and the percentage 

of resolution. Some of these databases was created primarily 

to aid in the recognition of visual objects (ImageNet), 

segmentation (DIV2K), and some for network training of 

video coding (Vimeo, REDS, MCML, SJTU). 

High spatial resolutions and bit depths need modern video 

coding techniques that can handle information with a variety 

of texture types. The JVET Common Test Conditions (CTC) 

dataset, for example, contains conventional test sequences 

such as video clips with UHD quality (2160p) and 10 bit 

depth, as well as several static and dynamic texture 

variations. 

VII. ASSESSMENT AND DISCUSSION 

Predicting the most appropriate Intra-Prediction mode 

[30] is limited by the block's most accurate prediction mode, 

therefore there will be no enhancements over current 

standards by default. In order to further reduce error, 

residual errors are predicted. In our knowledge, trained 

networks, which reduce some residual errors, can also rice 

some of the errors. This means that generalizing the 

approach to huge datasets is a bit of a stretch. The authors of  

[31] were able to build a network that consistently improves 

the BD-Rate for various frame sequences, hence their 

strategy is considered practical. The longer-term spatial 

variation that is not taken into account when training the 

network makes it difficult to predict the full block pixel 

values from neighboring pixels. The authors' significant 

improvement [32] (through their use of twelve learning 

networks to triple the MSE compared to standard models) 

comes at the expense of more comprehensive computations. 

This means that increasing the complexity of the 

computational operations with the use of a large number of 

learning networks will increase the time taken for the video 

compression process. The proposed research by [33] 

outperformed all the research mentioned in this aspect by 

replacing the traditional HEVC prediction models with 

intelligent prediction models, as it outperformed HEVC by 

5% in terms of improving the video coding system. Our 

approach suffers from the distribution of quantization errors 

so it won't do well for compression. There's the chance of 

exploring within the framework of lossless VC algorithms. 

The proposed methods [38, 39, 40, 41, 42, 43] are 

differed for improving prediction with CNNs and are not 

interconnected. Each proposed method has its advantages 

and cannot be directly compared to any other way. The 

different proposed algorithms can be applied simultaneously 

and independently to take advantage of all the 

improvements. Improvements to block predictions and 

Motion Estimation (ME) accuracy are the primary goals, as 

this reduces the extent of the coded values and enables 

lower bit rates to be used. Training neural networks for 

more accurate and direct ME vectors predictions in this field 

(intelligent inter prediction) is expected to reduce residual 

error size between it and original MV, as well as providing 

an accurate search location for the latter, with the potential 

to reduce computation time during research. Most 

previously mention’s researches (intelligent inter prediction) 

are configured with JCT-VC common test condition (CTC) 

[62] and used anchor in the simulation results.  Depending 

on the researches results, we noted that the system [38] have 

a best result compare to another, which is save 3.1% BD-

rate for random access (RA) compare to HEVC, which is 

use CNN to enhance the region that cannot be well handle 

with traditional bi-direction, such as the boundaries of a 

moving object. The system [42] also gain a good result 

(1.8%) by extract and fuse motion characteristics at multiple 

scales, and fully leverage temporal and spatial correlation in 

order to build the perdition frame. In Low-Delay (LD), the 

system [41] get a best result than other research, which is 

save 5.7% BD-rate compare to HVC, which investigate a 

new prediction network employing a previously coded 

frame, enhanced motion vector prediction, and merge 

prediction 

The learning-based end-to-end framework [47, 48, 49, 

50, 51, 52, 53] outperforms the conventional learning-based 

framework on structure similarity by avoiding block 

artifacts and processing the frame's full spatial information. 

They have achieved comparable or better performance than 

H.265/HEVC with the default setting on PSNR or MS-

SSIM evaluation metric. Yet, none of the above works, can 

clearly beat traditional codecs when it comes to high bitrate 

compression, especially H.265 and H266. As the modern 

video coding systems like H265 and H266 have many 

computational requirements, therefore, learning-based end-

to-end compression requires powerful hardware, like a 

GPU, to solve compression upon both encoder and decoder 

sides. Because earlier leverage required simpler network 

design, the issue has gotten worse. This means that 

researchers will have to incorporate the real-world 

application scenario into framework and network design so 

that an unbalanced framework and a lightweight network 

architecture can be thoroughly studied. Several studies have 

attempted to solve this issue, mostly by utilizing model 

compression techniques. All of the model constructions in 

this part have been investigated thoroughly and 

comprehensively justified by using a specific codec 

structure to pinpoint the rate-distortion 

efficiency/complexity trade-off. Table I. shows some of the 

differences in training dataset, testing dataset usage, 

experimental result and the advantage point for each deep 

compression model that mention in the section V/C. 

 



TABLE I. DIFFERENT COMPARES FOR END-TO-END BASED DL 

Ref. 

Year 

Training 

Dataset 

Testing 

Dataset 
Result Advantage 

[46] 

2019 

Vimeo-

90k 
UVG 

PSNR≈38.8 dB 

for UVG 
MS-

SSIM≈0.973 for 

UVG 

Propose NNs are 

utilized throughout 
the whole VC 

process. 

[47] 

2019 

Vimeo-

90k 

MCL-
JVC, 

VTL and 

UVG 

PSNR≈39.89 dB 
for MCL-JVC 

PSNR≈38.70 dB 

for VTL 
PSNR≈40.1 dB 

for UVG 

Join image 
synthesis and 

motion 

compression in 
order to reduce the 

motion code size. 

[48] 

2019 

HD 

Video 

from 
YouTube 

CDVL 
SD and 

Xiph HD 

For SD and HD, 
60% and 20% 

greater than 

proposed model 
code produced. 

Respectively. 

Any existing video 
codec can be 

outperformed by 

this model.  

[49] 
2020 

REDS REDS 

PSNR≈36.6 dB 

exceed H264 

and H265 

Reduce the rate-
distortion cost 

function averaged 

over image 
groupings 

[50] 

2020 
Approx. 

UVG 

MCL-
JCV 

Exceed HEVC 

up 0.05 bpp for 

MS-SSIM and 
up 0.15 for 

PSNR 

Outperforms 

contemporary 

learning-based 
techniques and the 

mainstream codecs 

H.264 and HEVC 
when using MS-

SSIMM. 

[51] 
2020 

YouTube-
8M 

MCL-V 

The model 
outperforms the 

baseline, 

compares better 
to MPEG-4 

Part2 and 

H.265/HEVC at 
lower bitrates. 

A single 
spatiotemporal 

auto-encoder 

(SAE) can serve as 
both reconstruction 

loss and entropy 

model train. 

[52] 
2020 

CLIC CLIC 

MS-

SSIM≈0.978 
and 

PSNR≈30.44 dB 

at 0.0707 Bpp 
Decoder 

size=15.8MB  

decoding 
time=1484 

seconds 

Combines the 

current predicted 
frame with the 

previous frame to 

generate a more 
stable image. 

[53] 
2021 

BVI-

DVC 

 

JVET 
(CTC) 

On average 
PSNR≈35.3 dB 

Construct a neural 

network codec and 
train it from the 

base up in order to 

upend the existing 
hybrid codec 

approach. 

 

VIII. CONCLUSION 

Lossy video coding seeks to represent the pixels of raw 

video as compactly as possible by leveraging the spatial-

temporal and statistical connections. Traditional hybrid 

coding systems have employed all of the methods 

previously mentioned (such as pixel domain intra/inter 

prediction, transform, entropy coding, etc.) to serve this 

function over decades. Each coding tool is carefully studied 

under a specific codec architecture to explain the R-D 

efficiency against complexity tradeoff. This approach 

resulted in well-known industry standards including 

H.264/AVC, H.265/HEVC, and AV1. However, DNNs 

have shown powerful video spatiotemporal feature 

representation for vision applications including object 

segmentation and tracking. This presents the challenge of 

encoding spatio-temporal information in a compact manner 

for lossy compression. So, in this paper we present a 

summary of the principal methods of using DNN ability for 

video compression up to since. 
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