
EasyChair Preprint
№ 7717

On Transfer Learning in Code Smells Detection

Moabson Ramos, Rafael de Mello and Baldoino Fonseca

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 3, 2022



On Transfer Learning in Code Smells Detection
Moabson Ramos

Institute of Computing
Federal University of Alagoas

Alagoas, Brazil
amsr@ic.ufal.br

Rafael de Mello
Institute of Computing

Federal University of Rio de Janeiro
Rio de Janeiro, Brazil
rafaelmello@ic.ufrj.br

Baldoino Fonseca
Institute of Computing

Federal University of Alagoas
Alagoas, Brazil

baldoino@ic.ufal.br

Abstract—The incidence of code smells is often associated
with software quality degradation. Several studies present the
importance of detecting and tackling the incidence of smells in
the source code. However, existing technologies to detect code
smells are dependent on the programming language. Conse-
quently, several programming languages are largely employed
by the software community without proper technologies code
smell detection. Our study addresses amplifying the availability
of code smell detection technologies to different programming
languages through transfer learning. For a first evaluation, we
selected five programming languages among the ten most used
languages according to StackOverflow: Java, C#, C++, Python,
and JavaScript. The datasets for training and testing were
obtained from selected open sources projects. Preliminary results
indicate high levels of accuracy in detecting Complex Methods
from other programming languages through transfer learning
models, except for Python. This finding can help developers and
researchers to apply the same code smell detection strategies
in different programming languages. We also found that the
particular behavior observed with Python is partially due to key
structural differences in this programming language.

Index Terms—code smells, detection, machine learning, deep
learning

I. INTRODUCTION

During software development, the incidence of code smells
has been largely associated to the software quality degradation
[11], [18]. In this way, it is important developers properly
identifying and combating the incidence of smells in the source
code [2], [3]. However, existing technologies for code smell
detection are limited to few programming language, most of
them addressing only Java. Besides, they lack on considering
aspects addressing the specificity of the software system
design and the subjectivity of the developers on perceiving
the incidence of code smells [4], [5], [7], [8]. Consequently,
there are several (and popular) programming languages largely
used by the software community without proper technologies
for detecting even the most known code smells.

Among the code smell detection technologies, there are
several ones based on machine learning [1], [12], [15], which
allows calibrating the detection model for certain projects
according to the training samples employed. In general, the
effectiveness of machine learning solutions for code smell
detection has been showed promising and more reliable than
traditional approaches, with highlight to deep learning. The
growing development of machine learning-based solutions to

Identify applicable funding agency here. If none, delete this.

solve Software Engineering problems follow a trend observed
in different domains of knowledge. For instance, machine
learning models have been widely employed for develop-
ing software solutions in many domains. Examples include
applications for supporting medical diagnosis [10], building
autonomous cars [9], and detection of fraudulent credit card
transactions [6].

The development of conventional machine learning tech-
nologies is grounded on composing training datasets for build-
ing a trained model. This model is then assessed through
testing datasets. However, in several cases it is required
from machine learning approaches to be trained from similar
models. It may happen, for instance, when developers from
a particular programming language (e.g., Python) could not
identify a smell detection tool available for this programming
language. Alternatively, they would employ datasets of code
smells detected in another programming language (e.g., Java)
to learn from it. Transfer learning consists of using pre-trained
models to solve specific tasks, to solve another related task
as a way of reducing the efforts (i.e., data relabeling and
computational resources) needed to solve it [14].

In this paper, we report one empirical study aiming at
to investigate the feasibility of employing transfer learning
for detecting the incidence of the Complex Method code
smell among different programming languages. Through this
study, we expect to contribute for extending the availability of
code smell detection technologies through transfer learning,
contributing with the software development community to
identifying code smells in a larger and diverse samples of
software projects. To our study, we composed curated training
and evaluations datasets of from five popular programming
languages: C++, C#, Java, Javascript and Python. Then we
applied two machine learning algorithms with different com-
binations of these datasets.

The results revealed a trend for reaching high levels of
effectiveness on using transfer learning among pairs of differ-
ent programming languages for detecting Complex Method,
except for the case in which the training dataset is composed
of sourcecode written in Python. Our following analysis in-
dicated that this behaviour was due some relevant structural
differences that even accelerate the side effect of negative
transfer [19] in higher sample sizes. Besides, we found that
simple ML models based on a single perceptron are effective
for identifying Complex Methods through transfer learning.



The high levels of effectiveness reached by our study also
contrasts with the findings from [17] for the same evaluation
dataset.

Section II presents related work on code smell detection
and transfer learning. Section III describes the settings of our
empirical study. Section IV presents the results of our study,
reporting its main findings addressing each research question.
Section V discuss the main threats to validity identified in our
study. Finally, Section VI concludes the paper and indicates
future work.

II. RELATED WORK

Different methods are used for code smells detection, i.e.,
detecting code smells automatically. [17] divide them among
detection methods based on: (i) metrics; (ii) rules/heuristics;
(iii) history; (iv) optimization; and most recently, (v) machine
learning. The abstract syntax tree (AST) is commonly used
in metric-based methods for computing relevant metrics of
the source code. Once the thresholds of these metrics are
established, they are employed for detecting code smells.
However, some code smells can not be detected only using
metrics, such as rebellious hierarchy, missing abstraction,
cyclic hierarchy, and empty catch block. For this purpose,
heuristic-based methods are proposed. In such methods, simple
rules or complex heuristics are defined according to the code
smell type. History-based methods analyze the evolution of
source code to spot code smells. The optimization-based
methods are supported by optimization algorithms such as
genetic algorithms.

Most recently, machine learning-based models emerged as
a promising method for code smell detection. For training and
composing these models, machine learning algorithms such
as Support Vector Machine, Bayesian Belief Networks, and
Logistic Regression have been employed. [15] study made a
comparison between the use of the DECOR heuristic and a
machine learning model based on the Naive Bayes algorithm.
Both methods performed poorly. This study mentions the fact
that the dataset has a wide variety of code smells and has real
examples (i.e. manually validated) as a possible cause of low
performance, indicating that the success of these methods can
be related to the dataset and the results may be unsuitable
for use in practice. On the other hand, the study by [12]
evaluated the detection of 6 code smells by 7 machine learning
algorithms. The results indicated that overall the models were
able to reach their best accuracy with few samples, indicating
to be a very promising method that deserves to be explored
in depth.

Besides the more recent dissemination of machine learning
models, there are several smell detection tools available. These
tools are predominantly based on metrics and rules/heuristics.
[13] compared four tools for code smells detection and
presents supported programming languages, covered smells,
advantages and disadvantages. For instance, the InFunsion
is a commercial tool that supports the detection of 22 dif-
ferent types of code smells in Java, C, and C++ programs.

JDeodorant is a open-source plugin for Eclipse1, supporting
the detection of four types of code smells in Java programs. All
the tools analyzed by the authors support code smell detection
in Java programs. Two of them support C/C++ programming
languages, while only PMD can detect code smells in some
other programming languages.

[16] investigated the feasibility of applying transfer learning
based on deep learning models for code smells detection.
Focusing on four types of smells (complex method, empty
catch block, magic number, and multifaceted abstraction),
the study investigated the transfer learning between datasets
composed of source code written in distinct programming
languages. These datasets were extracted from open-source
projects at GitHub. The authors conducted the study in two
steps: (i) evaluating the use of deep learning models for
code smells detection in a C# and Java; and (ii) evaluating
transfer learning using pre-trained models between C# and
Java. For this study, two architectures of neural networks were
selected, Convolutional Neural Network (CNN) and Recurrent
Neural Network (RNN). The results indicate that is feasible
to use deep learning for code smells detection and transfer
learning for detecting code smells when training the model
with C# samples and applying it in Java samples. However,
both models obtained considerably lower results for detecting
the multifaceted abstraction smell.

III. STUDY DESIGN

Our study aims to evaluate the use of transfer learning to
detect code smells in five programming languages. The study
focuses on three particular aspects: effectiveness, i. e., how
effective is transfer learning in correctly identifying or not a
code smell into different programming languages; efficiency,
i. e., the relation between the effectiveness of the transfer
learning and the training effort required from developers
to perform a proper transfer learning; and, influence, i. e.,
which programming language constructs are more influents
on applying transfer learning. In this sense, we try to answer
the following research questions:

• RQ1: How effective is transfer learning to detect code
smells? To answer this RQ: we investigates the effec-
tiveness of transfer learning to detect code smells into
five programming languages. As a result, we expect to
identify which programming languages are more proper
to produce deep learning models that can be applied in
projects with different languages.

• RQ2: How influential are programming languages
constructs to detect code smells by using transfer
learning? To answer this RQ: we analyze the influence of
language constructs in the effectiveness of transfer learn-
ing to detect code smells. In particular, we investigate
the influence of three constructs: preprocessor directives,
switch statements, and conditional expressions. As a re-
sult, we hope to better understand the influence (positive
or negative) of these constructs on model accuracy.

1www.eclipse.org



• RQ3: How efficient is transfer learning to detect code
smells? To answer this RQ: we intend to measure the
necessary effort, i.e. number of samples, to model reach
a good accuracy using transfer learning. As a result, we
expected to obtain the f-measure of the models when
trained with ascending number of samples and evaluated
using the datasets of different programming languages.

• RQ4: How complex should the deep learning models
be for effectively detecting code smells? To answer
this RQ: we analyze the results of models of both
architectures (Perceptron and CNN) when evaluated in
the same programming language in which was trained,
and by transfer learning. As a result, we intend to
determine whether advantages of using different deep
learning architectures for code smells detection.

A. Programming Languages

We selected five programming languages for our study:
Java, C#, C++, JavaScript and Python. These programming
languages figure out between the 10 most used ones ac-
cording to the 2021 StackOverflow survey2. To observe the
effect of transfer learning, we intentionally selected script-
based programming languages and compiler-based ones. These
languages present some of the specific characteristics. For
instance, C++ and C# are the only programming languages
analyzed in our study that offer the resource of preprocessor
directives. Preprocessors are commonly employed for intro-
ducing variability at compilation time. Also, one can see that
Python didn’t offer a mechanism to control flow similar to
switch statements until a more recent version (3.10). In this
version, was introduced a feature called Structural Pattern
Matching with support for pattern matching (at the moment is
a preview feature in Java). Consequently, it was expected that
most of the source code implemented in Python at the time
of this study did not employ this feature. Another relevant
difference from Python to the other programming languages
investigated is the syntactical differences between conditional
expressions.

B. Detection Rule for Complex Method

We decided to focus on code smells at method level. There-
fore, the smell Complex Method was selected and in return as
we mentioned, we include five programming languages and
two neural network architectures. Also, the choice of this smell
will make it possible to compare it with the study of [16]
for the Java and C#. The datasets employed for training and
evaluating the detection models were composed based on the
rules and thresholds defined in the DesigniteJava3 tool. If a
certain method satisfy

CyclomaticComplexity ≥ 8

then, it’s classified has smelly or otherwise as non-smelly.

2https://insights.stackoverflow.com/survey/2021#most-popular-
technologies-language

3https://github.com/tushartushar/DesigniteJava

C. Projects Samples

We manually selected 30 open-source projects from
GitHub4 for each programming language analyzed in our
study, i.e., 150 projects in total. We applied several quality
criteria for selecting these projects, including recent repository
activities, higher number of commits, stars and forks. For
each programming language, these projects include frond-end
applications, libraries, APIs and frameworks.

D. Metrics

We collected metrics from Abstract Syntax Tree (AST) of
source code, such as number of switch statement, lambda
expressions, nested class, nested function, if, for, while and
others. A subset of these metrics were used to compute the
Cyclomatic Complexity to then classify a method as Complex
Method.

E. Data Collection

We found difficulties in employing open-source tools avail-
able for gathering the metrics needed from the code snippets
selected for the five programming languages. The first dif-
ficulty was in finding a tool that covers all the programming
languages of our study. The second was that the available tools
often do not indicate the exact lines of interest of our study.
For script-based languages like JavaScript and Python, there
are few or no tools, some existing ones haven’t been updated
for years. To overcome this challenge, we built our own tool
based on the Tree Sitter5 library. With this tool, we could
parse the source code of the selected projects for analyzing the
Abstract Syntax Tree (AST), gathering the necessary metrics,
and obtaining the desired code snippet for the experiment. Our
tool also enabled to filter datasets according to the presence
of certain language constructs.

F. Composing the Datasets

Table I presents the datasets used in our study. The first
column describes the name of the dataset. The second column
describes the goal of the dataset. The third column describes
the programming languages of the code snippets that have
this dataset. The last column describes the size of the dataset.
We randomly extracted one training dataset (named Train)
and two evaluation datasets (named Test 1 and Test 2). We
composed two additional datasets with only methods contain-
ing preprocessor directives for the programming languages
offering this resource. We also composed additional datasets
containing conditional expression and switch statements, the
latter doesn’t include Python. With these sets, we intend to
observe the influence of certain constructs on the effectiveness
of transfer learning.

The datasets employed for training and evaluating the
detection models were composed based on the rules and
thresholds defined in the DesigniteJava6 tool. If a certain

4https://github.com
5https://tree-sitter.github.io
6https://github.com/tushartushar/DesigniteJava



method satisfies the detection rule, the tool spot this method
as smelly. Otherwise, the tool spot the method as non-smelly.

TABLE I
DATASETS USED IN THE STUDY FOR TRAINING AND EVALUATION

Name Goal Programming
Languages

Total
Size

Train Model Training All 1000
Test 1 Overall Model Evaluation All 500
Test 2 Model evaluation employed

by [16]
Java and C# 2000

Conditional
Expression

Model evaluation for meth-
ods containing conditional ex-
pressions

All 500

Preprocessor
Directives

Model evaluation for meth-
ods containing preprocessor
directives

C++ and C# 500

Switch
Statements

Model evaluation for methods
containing switch statements

Java, C#,
C++ and
JavaScript

500

G. Transfer Learning Models

We opted by first applying a simple Perceptron model to
observe the effect of transfer learning in different program-
ming languages. Our choice this model is due to as it is a
single-layer neural network used for binary classification. In a
second moment we employed models based on Convolutional
Neural Network. The use of different architectures can we
bring interesting insights about the use of more complex
architectures when compared to simpler.

IV. RESULTS AND DISCUSSION

We report in this section the study results by research
question, discussing its main findings.

RQ1. How effective is transfer learning to detect code
smells?

In RQ1, we applied the Perceptron model over the training
dataset of each programming language. Then, for each trained
model, we used the model to detect smells in the remaining
datasets. For example, if we train a model in the dataset con-
taining code snippets from Python projects, then we use this
model to detect smells in the datasets containing JavaScript,
C++, Java, and C#. Also for comparison purposes we evaluated
the model in projects of the same programming language.
Table II present the main results to support this discussion.

TABLE II
F-MEASURE OF THE PERCEPTRON MODELS WHEN EVALUATED USING

TEST 1 DATASETS

f-measure

Java C# C++ JavaScript Python
Java 98% 96% 95% 93% 92%
C# 98% 98% 96% 93% 91%

C++ 97% 97% 96% 94% 95%
JavaScript 96% 95% 95% 96% 93%

Python 75% 77% 88% 77% 97%

Table II describes the effectiveness of the model when
trained in projects containing a specific programming language

and, then, applied in projects of the same programming
language and containing the other languages analyzed in our
study. We observe a trend on reaching lower f-measure when
training a model in Python and we applied on Java, C#, and
JavaScript projects. We obtained a f-measure slightly higher
when we applied this model on C++ projects. On the other
hand, when we trained the model in Java, C#, C++, and
JavaScript, we obtained an f-measure greater than 90%. This
result indicates that the all models were effective when applied
in the same programming language and through of transfer
learning from Java, C#, C++, JavaScript but not when the
model was trained in Python projects.

Summary of RQ1: Transfer learning between different
programming languages is effective to detect Complex
Methods except when the training dataset is composed
of code snippets implemented in Python.

RQ2. How influential are programming language con-
structs to detect code smells by using transfer learning?

One possible explanation for the lower effectiveness reached
by the Python training model (RQ1) is the common difference
of the Python constructs when compared with the constructs of
the other programming languages investigated. To check this
hypothesis, we composed model evaluation datasets focused
on code snippets composed of specific constructs (see Table I)
which presence and composition considerably vary among
the five programming languages investigated, i.e., conditional
expressions, switch statements and preprocessor directives.
The f-measure reached after applying these evaluation datasets
is summarized in Table III.

Regarding conditional expressions, we observe that the
differences among the programming languages do not influ-
ence the transfer learning process once the distributions of
f-measure values reached are close to those found for the
Test 1 dataset. In this sense, it is important to note that
all the programming languages investigated offer conditional
expressions. Besides, despite the syntactical differences, their
implementation is quite similar.

Similarly, we could not observe significant differences in
the models’ effectiveness when applying evaluation datasets
composed only by code snippets with preprocessor directives,
despite C++ and C# being the only programming languages
offering this resource. One possible explanation for this finding
is that these directives are commonly composed of simple
instructions that would barely contribute to the complexity of
the methods.

On the other hand, we observed considerably low f-measure
values for the Python model evaluated through datasets com-
posed only by code snippets with switch statements. Besides
the already mentioned lack of this resource in Python (until
a recent version), one can see that the misuse of switch
statements is a common root cause of complex methods.
Therefore, the inability to recognize this resource may lead
to several false negatives.



TABLE III
F-MEASURE OF THE PERCEPTRON MODELS WHEN EVALUATED USING CONSTRUCTS DATASETS

f-measure

Conditional Expressions Switch Statements Preprocessor Directives

Java C# C++ JavaScript Python Java C# C++ JavaScript C# C++
Java 93% 95% 93% 93% 90% 88% 87% 88% 89% 93% 90%
C# 93% 93% 93% 91% 90% 89% 88% 87% 91% 93% 89%

C++ 94% 94% 93% 87% 90% 89% 87% 85% 83% 93% 89%
JavaScript 91% 93% 90% 93% 87% 88% 89% 87% 90% 92% 87%

Python 85% 84% 91% 86% 89% 48% 53% 47% 34% 78% 86%

Fig. 1. Confusion Matrix: Perceptron model trained using the dataset of
Python when it was evaluated using Test 1 dataset of Java

To further investigate the low f-measure scores found for the
Python model, we looked in depth the confusion matrix (i. e.,
true-positive, true-negative, false-positive, and false-negative)
of the models trained in Python, C#, C++, and JavaScript
projects for detecting code smells in Java projects (Test1),
as depicted in Figure 1. Despite the true-negative values are
quite similar, one can see that the false-positive and true-
positive values of the model trained in Python are slightly
lower than those reached by the other models. Consequently,
we also observe that the false-negative score of the model
trained in Python projects is higher than the other models.
While we obtained 19.6% of false-negatives for the model
trained in Python, the models trained in the other programming
languages reached less than 2.2%.

Summary of RQ2: Except for the Python model, the
effectiveness of transfer learning between different pro-
gramming languages for detecting complex methods is
not influenced by the incidence of specific constructs in
the code snippets evaluated. The Python model reached
a high percentage of false-negatives for detecting com-
plex methods in code snippets from other programming
languages. The lack of switch statements in Python and

the common influence of this resource over the methods’
complexity tend to exacerbate this behaviour when the
complex methods are composed of switch statements.

RQ3: How efficient is transfer learning to detect code
smells?

So far, we had evaluated models trained with 1,000 samples
from each programming language. However, it is important to
analyze the extent to which the results found are influenced
by this sample size. For this purpose, we opted by focusing on
the original training set of the Python programming language,
for which evaluations were less favorable and more variable.
We randomly composed exponentially lower subsamples from
the Python training dataset. Then, we evaluated how the model
derived from each subsample behaved for detecting complex
methods in all programming languages investigated using the
Test 1 evaluation datasets.

Fig. 2. F-measure of the Perceptron model trained with Python subsamples
when it was evaluated using the Test 1 datasets

In Figure 2 presents the f-measure scores reached for each
model by programming language. The sample sizes appear
in the x-axis, and the corresponding f-measure scores can be
observed in the y-axis. One can see that the models derived
from the Python training datasets present a trend of increasing
effectiveness as we increase the sample size for evaluating the
dataset in the same programming language. The effectiveness
of the Python models for the C++ evaluation dataset presents
a slight decrease until 512 samples. Surprisingly, the effec-
tiveness of the same models for the remaining programming
languages presents a clear trend of decreasing for models
trained with more than 64 samples.



Summary of RQ3: As the sample size of the training
dataset increase, the resulting model in Python also in-
creases its efficacy for evaluating code snippets in Python.
On the other hand, we observed an inverse behavior
in models resulting from training sets higher than 64
code snippets on evaluating code snippets from other
programming languages.

RQ4: How complex should the deep learning models be
to detect code smells effectively?

Models using a relatively simple neural network architecture
have achieved a good classification level through transfer
learning except the model trained in Python projects. To check
if choose of neural network architecture should be influence
on classification, we also use Convolutional Neural Network
another popular architecture used on tasks like classification
of texts, images, and others.

We compared the results with those already obtained from
the model using Perceptron. The main results about this
question are presented in Tables IV, V and Figure 3.

TABLE IV
F-MEASURE OF THE CNN MODELS WHEN EVALUATED USING TEST 1

DATASETS

f-measure

Java C# C++ JavaScript Python
Java 98% 95% 95% 94% 94%
C# 98% 98% 96% 94% 92%

C++ 97% 97% 96% 93% 96%
JavaScript 97% 97% 94% 97% 91%

Python 77% 78% 88% 82% 98%

Comparing the results between Table II and Table IV we
observe that the models of both architectures also were able to
identify the code smell well in projects of the same language,
maintaining a high f-measure. On transfer learning the results
of Table IV also shows that the f-measure of model trained
in Python projects remain almost unchanged with slightly
increases.

Fig. 3. F-measure of the CNN model trained with Python subsamples when
it was evaluated using the Test 1 datasets

Figure 3 presents the results of CNN model trained in
Python projects, with only 4 samples the model reach an f-

measure close to 90% but the behavior is similar to results of
the Perceptron models presented in Figure 2.

TABLE V
COMPARISON BETWEEN TRANSFER LEARNING RESULTS PRESENTED BY

SHARMA AND THOSE OBTAINED THROUGH OUR EXPERIMENTS USING THE
TEST 2 DATASETS

f-measure

Our results Sharma results

Perceptron CNN CNN-1D CNN-2D RNN AE
Java Java Java Java Java Java

C# 98% 98% 44% 50% 40% 48%
C++ 96% 97% - - - -

JavaScript 98% 97% - - - -
Python 76% 81% - - - -

As shown in Table V, we also obtained lower f-measure
values when applying the Python model over the Test 2
evaluation datasets composed by [16] for the Java and C#
languages.

Summary of RQ4: The model using the CNN archi-
tecture reach an f-measure close to 90% with only 4
examples in projects of all languages but compared to
simpler model don’t presents significantly advantages.

V. THREATS TO VALIDITY

One common threat to validity on studies based on mining
software repositories address the representativeness of the
software projects and the code snippets analysed. To mitigate
this threat, we applied a set of rigorous criteria for composing
our datasets. We selected relevant releases from popular open
source projects addressing different technologies and domains
for each programming language. We also reused the datasets
from previous work [16], for the programming languages
available.

In the particular case of the training datasets, we recognize
that the automated detection of code smells is prone to error.
Indeed this is common threat to vality in large-scale studies
addressing machine learning solutions in code smell detection.
However, it is important to note that Complex Method is a
popular type of code smell, which detection is covered by
several tool with similar rules. Once our study is focused
in this type of code smell, we made effort to optimize its
detection by applying combined detection rules.

Some strcutural differences in the programming langauges
may vary according to evolution of each language. These
differences may significantly influence in the transfer learning
results. In the particular context of our study, we verified that
the main constructs analysed are estable in the last versions
of the five programming languages investigated. The only
execption was to the recent resource for implementing switch
case of Python (match). In this sense, we certified that the
releases of the Python projects analysed did not employd this
resource.

Another threat to validity address the limitations on the
parsing tools employed. We need to perform our own parsing



solution for Python and JavaScript. For this purpose, we
made effort on identifying and reusing stable technologies
as background for implementing these solutions. We also
tested our solution over several code elements from both
programming languages before running the study.

VI. CONCLUSIONS

The purpose of the present work was extend the code smells
detection technologies through transfer learning between dif-
ferent programming languages. We decided to focus on Com-
plex Method, because this smell appears in all languages
selected for our experiment, some of them without proper tech-
nologies to detect it. In this sense, was necessary to obtain pre-
trained models based on Perceptron and Convolutional Neural
Network (CNN), able to detect this smell in Java, C#, C++
and JavaScript. Then these models were evaluated in different
programming languages by applying transfer learning using
the datasets for general evaluation and with some constructs of
these languages such as conditional expressions, preprocessor
directives and switch statements.

The results showed that transfer learning is a effective way
to detect code smells in different programming languages. Our
pre-trained models were able to identify Complex Method
in different languages, except when the models were trained
with datasets containing code snippets of Python projects. The
Python models got an low f-measure on transfer learning,
unlike the models of other languages. This difference with the
other models became more accentuated when evaluated in the
datasets containing switch statements, indicating that program-
ming language constructs can be affect the effectiveness of
the model. Also, the models built using different architectures
didn’t present significant differences in our results.

The contributions were not limited to the results of transfer
learning, as a consequence a tool was developed for mining
and labeling code snippets of five programming languages

Our findings indicate that is feasible to detect code smells
in different programming languages from a pre-trained model
of a language. Helping the software community in identifying
these smells in several programming languages.

As future work, we intend to (i) extend the investigation
about the influence of programming languages constructs on
transfer learning, (ii) review the technical literature for iden-
tifying additional code smell types to include in the research,
and (iii) include on our experiment others pre-trained models
and compare the results.

ACKNOWLEDGMENT

This research was supported by CNPq 152179/2020-8.

REFERENCES

[1] Muhammad Ilyas Azeem, Fabio Palomba, Lin Shi, and Qing Wang.
Machine learning techniques for code smell detection: A systematic lit-
erature review and meta-analysis. Information and Software Technology,
108:115–138, 2019.

[2] Ana Carla Bibiano, Wesley K. G. Assunção, Daniel Coutinho, Kleber
Santos, Vinı́cius Soares, Rohit Gheyi, Alessandro Garcia, Baldoino
Fonseca, Márcio Ribeiro, Daniel Oliveira, Caio Barbosa, João Lucas
Marques, and Anderson Oliveira. Look ahead! revealing complete
composite refactorings and their smelliness effects. In 2021 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME),
pages 298–308, 2021.

[3] Ana Carla Bibiano, Eduardo Fernandes, Daniel Oliveira, Alessandro
Garcia, Marcos Kalinowski, Baldoino Fonseca, Roberto Oliveira, Ander-
son Oliveira, and Diego Cedrim. A quantitative study on characteristics
and effect of batch refactoring on code smells. In 2019 ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement (ESEM), pages 1–11, 2019.

[4] Rafael de Mello, Anderson Uchôa, Roberto Oliveira, Willian Oizumi,
Jairo Souza, Kleyson Mendes, Daniel Oliveira, Baldoino Fonseca, and
Alessandro Garcia. Do research and practice of code smell identification
walk together? a social representations analysis. In 2019 ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement (ESEM), pages 1–6. IEEE, 2019.

[5] Rafael Maiani de Mello, Roberto Oliveira, and Alessandro Garcia. On
the influence of human factors for identifying code smells: A multi-
trial empirical study. In 2017 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), pages 68–
77. IEEE, 2017.

[6] S. Dhankhad, E. Mohammed, and B. Far. Supervised machine learning
algorithms for credit card fraudulent transaction detection: A compara-
tive study. In 2018 IEEE International Conference on Information Reuse
and Integration (IRI), pages 122–125, July 2018.

[7] Mario Hozano, Alessandro Garcia, Nuno Antunes, Baldoino Fonseca,
and Evandro Costa. Smells are sensitive to developers! on the efficiency
of (un)guided customized detection. In 2017 IEEE/ACM 25th Interna-
tional Conference on Program Comprehension (ICPC), pages 110–120,
2017.

[8] Mário Hozano, Alessandro Garcia, Baldoino Fonseca, and Evandro
Costa. Are you smelling it? investigating how similar developers detect
code smells. Information and Software Technology, 93:130–146, 2018.

[9] R. Hussain and S. Zeadally. Autonomous cars: Research results,
issues, and future challenges. IEEE Communications Surveys Tutorials,
21(2):1275–1313, Secondquarter 2019.

[10] Konstantina Kourou, Themis P. Exarchos, Konstantinos P. Exarchos,
Michalis V. Karamouzis, and Dimitrios I. Fotiadis. Machine learning
applications in cancer prognosis and prediction. Computational and
Structural Biotechnology Journal, 13:8 – 17, 2015.

[11] Rodrigo Lima, Jairo Souza, Baldoino Fonseca, Leopoldo Teixeira,
Rohit Gheyi, Márcio Ribeiro, Alessandro Garcia, and Rafael de Mello.
Understanding and detecting harmful code. 2020.

[12] Daniel Oliveira, Wesley K G Assunção, Leonardo Souza, and Alessandro
Garcia. Applying Machine Learning to Customized Smell Detection :
A Multi-Project Study Omited due to blind review. (Ml).

[13] Thanis Paiva, Amanda Damasceno, Eduardo Figueiredo, and Cláudio
Sant’Anna. On the evaluation of code smells and detection tools. Journal
of Software Engineering Research and Development, 5(1):1–28, 2017.

[14] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE
Transactions on Knowledge and Data Engineering, 22(10):1345–1359,
2010.

[15] Fabiano Pecorelli, Fabio Palomba, Dario Di Nucci, and Andrea De
Lucia. Comparing heuristic and machine learning approaches for metric-
based code smell detection. IEEE International Conference on Program
Comprehension, 2019-May:93–104, 2019.

[16] Tushar Sharma, Vasiliki Efstathiou, Panos Louridas, and Diomidis
Spinellis. Code smell detection by deep direct-learning and transfer-
learning, 2021.

[17] Tushar Sharma and Diomidis Spinellis. A survey on software smells.
Journal of Systems and Software, 138:158–173, 2018.

[18] Anderson Uchôa, Caio Barbosa, Willian Oizumi, Publio Blenı́lio, Rafael
Lima, Alessandro Garcia, and Carla Bezerra. How does modern code
review impact software design degradation? an in-depth empirical study.
In 2020 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pages 511–522. IEEE, 2020.

[19] Zirui Wang, Zihang Dai, Barnabás Póczos, and Jaime Carbonell. Charac-
terizing and avoiding negative transfer. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 11293–
11302, 2019.


