
EasyChair Preprint
№ 9354

SAT is as Hard as Solving Homogeneous
Diophantine Equation of Degree Two

Frank Vega

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 17, 2023



SAT is as hard as solving Homogeneous
Diophantine Equation of Degree Two
Frank Vega !Ï

CopSonic, 1471 Route de Saint-Nauphary 82000 Montauban, France

Abstract
P versus NP is considered as one of the most important open problems in computer science. This
consists in knowing the answer of the following question: Is P equal to NP? It was essentially
mentioned in 1955 from a letter written by John Nash to the United States National Security Agency.
However, a precise statement of the P versus NP problem was introduced independently by Stephen
Cook and Leonid Levin. Since that date, all efforts to find a proof for this problem have failed.
In mathematics, a Diophantine equation is a polynomial equation, usually involving two or more
unknowns, such that the only solutions of interest are the integer ones. A homogeneous Diophantine
equation is a Diophantine equation that is defined by a homogeneous polynomial. Solving a
homogeneous Diophantine equation is generally a very difficult problem. However, homogeneous
Diophantine equations of degree two are considered easier to solve. We prove that this decision
problem is actually in NP-complete under the constraints that all solutions contain only positive
integers which are actually residues of modulo a single positive integer.

2012 ACM Subject Classification Theory of computation → Complexity classes; Theory of compu-
tation → Problems, reductions and completeness

Keywords and phrases complexity classes, boolean formula, completeness, polynomial time

1 Introduction

Let {0, 1}∗ be the infinite set of binary strings, we say that a language L1 ⊆ {0, 1}∗ is
polynomial time reducible to a language L2 ⊆ {0, 1}∗, written L1 ≤p L2, if there is a
polynomial time computable function f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗:

x ∈ L1 if and only if f(x) ∈ L2.

An important complexity class is NP–complete [5]. If L1 is a language such that L′ ≤p L1
for some L′ ∈ NP–complete, then L1 is NP–hard [3]. Moreover, if L1 ∈ NP , then L1 ∈
NP–complete [3]. A principal NP–complete problem is SAT [5]. An instance of SAT is a
Boolean formula ϕ which is composed of:

1. Boolean variables: x1, x2, . . . , xn;
2. Boolean connectives: Any Boolean function with one or two inputs and one output, such

as ∧(AND), ∨(OR), ⇁(NOT), ⇒(implication), ⇔(if and only if);
3. and parentheses.

A truth assignment for a Boolean formula ϕ is a set of values for the variables in ϕ. A
satisfying truth assignment is a truth assignment that causes ϕ to be evaluated as true. A
Boolean formula with a satisfying truth assignment is satisfiable. The problem SAT asks
whether a given Boolean formula is satisfiable [5]. We define a CNF Boolean formula using
the following terms:

A literal in a Boolean formula is an occurrence of a variable or its negation [3]. A Boolean
formula is in conjunctive normal form, or CNF , if it is expressed as an AND of clauses, each
of which is the OR of one or more literals [3]. A Boolean formula is in 3-conjunctive normal

mailto:vega.frank@gmail.com
https://uh-cu.academia.edu/FrankVega 
https://orcid.org/0000-0001-8210-4126


2 SAT is as hard as solving Homogeneous Diophantine Equation of Degree Two

form or 3CNF , if each clause has exactly three distinct literals [3]. For example, the Boolean
formula:

(x1∨ ⇁ x1∨ ⇁ x2) ∧ (x3 ∨ x2 ∨ x4) ∧ (⇁ x1∨ ⇁ x3∨ ⇁ x4)

is in 3CNF . The first of its three clauses is (x1∨ ⇁ x1∨ ⇁ x2), which contains the three
literals x1, ⇁ x1, and ⇁ x2. In computational complexity, not-all-equal 3-satisfiability
(NAE–3SAT) is an NP–complete variant of SAT over 3CNF Boolean formulas. NAE–3SAT
consists in knowing whether a Boolean formula ϕ in 3CNF has a truth assignment such that
for each clause at least one literal is true and at least one literal is false [5]. NAE–3SAT
remains NP–complete when all clauses are monotone (meaning that variables are never
negated), by Schaefer’s dichotomy theorem [11]. We know that the variant of XOR 2SAT

that uses the logic operator ⊕ (XOR) instead of ∨ (OR) within the clauses of 2CNF Boolean
formulas can be decided in polynomial time [7], [9]. Despite of its feasible computation, we
announce another problem very similar to this one but in NP–complete.

▶ Definition 1. Monotone Exact XOR 2SAT (EX2SAT)
INSTANCE: A Boolean formula φ in 2CNF with monotone clauses using logic operators

⊕ and a positive integer K.
QUESTION: Does φ has a truth assignment such that there are exactly K satisfied

clauses?

▶ Theorem 2. EX2SAT ∈ NP–complete.

A homogeneous Diophantine equation is a Diophantine equation that is defined by a
polynomial whose nonzero terms all have the same degree [4]. The degree of a term is the
sum of the exponents of the variables that appear in it, and thus is a non-negative integer [4].
In a general homogeneous Diophantine equations of degree two, we can reject an instance
when there is no solution reducing the equation modulo p. We define a decision problem:

▶ Definition 3. ZERO-ONE Homogeneous Diophantine Equation (HDE)
INSTANCE: A homogeneous Diophantine equation of degree two

P (x1, x2, . . . , xn) = B

with the unknowns x1, x2, . . . , xn and a positive integer B.
QUESTION: Does P (x1, x2, . . . , xn) = B has a solution u1, u2, . . . , un on {0, 1}n?

▶ Theorem 4. HDE ∈ NP–complete.

▶ Definition 5. Bounded Homogeneous Diophantine Equation (BHDE)
INSTANCE: A homogeneous Diophantine equation of degree two

P (x1, x2, . . . , xn) = B

with the unknowns x1, x2, . . . , xn and two positive integers B, M .
QUESTION: Does P (x1, x2, . . . , xn) = B has a solution u1, u2, . . . , un on integers such

that 0 ≤ ui < M for every 1 ≤ i ≤ n?

▶ Theorem 6. BHDE ∈ NP–complete.



F. Vega 3

2 Proof of Theorem 2

Proof. Let’s take a Boolean formula ϕ in 3CNF with n variables and m clauses when all
clauses are monotone. We iterate for each clause ci = (a ∨ b ∨ c) and create the conjunctive
normal form formula

di = (a ⊕ ai) ∧ (b ⊕ bi) ∧ (c ⊕ ci) ∧ (ai ⊕ bi) ∧ (ai ⊕ ci) ∧ (bi ⊕ ci)

where ai, bi, ci are new variables linked to the clause ci in ϕ. Note that, the clause ci has
exactly at least one true literal and at least one false literal if and only if di has exactly one
unsatisfied clause. Finally, we obtain a new formula

φ = d1 ∧ d2 ∧ d3 ∧ . . . ∧ dm

where there is not any repeated clause. In this way, we make a polynomial time reduction
from ϕ in NAE–3SAT to (φ, 5 · m) in EX2SAT . Certainly, ϕ ∈ NAE–3SAT if and only
if (φ, 5 · m) ∈ EX2SAT , where the new instance (φ, 5 · m) is polynomially bounded by
the bit-length of ϕ. At the end, we see that EX2SAT is trivially in NP , since we could
check when there are exactly K satisfied clauses for a single truth assignment in polynomial
time. ◀

3 Proof of Theorem 4

Proof. Let’s take a Boolean formula φ in XOR 2CNF with n variables and m clauses when
all clauses are monotone and a positive integer K. We iterate for each clause ci = (a ⊕ b)
and create the Homogeneous Diophantine Polynomial of degree two

P (xa, xb) = x2
a − 2 · xa · xb + x2

b

where xa, xb are variables linked to the positive literals a, b in the Boolean formula φ. When
the literals a, b are evaluated in {false, true}, then we assign the respective values {0, 1} to
the variables xa, xb (1 if it is true and 0 otherwise). Note that, the clause ci is satisfied if
and only if P (xa, xb) = 1 (otherwise P (xa, xb) = 0). Finally, we obtain a polynomial

P (x1, x2, . . . , xn) = P (xa, xb) + P (xc, xd) + . . . + P (xe, xf )

that is a Homogeneous Diophantine Polynomial of degree two. Indeed, K satisfied clauses in
φ for a truth assignment correspond to K distinct small pieces P (xi, xj) of the Homogeneous
Diophantine Polynomial of degree two equal to 1 after its evaluation on xi, xj . In this way,
we make a polynomial time reduction from (φ, K) in EX2SAT to (P (x1, x2, . . . , xn), K) in
HDE. Certainly, (φ, K) ∈ EX2SAT if and only if (P (x1, x2, . . . , xn), K) ∈ HDE, where
the new instance (P (x1, x2, . . . , xn), K) is polynomially bounded by the bit-length of (φ, K).
At the end, we see that HDE is trivially in NP , since we could check whether an evaluation
of x1, x2, . . . , xn in the solution u1, u2, . . . , un on {0, 1}n is equal to K in polynomial time. ◀

4 Proof of Theorem 6

Proof. This is trivial since we can make a polynomial time reduction from (P (x1, x2, . . . , xn), B)
in HDE to (P (x1, x2, . . . , xn), B, 2) in BHDE (i.e. using M = 2). Due to HDE is in
NP–complete, then BHDE is in NP–hard. Finally, we know that BHDE is in NP . Con-
sequently, BHDE is also in NP–complete. ◀



4 SAT is as hard as solving Homogeneous Diophantine Equation of Degree Two

5 Conclusions

We show the NP–completeness in the problem of deciding whether a homogeneous Diophantine
equations of degree 2 has a solution residues of modulo a single positive integer. The whole
reduction algorithm runs in polynomial time since we can reduce SAT to NAE–3SAT in
a feasible way: This is a trivial and well-known polynomial time reduction [11]. We could
transform this algorithm to an optimization problem that is algorithmically practical solving
P-Selective Sets on SAT instances that works better when both formulas have approximately
the same number of variables and clauses [6]. The whole algorithm is based on the problem
of quadratic optimization without constraints which is feasible when we do not restrict the
variables to be integers [2]. Certainly, the conversion of a clause ci = (a ⊕ b) into a small
piece of Homogeneous Diophantine Polynomial of degree two on residues of modulo 2

P (xa, xb) = x2
a − 2 · xa · xb + x2

b = (xa − xb)2

works for integers xa, xb ∈ {0, 1} and real values 0 ≤ xa ≤ 1 and 0 ≤ xb ≤ 1 at the same
time, since the expression (xa − xb)2 is maximized to the optimal value of 1 only on solutions
in {0, 1} for both cases according to our described and explained reduction.

We implement a software solution to this problem, specifically dealing with the problem
P–Selective–SAT, that runs feasible using the algorithm PRAXIS (PRincipal AXIS): PRAXIS
is a gradient-free local optimization via the “principal-axis method” of Richard Brent [2]. We
use the Scala programming language for making the whole reduction from SAT to NAE–3SAT
in a simple way [8]. Finally, we generate and run the Julia scripts that approximate using
PRAXIS to a very good optimization value for deciding which is one is the satisfiable
one between two Boolean formulas with approximately the same number of variables and
clauses [1]. The whole project was developed by the author and it is available in GitHub
on MIT License [12]. Note that, the performance of the Julia scripts is much better in our
application when we re-run for at least a second time (we can obtain a wrong or worsen value
from the first time, but a too much better result as long as you increase the number of running
times: remember we are using also a local optimization for bringing a faster and feasible
response) [10]. We use the DIMACS files as input (http://www.satcompetition.org/2009/
format-benchmarks2009.html) and test it from the well-known dataset SAT Benchmarks
(https://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/DIMACS/AIM/descr.html).

It is good to take into account that the Israel Journal of Mathematics and the 13th
International Conference on Algorithms and Complexity (CIAC 2023) were agreed that our
original reduction was correct, but they principally focused that the author did not mention
any practical application and so, the paper would have solely an educational purpose which
is not a sufficiently merit to be published. For that reason, this section and the developed
software has an important role in the goals of this manuscript.

References
1 Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach to

numerical computing. SIAM review, 59(1):65–98, 2017. doi:10.1137/141000671.
2 Richard P Brent. Algorithms for minimization without derivatives. Courier Corporation, 2013.
3 Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to

Algorithms. The MIT Press, 3rd edition, 2009.
4 David A Cox, John Little, and Donal O’shea. Using algebraic geometry, volume 185. Springer

Science & Business Media, 2006.
5 Michael R Garey and David S Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. San Francisco: W. H. Freeman and Company, 1 edition, 1979.

http://www.satcompetition.org/2009/format-benchmarks2009.html
http://www.satcompetition.org/2009/format-benchmarks2009.html
https://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/DIMACS/AIM/descr.html
https://doi.org/10.1137/141000671


F. Vega 5

6 Edith Hemaspaandra, Ashish V Naik, Mitsunori Ogihara, and Alan L Selman. P-selective sets
and reducing search to decision vs self-reducibility. Journal of Computer and System Sciences,
53(2):194–209, 1996. doi:10.1006/jcss.1996.0061.

7 Neil D Jones, Y Edmund Lien, and William T Laaser. New problems complete for nondetermin-
istic log space. Mathematical systems theory, 10(1):1–17, 1976. doi:10.1007/BF01683259.

8 Martin Odersky, Lex Spoon, and Bill Venners. Programming in scala. Artima Inc, 2008.
9 Omer Reingold. Undirected connectivity in log-space. Journal of the ACM (JACM), 55(4):1–24,

2008. doi:10.1145/1391289.1391291.
10 Neven Sajko. Why does my program’s performance vary so much from run to

run? Can it be fixed? (Julia Community). https://discourse.julialang.org/t/
why-does-my-programs-performance-vary-so-much-from-run-to-run-can-it-be-fixed/
53678, January 2021. Accessed: 2023-03-05.

11 Thomas J Schaefer. The complexity of satisfiability problems. In Proceedings of the tenth
annual ACM symposium on Theory of computing, pages 216–226, 1978.

12 Frank Vega. SAT Selective Solver (Github repository). https://github.com/
frankvegadelgado/sat, March 2023.

https://doi.org/10.1006/jcss.1996.0061
https://doi.org/10.1007/BF01683259
https://doi.org/10.1145/1391289.1391291
https://discourse.julialang.org/t/why-does-my-programs-performance-vary-so-much-from-run-to-run-can-it-be-fixed/53678
https://discourse.julialang.org/t/why-does-my-programs-performance-vary-so-much-from-run-to-run-can-it-be-fixed/53678
https://discourse.julialang.org/t/why-does-my-programs-performance-vary-so-much-from-run-to-run-can-it-be-fixed/53678
https://github.com/frankvegadelgado/sat
https://github.com/frankvegadelgado/sat

	1 Introduction
	2 Proof of Theorem 2
	3 Proof of Theorem 4
	4 Proof of Theorem 6
	5 Conclusions

