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Abstract— The recognition of big animals on the images 

with road scenes has received little attention in modern 

research. There are very few specialized data sets for this task. 

Popular open data sets contain many images of big animals, 

but the most part of them is not correspond to road scenes that 

is necessary for on-board vision systems of unmanned vehicles. 

The paper describes the preparation of such a specialized data 

set based on Google Open Images and COCO datasets. The 

resulting data set contains about 20000 images of big animals 

of 10 classes: “Bear”, “Fox”, “Dog”, “Horse”, “Goat”, 

“Sheep”, “Cow”, “Zebra”, “Elephant”, “Giraffe”. Deep 

learning approaches to detect these objects are researched in 

the paper. Authors trained and tested modern neural network 

architectures YOLOv3, RetinaNet R-50-FPN, Faster R-CNN 

R-50-FPN, Cascade RCNN R-50-FPN. To compare the 

approaches the mean average precision (mAP) was determined 

at IoU≥50%, also their speed was calculated for input tensor 

sizes 640x384x3. The highest quality metrics are demonstrated 

by architecture YOLOv3 as for ten classes (0.78 mAP) and one 

joint class (0.92 mAP)  detection with speed more 35 fps on 

NVidia Tesla V-100 32GB video card. At the same hardware, 

the RetinaNet R-50-FPN  architecture provided recognition 

speed of more than 44 fps and a 13% lower mAP. The software 

implementation was done using the Keras and PyTorch deep 

learning libraries and NVidia CUDA technology. The 

proposed data set and neural network approach to recognizing 

big animals on images have shown their effectiveness and can 

be used in the on-board vision systems of driverless cars or in 

driver assistant systems.  

Keywords— image recognition, detection, big animals, road 

scene, data set, deep learning, neural network, software.  

I. INTRODUCTION  

Reliable detection of big animals on images is a serious 

challenge for the computer vision systems of unmanned 

cars. This is especially important because of the relatively 

high number road accidents with wild animals[1].  

At the early stage, approaches to solving this problem 

were used detectors based on hand-crafted features: 

Haarfeatures, HOG (Histogram of oriented gradients), LBP 

(Local binary patterns) [2, 3]. However, such approaches 

were not reliable enough.  

Modern research in the field of big animals detection on 

images is associated, mainly, with the usage of deep 

convolutional neural networks. Moreover, the recognition 

of animals is investigated as a solution to the problems of 

classification [4], detection [5] and segmentation [6] of  

  

objects. Some works are devoted to the detection of animals 

on images obtained from unmanned aerial vehicles, for 

example, paper [7].  

The appearance of animals on the road is a relatively rare 

event, at the same time, sufficiently large and varied data sets 

are needed to train neural network systems for their detection.  

Table I shows the most popular modern open data sets 

containing images for the detection of big animals. There are 

also closed data sets created on the basis of images and videos 

from the Internet, for example, LADSet [3], but there is little 

information about their contents.  

The IWildCam [1], Animal Image [2], The Oxford-

IIITPet [3], and STL-10 [4] datasets have disadvantage that 

they contain a small number of labeled images in the training 

set and a limited number of animal classes. The largest 

ImageNet image database [5] currently contains many labeled 

images of a huge number of types and subtypes of big 

animals, but the vast majority of them do not apply to the road 

scene.  

TABLE I.   OPEN DATA SETS FOR BIG ANIMAL’S DETECTION PROBLEM  

Data sets  
Total amount of images in the 

data set  

IWildCam [1]  ~200k  

Animal Image [2]  3k  

The Oxford-IIIT-Pet [3]  7.5k  

STL-10 [4]  100k  

ImageNet [5]  14kk  

COCO [6]  330k  

Google’s Open Images [7]  1.9kk  

  

The COCO [6] and Google’s Open Images [7] data sets are 

more promising for use in the research area, and they contain 

not only bounding boxes, but also polygons of object 

segments. In the present article, in section III, we consider the 

formation on their basis of a data set for the detection of big 

animals on the road scene.  

In addition, special attention is paid to the use of modern 

object detectors based on deep convolutional neural networks 



 

 

 

and the results of experiments using the created data set are 

analyzed.  

II. PROBLEM DEFINITION  

This article solves the problem of detecting and classifying 

animals on the image with road scene.  We need to investigate 

methods based on deep neural networks for detection big 

animals of 10 widespread classes: “Bear”, “Fox”, “Dog”, 

“Horse”, “Goat”, “Sheep”, “Cow”, “Zebra”, “Elephant”, 

“Giraffe”. Also task includes the need to study the detection 

of an one joint class.  To train and test various neural network 

architectures appropriate data set should be generated. Then 

we need to determine the best architecture for this task with 

AP (average precision) [15] quality metric per class and 

overall mAP (mean average precision) [16]. Another 

important indicator is the inference time for one image 

(without taking into account the loading time of the image into 

memory and its preparation for supplying the network input).  

III. DATA SET PREPARATION  

To obtain specific results, we created our own data set 

based on COCO [13] and Google’s Open Images V5 [14]. The 

following classes of large animals were selected from COCO 

data set: “Dog”, “Horse”, “Sheep”, “Cow”, “Bear”, 

“Elephant”, “Zebra”, “Giraffe”. Although there are almost no 

representatives of the last 3 classes in the area under 

consideration, they were added to improve the quality of the 

future detector by their recognition on the road scene. Open 

Images V5 contains previous and additional two classes of 

large animals: deer, “fox” and “goat”. Annotations to images 

are stored in COCO format, i.e. are contained in the .json file.  

Let's consider in more detail which fields are included in it:  

   

x “Segmentation”: contains polygon’s coordinates; x 

“Area”: shows the area of object;  

x “IsCrowd”: shows how many objects are present in the 

image, ‘0’- one object, ‘1’- more than one;  

x “bbox”: contains the coordinates of ground truth 

bounding boxes;  

x “Category_id”: shows the supercategory to which the 

class belongs. In this case, all classes belong to the one 

category “animal”; x “id”: unique number of each image.  

Table II below provides summary statistics on the number 

of images of each class of developed data set. Its fragment  is 

shown on Fig. 1.  

IV. DEEP LEARNING APPROACH TO DETECTION  

To solve this problem, we chose four architectures of neural 

networks based on the successful experience of their 

application for solving similar tasks [17, 18]:  

1) YOLOv3 [19]: It is a one-stage neural network 

architecture that allows to achieve high-speed image 

processing with slightly lower quality. Feature 

extractor consists of 3x3 and 1x1 convolutional layers 

and shortcut connections. YOLOv3 [19] predicts 

boxes at 3 different scales using a similar concept to 

feature pyramid networks. For classification 

independent logistic classifier is used instead of 

softmax. Bounding box predictor uses anchor boxes.  

 

 TABLE II.   NUMBER OF IMAGES BY CLASS  

Classes  
Training sample  Testing sample  

Images  Boxes  Images  Boxes  

Dog  4385  5508  177  218  

Horse  2941  6587  128  273  

Sheep  1529  9509  65  361  

Cow  1968  8147  87  380  

Elephant  2143  5513  89  255  

Bear  960  1294  49  71  

Zebra  1916  5303  85  268  

Giraffe  2546  5131  101  232  

Fox  460  584  10  12  

Goat  274  599  14  34  

Total  19122  48175  805  2104  

  

  
Fig. 1. Fragment of proposed data set.  

2) RetinaNet R-50-FPN [20]: This one-stage network 

was developed to test a new loss function - the focal loss 

function, which was created to improve the effectiveness 

of training. Focal loss adds a factor (1 − pt)γ to the standard 



 

 

 

cross entropy criterion. Setting γ > 0 reduces the relative loss 

for wellclassified examples (pt > 0.5), putting more focus on 

hard, misclassified examples. The network is pretty simpe. It 

uses FPN (Feature pyramid network) on top of the ResNet-50 

[21] architecture as feature extractor.  

3) Faster R-CNN R-50-FPN [22]: This two-stage 

architecture uses ResNet-50 with FPN to extract feature maps. 

The difference between Faster R-CNN and Fast RCNN [23] 

is that region proposals are retrieved using the Region 

Proposal Network (RPN) [22] instead of using selective 

search which exceed network performance by about 10 times.  

4) Cascade R-CNN R-50-FPN [24]: Cascade R-CNN is a 

multi-stage object detection architecture (Fig. 2). A specialty 

of this network is cascaded bounding box regression, as shown 

in the figure. “I” is input image, ResNet-50 with FPN is 

backbone, “pool” region-wise feature extraction, “H” network 

head, “AB” animal bounding box, and “AC” animal 

classification. “AB0” is proposals in all architectures.  

  

  
Fig. 2. Architecture of Cascade R-CNN R-50-FPN neural network  

YOLOv3 was trained using the neural-network library 

Keras [25] (running on top of TensorFlow [26]). The rest of 

the architectures are using the PyTorch library [27]. For 

training on our data set, pre-trained models were used.  

The YOLOv3 model was pre-trained on ImageNet. We 

used only pre-trained backbone (DarkNet53)  [19]). Since we 

did not use the entire network, but only the backbone, the rest 

of the network is initialized with random weights. Because of 

this, during the first several epochs, the network trained with 

a frozen backbone to train randomly initialized weights first. 

Only after that the entire network is included in the training.  

The remaining models were pre-trained on the COCO 

2017 train [13]. Unlike YOLOv3, we used the whole 

pretrained network. However, since there are 80 classes in the 

COCO data set, before training, we removed the extra classes 

from the models.  

The training was carried out with input image tensor sizes 

640x384x3 and batch of 8 images. The learning rate was 

initially 0.01 and automatically decreased during the learning 

process if needed.  

V. EXPERIMENTAL RESULTS  

The calculations had performed using the NVidia CUDA 

technology on the graphics processor of the Tesla V100 

graphics card with 32GB, central processor Intel Xeon Gold 

6154 CPU, 16 Core with 3.00 GHz and 128 GB RAM.  

Table III shows the results of the animal detection and 

classification on test samples using YOLOv3, RetinaNet, Faster 

R-CNN and Cascade R-CNN architectures.  

  

TABLE III.  QUALITY OF BIG ANIMAL DETECTION ON TESTING SAMPLE (10 

CLASSES)  

Quality 

metric  

Architecture of deep neural network  

Cascade   
R-CNN   

R-50-FPN  

Faster   
R-CNN   

R-50-FPN  

RetinaNet  R-

50-FPN  
YOLOv3  

APdog  0.81  0.81  0.83  0.92  

APhorse  0.75  0.76  0.77  0.88  

APsheep  0.68  0.67  0.65  0.75  

APcow  0.65  0.66  0.60  0.80  

APelephant  0.82  0.83  0.84  0.88  

APbear  0.81  0.87  0.89  0.95  

APzebra  0.84  0.88  0.88  0.91  

APgiraffe  0.87  0.86  0.87  0.91  

APfox  0.21  0.18  0.19  0.18  

APgoat  0.39  0.44  0.41  0.58  

mAP  0.68  0.70  0.69  0.78  

  

As we can see from the table above, the YOLOv3 network 

has the best mAP score. As for the AP in each category, 

YOLOv3 is slightly inferior to the Cascade R-CNN network 

only in the fox class. In all other classes, YOLOv3 is 

noticeably ahead of other architectures. The rest of the 

architectures showed roughly the same results.  

RetinaNet has the highest speed (Table V). The slowest 

architecture is the Cascade R-CNN.  

We had also trained models for detecting animals as one 

joint class, that is, without classification. The quality of 

detection is presented in the Table IV.  

  

TABLE IV.   QUALITY OF BIG ANIMAL DETECTION ON TESTING SAMPLE  
(ONE JOINT CLASS)  

Quality 

metric  

Architecture of deep neural network  

Cascade  
R-CNN  

R-50-FPN  

Faster  
R-CNN  

R-50-FPN  

RetinaNet R-

50-FPN  
YOLOv3  

mAP   0.81  0.81  0.83  0.92  

  

When detecting without classification, the mAP is higher. 

YOLOv3 has the best result. The rest of the architecture is 

about the same level. Table V shows Fps (frame per second) 

performance metric for the architectures providing joint class 

detection.  

We can see that the speed has increased slightly in 

comparison of 10 classes detection. RetinaNet has the highest 

speed. The slowest architecture is Cascade R-CNN.  

  

  
TABLE V.  PERFORMANCE OF BIG ANIMAL DETECTION   

Performance 

metric  
Neural network architecture   



 

 

 

Cascade  
R-CNN  

R-50-FPN  

Faster  
R-CNN  

R-50-FPN  

RetinaNet R-

50-FPN  
YOLOv3  

Fps for one 

joint class 

detection  

27.5  40.9  50.0  39.8  

Fps for 10 

classes 

detection  

26.8  39.6  44.6  35.4  

  

VI. CONCLUSION  

The paper demonstrates research of deep learning 

approaches to detect 10 classes of big animals on the data 

set with about 20000 images: “Bear”, “Fox”, “Dog”, 

“Horse”, “Goat”, “Sheep”, “Cow”, “Zebra”, “Elephant”, 

“Giraffe”. Authors trained and tested several modern neural 

network architectures: YOLOv3, RetinaNet R-50-FPN, 

Faster RCNN R-50-FPN, Cascade R-CNN R-50-FPN. To 

compare the approaches the mAP metric was determined at 

IoU≥50%, also their speed was calculated for input tensor 

sizes 640x384x3. The highest quality metrics are 

demonstrated by architecture YOLOv3 as for ten classes 

(0.78 mAP) and one joint class (0.92 mAP) detection with 

speed more 35 fps on NVidia Tesla V-100 32GB video card. 

At the same hardware, the RetinaNet R-50-FPN 

architecture provided recognition speed of more than 44 fps 

and a 13% lower mAP. The proposed data set and neural 

network approach to recognizing big animals on images 

have shown their effectiveness and can be used in the on-

board vision systems of driverless cars or in driver assistant 

systems.  

For further study of this topic, it is necessary to increase 

the volume of training and testing samples for all classes 

especially for night and poorly lit road scenes. This can be 

done, for example, by using image augmentation or by the 

usual addition of new labeled images.   
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