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Abstract. Mechanical vibrations due to uneven terrains can signifi-
cantly impact the accuracy of computer vision systems installed on any
moving vehicle. In this study, we investigate the impact of mechanical
vibrations induced using artificial bumps in a controlled environment on
the performance of smart computer vision systems installed on an Elec-
trical powered Wheelchair (EPW). Besides, the impact of the vibrations
on the user’s health and comfort is quantified using the vertical accel-
eration of an Inertial Measurement Unit (IMU) sensor according to the
ISO standard 2631. The proposed smart computer vision system is a se-
mantic segmentation based on deep learning for pixels classification that
provides environmental cues for visually impaired users to facilitate safe
and independent navigation. In addition, it provides the EPW user with
the estimated distance to objects of interest. Results show that a high
level of vibrations can negatively impact the performance of the com-
puter vision system installed on powered wheelchairs. Also, high levels
of whole-body vibrations negatively impact the user’s health and com-
fort.

Keywords: Computer vision · Mechanical vibrations · Powered wheelchair
· Semantic segmentation.

1 Introduction

Smart computer vision systems based on Deep Learning (DL) are widely used
in semi-autonomous and fully autonomous systems for several purposes such as
object detection [2, 5], scene understanding [11, 16], and object interaction [15, 9].
A hostile environment can negatively impact the performance of these systems,
which may result in inaccurate human-system interaction. Mobile robots and
smart vehicles are susceptible to mechanical vibrations due to traversing rough
and uneven terrains. The ability to estimate the impact of vibration on the
system performance is the first step to mitigating undesirable vibrations. This
can enhance the system performance in challenging conditions; consequently,
better human-system interaction can be attained.

Marichal et al. [10] investigated the impact of vibration produced by a heli-
copter on a vision system. It is concluded that the quality of the captured images



is negatively impacted due to the undesirable movement of the camera . The
proposed semi-active frequency isolation technique has proved efficiency in im-
proving the captured images with low vibrations. Consequently, the subsequent
utilise of the captured images is enhanced. However, the proposed technique
needs prior knowledge of the vibration frequency in order for the system to be
able to isolate it.

Periu et al. [14] studied the impact of the vibrations on the performance of
obstacle detection using a LIght Detection And Ranging (LIDAR) sensor. The
LIDAR sensor is installed on a tractor for obstacle detection and guidance pur-
poses. Generally, agriculture vehicles do not have a suspension system, similar to
the EPW used in our experiments. The measurements of the LIDAR sensor can
be significantly impacted by mechanical vibrations induced during the operation
of the vehicle on rough and bumpy terrains. The study proposes supporting bars
and stabilising systems to counteract the vibrations impact. It is concluded that
with the increase in the tractor speed, the accuracy of the LIDAR decreases due
to high levels of mechanical vibrations; consequently, the position estimation er-
ror increase. Thus, the mean error distance and the standard deviation between
the actual and the detected position increase.

Vibrations due to ramps, damaged terrains, and uneven tarmacs are not
only impacting the accuracy of the smart systems installed on the powered
wheelchairs but also can impact the health and comfort of disabled users. This
paper investigates the impact of vibrations on a semantic segmentation system
used by visually impaired EPW users to understand their surroundings by pro-
viding environmental cues. Environmental cues can help visually impaired users
to locate objects in their surroundings [12]. The paper also investigates the vi-
bration impact on users’ health and comfort and how it can be related to the
impact on the computer vision systems of the powered wheelchair.

The paper is organised as follows: experimental setup is presented in section
2. Section 3 discusses the results and the outcomes of the study. The study is
concluded in section 4, where future work is highlighted.

2 Methodology

A powered wheelchair is driven for 11 meters on a carpet floor with and without
artificial bumps in a controlled indoor environment. The chosen distance repre-
sents the maximum straight route of the corridor without turnings. The bumps,
which are used to introduce the vibrations, are installed 1.5 meters apart (Fig. 1)
to keep the seven bumps equally distanced throughout the route length and to
provide enough space for the powered wheelchair to stabilise before the next
bump. Two kinds of data are collected: the accelerations using an IMU sensor
installed on the powered wheelchair seat and videos using a camera installed be-
neath the joystick (Fig. 2). The acceleration data has been processed for the two
scenarios (with and without bumps) to quantify the impact of whole-body vi-
brations on user’s health and comfort with respect to the ISO-2631 standard [8].
The two 21-seconds videos are annotated on the pixel level for the assessment of



the semantic segmentation system, with around 26.8 million pixels are annotated
for each video.

The extracted 65 ground truth images from each video are compared with the
corresponding predictions using a semantic segmentation system trained on data
from the same distribution (the same indoor environment) [12]. The proposed
system is based on Deep Lab Version 3 plus (DLV3+) [3] with some modifica-
tions [12]. The system [12] uses ResNet-18 [7] as its feature extraction network.
ResNet-18 is a perfect choice as it uses residual blocks that help the system to
process high-resolution images (960×540×3 pixels) using a deep network (many
layers) without losing information because of the vanishing gradients problem [1,
6]. Besides, using ResNet-18 as a base network for the DLV3+ has achieved
better results and processing speed [12] compared to the usage of ResNet-50
or Xception [4] base networks that are used in the original implementation of
DLV3+ [3].

Fig. 1: Artificial bumps to introduce vibrations fixed 1.5 meters apart.

3 Results

Results show the impact of undesirable vibration on both the semantic segmenta-
tion systems and the user’s health. Table 1 shows the impact of vibration on the
user’s health and comfort. The calculations are made according to the ISO-2631
standard [8]. Driving the powered wheelchair on the carpet floor presents nei-
ther a health risk nor discomfort to the user. The user of the powered wheelchair
weighs 95 Kg and is 184 cm tall. As users’ weight can impact the vibration lev-
els [13], further studies with different weight users will be implemented in future
work.



(a) Powered wheelchair
weight: 59.5 Kg.

(b) Intel® RealSense™
Depth Camera.

(c) Mounting disk with
IMU sensor.

Fig. 2: System installation for data collection.

On the other hand, the introduced bumps make the situation a potential
health risk and uncomfortable to the user. Fig. 3 shows the vertical acceleration
of both scenarios (with and without the introduced vibrations). The vertical
accelerations of the seven bumps can be clearly seen from the sudden changes in
the signal’s amplitude (blue signal). In contrast, the red signal, which represents
the ‘no vibration’ scenario, does not have any sudden changes in the amplitude.

The analysis of the whole body vibration of the two scenarios is comparable
with user 3 in [13], for which the user drives the powered wheelchair on the
carpet floor for the no vibration case and the tiled concrete for the vibration
case.

Table 1: Vibration impact on user’s health and comfort.
State No vibration With vibration

Assessment Health Comfort Health Comfort
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Result
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Potential
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Fig. 4 shows the detection performance of the system in the absence (first
column) and the presence (second column) of the introduced vibrations. It can
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Fig. 3: Vertical accelerations with and without the introduced vibrations.

be seen that the vibrations have dramatically impacted the detection of objects
such as the movable door handle, which the semantic segmentation system could
not detect due to the sudden vibrations. Generally, the ability of the semantic
segmentation system to classify the image pixels has degraded due to the intro-
duced vibrations. Qualitatively, the degradation can be seen in the fourth row
of Fig. 4, where the intense green and magenta colours indicate these differences
between the ground truth data and the system predictions. These pixels are
unannotated or misclassified. The green colour shows the unannotated pixels
which do not belong to objects of interest. At the same time, the magenta one
shows the misclassified objects.

Quantitatively, the first two rows of Table 2 shows the evaluation metrics
of the two scenarios (with and without the introduced vibrations). It can be
observed that the performance of the semantic segmentation system degrades as
a result of the introduced vibrations. Thus, it can be concluded from the results
that the performance of the semantic segmenting system can be negatively im-
pacted by the vibrations encountered while driving the powered wheelchair. Also,
the change in performance is directly proportional to the amount of vibration.
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Fig. 4: The impact of vibrations on the performance of the semantic
segmentation system. First column represents an image without vibrations
and second one represents an image with vibration.

To further investigate the vibration impact on the semantic system accuracy,
we segregate the images of the vibration dataset (when the artificial vibrations
are introduced, the second row of Table 2) into two categories (last two rows
of Table 2): images during the vibration incident and images before or after
the vibration incident. The first group of images represents the times when the



Table 2: Evaluation metrics with and without the introduced vibration on the
images level.

State Metrics
Global
Accuracy

Mean Ac-
curacy

Mean IoU
Weighted
IoU

Mean BF
score

Without vibrations
(65 images)

Mean 0.914 0.492 0.340 0.889 0.508
Std 0.040 0.061 0.034 0.051 0.075

With vibrations
(65 images)

Mean 0.877 0.475 0.309 0.842 0.472
Std 0.062 0.054 0.041 0.081 0.075

Without vibration
incident (50 images)

Mean 0.882 0.485 0.315 0.847 0.484
Std 0.057 0.051 0.038 0.078 0.071

During vibration

incident (15 images)
Mean 0.863 0.444 0.287 0.826 0.435
Std 0.078 0.056 0.047 0.092 0.080

powered wheelchair encountered a bump, such as sub-figures b and d in Fig. 5.
The second group of images represents the times when the powered wheelchair
does not encounter a bump, such as sub-figures a and c in Fig. 5. Then, the mean
and the standard deviation of accuracy, IoU, and Mean BF score on the level
of the images are calculated. The number of captured images during a vibration
incident due to a bump is 15. The remaining images (50) are considered as images
without vibration incident, although the total 65 images are captured together.
Table 2 shows the metrics of the two groups of images (last two rows).

a) b) c) d)

Fig. 5: Segregation method for the vibration dataset images.



It can be noticed that the portion of images from the vibration dataset that
are collected without the incident of external vibration (before or after the
bumps) has convergent metrics to the dataset which has been collected with-
out any external vibrations. At the same time, the portion of images that are
captured during the incident of vibration has been significantly impacted by the
vibrations resulting in the lowest accuracy amongst all datasets. This emphasises
the results and highlights the impact of vibrations on the semantic segmentation
system.

The study has been conducted on a Roma powered wheelchair that does
not have a suspension system, similar to the tractor used in [14]. A powered
wheelchair suspension, mainly used to dampen vibrations, may negatively impact
the system’s performance by introducing more vibrations to counter the external
ones. This will be investigated in the future work of this study.

4 Conclusion

In conclusion, we can anticipate a deterioration in the semantic segmentation
system performance when driving a powered wheelchair on types of terrains that
can cause health risks or discomfort for the user. Therefore, we recommend that
the developers and researchers consider the impact of vibrations on the computer
vision systems installed on powered wheelchairs. A shock absorption system or
a camera stabiliser holder can reduce the negative effects of the vibrations on
the system’s accuracy, as shown in the literature. On the other hand, reducing
the speed of the powered wheelchair can lower the potential risks to the users’
health and comfort. Producing an accurate semantic segmentation system is
beneficial for visually impaired disabled users to increase their independence.
Besides, it can allow the approval of using electrical powered wheelchairs for
those users who currently are not permitted to use powered wheelchairs due to
their disabilities. The future step of this study is to investigate and compare
the impact of vibrations on users’ health and the performance of smart vision
systems using powered wheelchairs with suspension systems.
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