
EasyChair Preprint
№ 11033

Least Information Redundancy Algorithm of
Printable Shellcode Encoding for x86

Yuanding Zhou

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 6, 2023

Least Information Redundancy Algorithm of
Printable Shellcode Encoding for x86

Yuanding Zhou1

Institute of Software Chinese Academy of Sciences yuanding2021@iscas.ac.cn

Abstract. Shellcode is a critical element in computer security that ex-
ploits vulnerabilities within software systems. Shellcode is written in
machine code and often designed to be compact in size, evading de-
tection by security software. Printable shellcode, specifically, comprises
only printable ASCII characters (0x21-0x7E), including letters, numbers,
and punctuation marks. The key advantage of printable shellcode lies
in its ability to be embedded within data streams, which may undergo
parsing or manipulation by applications that would otherwise filter or
modify non-printable characters. The prevalent methods for generating
printable shellcode involve encoding algorithms, such as the Riley Eller
algorithm (integrated into Metasploit). However, previous research on
printable shellcode has primarily focused on the availability and reduc-
tion of the encoded shellcode’s size, without adequately considering the
constraint imposed by the information entropy of the encoding algorithm
within the context of printable shellcode. In this paper, we demonstrate
the existence of minimal information redundancy in printable shellcode.
Subsequently, we introduce Lycan, an implementation of a novel algo-
rithm that surpasses previous encoding algorithms in terms of the size
efficiency of the encoded shellcode. Lycan achieves the least theoretical
information redundancy. Through experimentation, we observe that Ly-
can generates the most compact shellcode among existing tools when the
shellcode’s size exceeds a certain threshold.

Keywords: Shellcode · Encoding · x86

1 Introduction

Shellcode refers to a compact and executable piece of machine code that ex-
ploits vulnerabilities within a computer system, enabling the execution of arbi-
trary commands or the unauthorized access of the system. Typically written in
machine code, shellcode is specifically crafted to be injected into a vulnerable
program or system. Its small size presents a challenge for security software, as
it can evade detection.

An arbitrary byte can take any value ranging from 0x00 to 0xFF, encompass-
ing both printable and non-printable characters. The requirement for printable
shellcode arises from the fact that numerous computer systems and applications
tend to filter or alter non-printable characters, including control characters and

2 Yuanding Zhou

null bytes. Consequently, shellcode containing such characters may be subject
to filtering or modification, leading to its ineffectiveness.

One of the key advantages of printable shellcode lies in its capacity to cir-
cumvent specific security measures that aim to detect non-printable characters.
For instance, certain firewalls and intrusion detection systems (IDS) are config-
ured to monitor network traffic, searching for character sequences that match
commonly employed shellcode patterns. By utilizing printable shellcode, attack-
ers can elude these security measures, executing their malicious code without
detection.

A printable character is defined as a byte ranging from 0x21 to 0x7E, en-
compassing a total of 94 characters in a byte’s character set. While the turing-
completeness of printable bytes relies on the system’s Instruction Set Archi-
tecture (ISA), it is evident that the instruction set formed by printable bytes is
turing-complete on x86 systems, as demonstrated by existing printable shellcode
encoding algorithms [1,3,6]. In order to create printable shellcode, encoding algo-
rithms incorporate various modifications from different perspectives, employing
clever techniques.

Rix [1] introduced a technique for writing ia32 alphanumeric shellcodes. The
main contribution of this work was a comprehensive compilation of all the vi-
able alphanumeric instructions available in the ia32 Instruction Set Architecture
(ISA). Moreover, Rix devised an innovative and influential approach called the
XOR patching technique. This technique effectively resolved the challenge of
incorporating necessary non-printable bytes within the shellcode. Rix’s method-
ology played a pivotal role in enabling the development of ia32 alphanumeric
shellcodes.

Riley Eller [3] introduced an algorithm known as the SUB encoder, which was
designed to bypass MSB Data Filters. These filters are responsible for filtering
out or modifying any values that fall outside the range of 0x21 to 0x7E hex in
exploit code. The SUB encoder algorithm has gained significant popularity for
encoding non-printable shellcode in various scenarios and has been integrated
into the widely-used penetration testing tool, Metasploit. In essence, the SUB
encoder utilizes the SUB instruction to convert any byte into printable bytes by
performing up to three subtraction operations.

In contrast to the aforementioned algorithm, Zsolt Geczi and Péter Ivanyi [4]
proposed a distinct method for converting arbitrary instructions into a printable
instruction sequence. Their approach involved employing a technique known as
source-to-source conversion to translate the original shellcode into an equivalent
printable form. However, a notable drawback of their method is the inefficiency of
the translation algorithm. It utilizes multiple redundant instructions to achieve
the same effect as a single instruction, resulting in decreased efficiency.

Dhrumil Patel, Aditya Basu, and Anish Mathuria [7] have provided a com-
prehensive summary of the aforementioned methods and identified a significant
drawback shared by all encoded shellcodes: their larger size in comparison to
the original shellcodes. To address this issue, they have proposed an encoding
algorithm that converts every two consecutive bytes into three printable bytes.

Title Suppressed Due to Excessive Length 3

Additionally, they have developed a tool called "psc" that generates printable
shellcode. The generated shellcode includes a runtime looped decoder, capable
of transforming the encoded bytes back into the original shellcode.

In many scenarios, shellcode needs to be compact enough to fit into memory,
especially in cases like buffer overflow attacks. However, in more sophisticated
situations, attackers may not have the luxury of obtaining a reverse shell through
direct interaction. In such cases, large-sized shellcode is necessary, such as when
establishing a reverse shell via a TCP connection [15]. The existing approaches
mentioned below primarily focus on generating printable shellcode by encoding
the original shellcode or transforming instructions into equivalent printable ma-
chine code. Their main emphasis is on reducing the overall size of the printable
shellcode. However, they tend to overlook the information redundancy intro-
duced by the encoding algorithm, which can have a significant impact when the
size of the printable shellcode exceeds a certain threshold.

In this paper, we propose a novel encoding algorithm for generating print-
able shellcode and analyze it from a unique perspective. We demonstrate that
the least information redundancy can be achieved in the generation of printable
shellcode and introduce a corresponding tool, named Lycan, that theoretically
produces the most compact printable shellcode. The printable shellcode gener-
ated by Lycan includes a looped decoder written solely in printable bytes, as
well as an encoded shellcode that is also printable. Our algorithm encodes ev-
ery three consecutive bytes into four printable bytes, while the looped decoder
transforms the printable encoded bytes back into their original form at runtime.
Building upon this encoding algorithm, we present an efficient tool called Lycan,
which converts the original shellcode into its printable equivalents. Lycan out-
performs existing algorithms by generating the smallest printable shellcode size
when the original shellcode exceeds a certain threshold. Furthermore, we have
made Lycan available for public usage. Lycan and its tutorial can be found at
https://github.com/zeredy879/Lycan.

Our main research contributions are as below:

– Analyze printable shellcode encoding problem from perspective of informa-
tion theory and prove that the least redundancy of printable shellcode exists.

– Develop a corresponding tool called Lycan to implement the theoretically
least redundancy encoding algorithm and demonstrate the feasibility in real
world scenario.

The remaining sections of this paper are organized as follows. Section 2 pro-
vides an overview of the related work in the field of generating printable shell-
code. Section 3 presents our findings on the existence of minimal information
redundancy in printable shellcode. Section 4 outlines the details of our encod-
ing and decoding algorithms.Section 5 elaborates on the techniques employed
for writing printable shellcode and provides implementation details of our tool,
Lycan. Section 6 presents the validation process and performance evaluation of
Lycan. Finally, Section 7 concludes our work and summarizes the key contribu-
tions of this research.

https://github.com/zeredy879/Lycan

4 Yuanding Zhou

2 Realated work

2.1 Riley Eller Algorithm

Riley Eller [3] introduced an algorithm that enables the encoding of any binary
data sequence into ASCII characters. When interpreted by an Intel processor,
these characters can decode the original sequence and execute it. The algorithm
follows a specific process: it first moves the stack pointer just past the ASCII
code, then decodes 32 bits of the original sequence at a time and pushes that
value onto the stack. In summary, the Riley Eller algorithm converts arbitrary
DWORD values into printable bytes by utilizing finite SUB instructions that
leverage printable immediate data subtraction.

Metasploit [2] integrates the Riley Eller algorithm to SUB encoder. The SUB
encoder is a dynamic polymorphic shellcode obfuscation technique, implemented
as part of the Metasploit Framework. It applies a sequence of byte subtraction op-
erations to individual shellcode values in order to generate new, non-sequential,
and non-deterministic values. This encoded shellcode is observed to be stealth-
ier compared to the original version, in terms of evading intrusion detection and
prevention mechanisms. Despite the effectiveness of the SUB encoder and other
Metasploit encoders in enhancing payload obfuscation, there remains a constant
threat of detection and counter-measures by security systems [5]. Hence, further
research is crucial to develop even more effective and efficient encoding methods
for better payload protection in penetration testing and ethical hacking contexts.

The SUB encoder includes a fixed 29 byte long printable code snippet. As-
sume that the size of original shellcode is represented by n, the output printable
shellcode’s size can be calculated as 29 + 16⌈n/4⌉.

2.2 Zsolt Geczi and Peter Ivanyi’s Method

Zsolt Geczi and Peter Ivanyi [4] propose a technique for automatically trans-
lating non-printable shellcodes into printable byte codes to bypass filters. Their
approach, known as source-to-source conversion, involves establishing a compila-
tion set that maps each instruction to a printable equivalent. Printable shellcode
is then generated using these mapping rules. For example, the instruction ’MOV
EAX, EBX’ has a printable equivalent of ’PUSH EBX; POP EAX’.

While their method is context-free and convenient to extend, it suffers from
a significant drawback: the resulting shellcode has a much larger size compared
to existing algorithms. As a result, utilizing this output shellcode as an exploit
may fail if the buffer overflow size is insufficient to accommodate the expanded
exploit code.

Although the exact details of the source-to-source conversion method pro-
posed by Zsolt Geczi and Peter Ivanyi are not publicly available, based on the
example they provided [4], it can be inferred that their method generates sig-
nificantly larger shellcode compared to existing works. In the only examples
available, their method transformed a 38-byte shellcode into a printable shell-
code of 9837 bytes. This substantial increase in size indicates that their method
may not be efficient in terms of generating compact printable shellcode.

Title Suppressed Due to Excessive Length 5

2.3 Printable Shellcode Compiler

Dhrumil Patel, Aditya Basu, and Anish Mathuria [7] propose a novel encoding
scheme and a companion tool called psc (Printable Shellcode Compiler) designed
to generate compact printable shellcode. One notable feature of psc is its uti-
lization of a runtime looped decoder, similar to the approaches employed by
Alpha3 [8] and Alpha Freedom [10].

In their encoding scheme, two consecutive bytes of the original shellcode are
encoded into three printable bytes. During runtime, a decoding loop is employed
to take these three successive bytes and transform them back into the original
two bytes of the shellcode. This encoding and decoding process ensures that
the generated printable shellcode is compact and retains the functionality of the
original shellcode.

The psc tool includes a fixed 146 byte long decoder. Assume that the size of
original shellcode is represented by n, then the output printable shellcode’s size
can be calculated as 146 + 3⌈n/2⌉.

3 Proof of least redundancy

3.1 The least redundancy of encoding shellcode

The original shellcode byte ranges from 0x00 to 0xFF. Assume that X represents
original shellcode byte, thus the entropy of X is :

H(X) = −
∑
x

p(x) log2 p(x) =

−
256∑
i=1

1

256
log2

1

256
= log2 256 = 8 bits

(1)

The printable byte ranges from 0x21 to 0x7E. Assume that E represents
printable byte, thus the entropy of E is:

H(E) = −
∑
e

p(e) log2 p(e) =

−
94∑
i=1

1

94
log2

1

94
= log2 94 bits

(2)

In the shellcode encoding circumstance, the fundamental encoding unit is a
single byte. Assume that Y represents every encoded shellcode byte, thus the
entropy of Y must be less than or equal to the entropy of E, otherwise the
printable byte set is not sufficient to represent encoded bytes:

H(Y) ⩽ H(E) = log2 94 bits (3)

6 Yuanding Zhou

Since the H(Y) also represents the number of bits of single byte used to
encode a printable character, so that H(Y) must be an integer:

6 bits = log2 64 bits < H(E) =

log2 94 bits < log2 128 bits = 7 bits
(4)

Implies:

H(Y) ⩽ 6 bits < log2 94 bits (5)

Since the fundamental unit of encoding algorithm is a single byte, thus as-
sume that encoding algorithm transforms m bytes into n bytes. For information
loss is not allowed during the encoding process, hence:

8×m = H(X)×m ⩽ H(Y)× n ⩽ 6× n bits (6)

equivalent to:
m

n
⩽ 0.75 (7)

The information redundancy D of encoding algorithm for printable shellcode
must have:

D =
n−m

n
⩾ 0.25 (8)

3.2 Analysis

In the analysis of existing algorithms in section 2 from the perspective of infor-
mation redundancy of the encoding algorithm, we observe that the SUB encoder
has an information redundancy of 0.75, indicating a relatively higher level of re-
dundancy. On the other hand, Alpha3 achieves an information redundancy of
0.5, while psc achieves a lower redundancy of 0.33. However, none of these algo-
rithms achieve the minimum theoretically information redundancy for printable
shellcode.

To address this limitation, we propose our algorithm, which aims to achieve
the theoretically minimal information redundancy for generating printable shell-
code. By minimizing redundancy, we can generate more compact and efficient
printable shellcode. The details of our algorithm and its implications will be
discussed in subsequent sections.

4 Algorithm

4.1 Encoding Algorithm

Our encoding algorithm’ scheme is: encode every 3 successive bytes into 4 succes-
sive printable bytes. The detailed encoding algorithm is demonstrated as follow.
The symbol ’≪’, ’≫’, ’&’ and ’⊕’ represent left shift, right shift, logic AND, and
logic XOR.

Title Suppressed Due to Excessive Length 7

1. Check if the size of original shellcode (S) is divisible by 3, otherwise com-
plement original shellcode with byte 0x90 (nop instruction) until the size of
shellcode can be divisible by 3.

2. Take 3 successive bytes (24bits) (name them A1 to A3), then divide these
24 bits into 4 blocks. Every block contains 6 bits.

3. Complete each block to a single byte with 2 zero bit at significant position
of a byte then form 4 bytes (name them B1 to B4). This step is described
as following operations.
(a) B1 = A1 ≫ 2
(b) B2 = ((A1 ≪ 4) & 0x30) + (A2 ≫ 4)
(c) B3 = ((A2 ≪ 2) & 0x3C) + (A3 ≫ 6)
(d) B4 = A3 & 0x3F

4. Add 0x3F to each byte above. These 4 bytes (name them C1 to C4) constitute
a group of output.This step is described as following operation.
∗ Ci = Bi + 0x3F

5. Go back to step 2) if shellcode still has remain bytes.
6. Append 0x26 as a end token in the end of output.

The encoding process, as illustrated in Fig. 1, follows the described algorithm.
Since every byte of B1 to B4 falls within range of 0x00 to 0x3F, thus every byte
of C1 to C4 ranges from 0x3F to 0x7E. This range corresponds to a subset
of printable ASCII characters (0x21 - 0x7E), which ensures that the encoded
shellcode remains printable.

Fig. 1: Encoding algorithm - Every 3 successive bytes are encoded into 4 printable
bytes, and each byte of encoded sequence falls within the printable ASCII range
of 0x21 to 0x7E. The end token in the end of encoded sequence serves as a
marker to indicate the end of the encoded sequence when decoding it. The entire
sequence of encoded bytes, including the end token, remains within the printable
ASCII character set, ensuring that the shellcode is fully printable.

Using the byte 0x3F as part of the encoding process offers several advantages.
Firstly, 0x3F can be used as a mapping mechanism to represent the range from

8 Yuanding Zhou

0x00 to 0x3F (inclusive) within a subset of printable bytes. Secondly, by using
0x3F as a special byte within the encoding process, the decoder can more effi-
ciently restore the encoded bytes. The convenience and effectiveness of using the
0x3F byte in the encoding algorithm will be further demonstrated and discussed
in Section 4.2 and Section 5.

The end token byte 0x26 is used to mark the end of the encoded output
bytes. In fact, any byte within the interval 0x21-0x3E can be used as end token,
as this range is separate from the range 0x3F-0x7E, ensuring that the end token
byte is distinct from the encoded bytes.

4.2 Decoding Algorithm

In correspondence with the encoding algorithm, the decoding algorithm trans-
forms every 4 successive encoded bytes into 3 original successive bytes. The
detailed decoding algorithm is demonstrated as follows.

1. Try to take 4 successive bytes (32bits) (name them C1 to C4) from encoded
bytes. If meet the end token byte, go to step 5).

2. Add 1 to every byte of C1 to C4, then xor each byte with 0x3F byte. This
step is described as following operation (name the output bytes B1 to B4).
– Bi = (Ci + 1)⊕ 0x3F

3. Restore original bytes (name them A1 to A3) through following operations.
(a) A1 = (B1 ≪ 2)⊕ (B2 ≫ 4)
(b) A2 = (B2 ≪ 4)⊕ (B3 ≫ 2)
(c) A3 = (B3 ≪ 6)⊕B4

4. Bytes A1 to A3 constitute output, go to step 1).
5. Output bytes form the original shellcode S, and encoding process terminates.

Fig. 2: Decoding algorithm

The decoding process, depicted in Figure 2, employs bitwise operations to
restore the original shellcode bit by bit. To optimize the size of the decoder, we

Title Suppressed Due to Excessive Length 9

have minimized the number of bitwise operations involved. Specifically, we have
combined steps 2) and 3) in the decoding algorithm implementation, resulting
in a more efficient process. The implementation details of this optimization will
be elaborated on in the section5.

5 Implementation

The implementation of Lycan involves two primary components: encoding and
decoding. During the encoding process, the original shellcode is transformed into
printable encoded bytes using the algorithm described in the encoding algorithm
section. The decoding process occurs at runtime and is responsible for transform-
ing the encoded bytes back into the original shellcode. This is achieved through
a run-time printable decoder, which is implemented using handwritten x86 as-
sembly code. The run-time decoder is designed to be printable and context-free,
ensuring compatibility with any x86 shellcode.

During the encoding process, we utilize a Python script to facilitate the
transformation from raw shellcode to printable form. The resulting output of
the encoding process is a combination of the printable decoder and the encoded
shellcode.

During the decoding process, the printable decoder is responsible for recov-
ering the original shellcode from the encoded bytes. Once all the encoded bytes
have been recovered and transformed, the program proceeds to write the de-
coded shellcode back into memory. This process allows us to effectively write
non-printable shellcode using printable bytes and achieve the desired function-
ality while still maintaining the printable nature of the shellcode.

In this section we will demonstrate the process of contructing this print-
able decoder and explain some tricks and trade-offs used to manually write the
printable decoder.

5.1 Overview of the printable decoder

Listing 1.1 describes the printable decoder architecture layout before adding xor
patching instructions.

setup:
pusha
mov encoded , %esi
mov %esi , %edi
...

looper:
...
jne looper

_end:
popa

encoded:
...

10 Yuanding Zhou

; encoded bytes

Listing 1.1: Architecture of the printable decoder. Setup section is responsible
for saving the context of registers and initializing the registers used during the
decoding process used for decoding, section looper contains the main loop of the
decoder and is responsible for recovering original shellcode from encoded bytes,
_end section is used to restore the registers’ context that was saved in the setup
section, encoded section is used to store docoded bytes

In order to preserve the context before the decoder runs, we use instruction
PUSHA in section setup and POPA in section _end to save all the registers’
context at run-time. Notice that the original shellcode is shorter than encoded
bytes, so we don’t need extra place to save recovered shellcode, which indicates
the decoding algorithm is an In-place algorithm.

Listing 1.2 describes the setup phase of the printable decoder.

setup:
pusha
pusha
push %eax
pop %esi
push $0x5E
pop %eax
push %eax
pop %ecx
xor $0x5E , %al
push %eax
pop %ebp
dec %eax
xor $0x5E , %al
push %eax
pop %edx
; edx = 0xFFFFFFA1 , ecx = 0x5E , ebp = 0

Listing 1.2: Setup phase. This sections saves the context of registers and store
special values into registers used for xor patching section 5.3.

The setup phase in the printable decoder serves the purpose of preserving the
registers’ context and initializing the necessary constants for the subsequent xor
patching and looper phases. In this context, it is assumed that the start address
of the entire shellcode is stored in register EAX 1.

In the xor patching technique, two constants, namely byte 0x5E and byte
0xA1, are required to transform arbitrary bytes into printable bytes. The selec-
tion of these specific bytes is based on their suitability for xor patching opera-
tions. Through an analysis of the entire byte set, it was determined that using the
pair (0x5E, 0xA1) requires the fewest instructions for xor patching non-printable

1 the choice of register used for marking encoded bytes can vary. Register EAX is used
here as an illustration to showcase the functionality and feasibility of Lycan

Title Suppressed Due to Excessive Length 11

bytes. Additionally, generating these constants is straightforward, as 0x5E is a
printable byte and the logical XOR operation between 0x5E and 0xA1 yields
0xFF, which can be easily obtained by decrementing a zero-initialized register.

Furthermore, the constant zero value is stored in register EBP for the purpose
of efficiently clearing registers to zero using the PUSH and POP instructions.
This allows for a convenient and concise way to initialize registers to zero without
requiring additional instructions.

Fig. 3 describes the looper phase workflow of the printable decoder.

Fig. 3: Looper phase workflow. Register ESI represents read pointer of the en-
coded bytes, EDI represents write pointer of the recovered shellcode. After looper
encounters the end token, execution flow of looper ends and jump to recovered
shellcode immediately.

During the looper phase of the printable decoder, specific registers are as-
signed specific roles to facilitate the recovery of the original shellcode from the
encoded bytes. Register ESI serves as the read pointer, indicating the location
of the encoded bytes, while register EDI acts as the write pointer, indicating
where the recovered shellcode will be stored. In the initial state, both ESI and
EDI are set to the same value since the decoding algorithm operates in-place,
and the recovery process for each group of encoded bytes is independent.

To maximize utilization of the information entropy carried by each byte, the
decoding process avoids performing bitwise operations on a register multiple
times. Instead, it extracts the effective bits of every four successive bytes into a

12 Yuanding Zhou

single register, namely EAX. By doing so, the original shellcode can be recovered
byte by byte and written back to memory. The looper iterates through each group
of encoded bytes, recovering them into the original shellcode and storing them
in memory until the end mark token is encountered. By recovering and storing
the shellcode byte by byte, the looper phase effectively reconstructs the original
shellcode from the encoded bytes using the runtime printable decoder.

The final step in making the printable decoder fully printable is the xor
patching phase 5.3. This phase involves xoring every non-printable byte in the
looper phase with specific values to transform them into printable bytes. To
achieve this, the offset of all the non-printable bytes needs to be determined in
advance, ensuring that the xor patching instructions remain printable.

Once the printable decoder has successfully recovered the complete shellcode,
the control flow is transferred to the shellcode itself, allowing the original shell-
code to execute. This ensures the seamless execution of the desired functionality
encoded within the shellcode.

5.2 Assignment operation of register

To overcome the limitations of using non-printable instructions in the printable
shellcode, we employ stack-related instructions for assignment operations. In-
stead of using a traditional assignment instruction like MOV, we leverage PUSH
and POP instructions to achieve the desired assignment.

For instance, consider the assignment operation from register EAX to EBX.
In a normal context, this would be accomplished using a MOV instruction. How-
ever, in the printable shellcode, the raw bytes of the MOV instruction contain
non-printable bytes, rendering it unusable. Therefore, we resort to an alterna-
tive approach, as demonstrated in Listing 1.3, where we utilize PUSH and POP
instructions to perform the assignment.

By pushing the value of EAX onto the stack and then popping it into EBX,
we effectively transfer the value from one register to another. This technique
allows us to accomplish assignment operations using printable instructions and
ensures the compatibility of the printable shellcode with the target system.

push %eax ; 0x50
pop %ebx ; 0x5B
equivalent to ‘mov %eax , %ebx ‘

Listing 1.3: Assuginment from EAX to EBX

When it comes to assigning arbitrary immediate data to a register, the print-
able shellcode faces additional challenges. While SUB encoder utilizes multiple
SUB instructions to convert the zero value of a register to arbitrary 4 bytes,
our decoder focuses on single-byte assignment operations rather than arbitrary
4 bytes. This is because the xor patching technique used in our decoder only
operates on a single byte.

To address the assignment of specific bytes, such as 0x00 and 0xFF, to regis-
ters AL and BL, we can utilize printable instructions. Listing 1.4 demonstrates
how to achieve this.

Title Suppressed Due to Excessive Length 13

push $0x50 ; 0x6A 0x50
pop %eax ; 0x58
xor %al, $0x50 ; 0x34 0x50
; assign 0x00 to %al through
; xoring same data

push %eax ; 0x50
pop %ebx ; 0x5B
dec %ebx ; 0x4B
; assign 0xFF to %bl through
; decrement 0x00

Listing 1.4: Assign 0x00 and 0xFF to register AL and BL

5.3 xor patching technique

Xor patching technique, as described by Rix, is used to write non-printable
instructions by XORing the non-printable byte with a printable byte in memory.
To successfully perform xor patching, it is necessary to have knowledge of the
address layout of the shellcode, including the start address of the shellcode and
the offset of the non-printable byte that needs to be patched.

Listing 1.5 provides a template instruction for xor patching in our decoder:

xor %dl, 0x3D(%esi) ; 0x30 0x56 0x3D

Listing 1.5: Example of xor patching technique

In the example provided in Listing 1.5, a representative xor patching instruc-
tion is shown. In the context of our decoder, the register %dl is being assigned
the value 0xA1, and the value 0x3D (%esi) represents the offset between register
ESI and the non-printable byte that needs to be xor patched.

The key point of xor patching is to ensure that the offset byte (0x3D) is print-
able. This requires careful arrangement of the offset in our decoder to ensure that
it falls within the range of printable bytes (0x21-0x7E). However, this compro-
mise on the size of the printable decoder means that we may need to include
some unused bytes to ensure that the offset remains within the printable byte
range. This trade-off between the size of the printable decoder and the printable
range of the offset is necessary to ensure that the xor patching technique can be
effectively applied to write non-printable instructions using printable bytes.

6 Evaluation

We evaluate Lycan’s performance from 2 perspectives: encoding bytes length and
the total bytes length. We compare Lycan with Riley Eller’s SUB encoder [2],
Jan Wever’s Alpha3 [8] and Basu’s psc [7]. Fig 4 describes the comparison of
encoded bytes length and Fig 5 describes the comparison of total bytes length.

14 Yuanding Zhou

0 100 200 300 400 500

0

500

1,000

1,500

2,000

shellcode length(bytes)

en
co

de
d

le
ng

th
(b

yt
es

)

SUB encoder
Alpha3

psc
Lycan

Fig. 4: Encoded bytes length

0 100 200 300 400 500

0

500

1,000

1,500

2,000

shellcode length(bytes)

to
ta

ll
en

gt
h(

by
te

s)

SUB encoder
Alpha3

psc
Lycan

Fig. 5: Total bytes length

The encoded byte size of the different encoding algorithms exhibit a linear
correlation with the size of the original shellcode, as mentioned in the previous
section. Lycan, with its minimal information redundancy, outperforms the other
algorithms in terms of the length of the encoded bytes, as illustrated in Figure
4 .

It is important to note that the total byte length depends on both the encod-
ing algorithm and the length of the decoder, as all the algorithms utilize fixed-
length decoders. As depicted in Figure 5 , when the length of the shellcode is less
than 256, psc and Alpha3 generate shorter printable shellcode. However, when
the shellcode length exceeds 256, Lycan demonstrates superior performance and
produces the shortest printable shellcode.

This comparison highlights the advantage of Lycan in minimizing the length
of the encoded shellcode, making it a favorable choice for scenarios where the
size of the shellcode is a critical factor.

The comparison presented in Table 1 highlights the superior performance
of Lycan in scenarios where the original shellcode size is significant. This makes
Lycan a valuable tool for encoding and generating p rintable shellcode, especially
for larger payloads.

7 Conclusion

Printable shellcode encoding algorithms are widely used to generate general shell-
code in various scenarios. In this paper, we demonstrate that the least informa-
tion redundancy of printable shellcode encoding algorithm is 0.75 theoretically
and present corresponding algorithm which encodes 3 successive bytes to 4 bytes.
Our algorithm generates the shortest encoded bytes among all the existing algo-
rithms. Then we present Lycan – a tool that implements the algorithm. However
due to unavoidable expenses of the printable decoder, the printable shellcode
generated by Lycan is longer than SUB encoder and Alpha3 when the length of
original shellcode is too short. Lycan’s performance is best among all the algo-

Title Suppressed Due to Excessive Length 15

Shellcode Original SUB encoder Alpha3 psc Lycan
execve(/bin/sh) [11] 20 109 68 176 216

INSERTION
Encoder [12]
/ Decoder

execve(/bin/sh)

88 381 204 278 308

OpenSSL
Encrypt

(aes256cbc)
Files (test.txt) [13]

185 781 398 425 436

chmod 777
(/etc/passwd +
/etc/shadow) +
Add Root User
(ALI/ALI) To
/etc/passwd +

Execute /bin/sh [14]

378 1549 784 713 692

Reverse (127.0.0.1
:53/UDP) Shell
(/bin/sh) [15]

668 2701 1364 1148 1080

Table 1: The real world shellcode performance of distinct encoding tools

rithms when the original shellcode’s size exceeds the threshold 252. In the future
work, we will extend our tool to work on different ISA.

References

1. Rix. Writing IA32 alphanumeric shellcode. Phrack, 57(15), 2001.
http://phrack.org/issues/57/15.html.

2. Metasploit sub encoder. https://www.rapid7.com/db/modules/encoder
/x86/opt_sub/.

3. Riley Eller. Bypassing msb data filters for buffer over-flow exploits on intel plat-
forms. http://julianor. tripod.com/bc/bypass-msb.txt.

4. Géczi, Zsolt, and Peter Iványi. "Automatic translation of assembly shellcodes to
printable byte codes." Pollack Periodica 13.1 (2018): 3-20.

5. Polychronakis, Michalis, Kostas G. Anagnostakis, and Evangelos P. Markatos.
"Comprehensive shellcode detection using runtime heuristics." Proceedings of the
26th Annual Computer Security Applications Conference. 2010.

6. Ding, Wenbiao, et al. "Automatic construction of printable return-oriented pro-
gramming payload." 2014 9th International Conference on Malicious and Unwanted
Software: The Americas (MALWARE). IEEE, 2014.

7. Patel, Dhrumil, Aditya Basu, and Anish Mathuria. "Automatic generation of com-
pact printable shellcodes for x86." Proceedings of the 14th USENIX Conference on
Offensive Technologies. 2020.

8. B.J. Wever. ALPHA3. https://github.com/SkyLined/alpha3

16 Yuanding Zhou

9. Mason, Joshua, et al. "English shellcode." Proceedings of the 16th ACM conference
on Computer and communications security. 2009.

10. Basu, Aditya, Anish Mathuria, and Nagendra Chowdary. "Automatic generation
of compact alphanumeric shellcodes for x86." Information Systems Security: 10th
International Conference, ICISS 2014, Hyderabad, India, December 16-20, 2014,
Proceedings 10. Springer International Publishing, 2014.

11. Linux/x86 - execve(/bin/sh) Shellcode
https://www.exploit-db.com/shellcodes/46809

12. Linux/x86 - INSERTION Encoder / Decoder execve(/bin/sh)
https://www.exploit-db.com/shellcodes/46519

13. Linux/x86 - OpenSSL Encrypt (aes256cbc) Files (test.txt) Shellcode
https://www.exploit-db.com/shellcodes/46791

14. Linux/x86 - chmod 777 (/etc/passwd + /etc/shadow) + Add Root User (ALI/ALI)
To /etc/passwd + Execute /bin/sh Shellcode
https://www.exploit-db.com/shellcodes/34262

15. Linux/x86 - Reverse (127.0.0.1:53/UDP) Shell (/bin/sh) Shellcode
https://www.exploit-db.com/shellcodes/42208

	Least Information Redundancy Algorithm of Printable Shellcode Encoding for x86

