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Abstract—This study investigates the efficacy of bio-inspired
evolutionary algorithms for designing quantum circuits that
proficiently generate highly entangled quantum states, a crucial
prerequisite for quantum computing. By employing an evolu-
tionary algorithm, quantum circuits are optimized for entangle-
ment generation, with the Meyer-Wallach entanglement measure
serving as the fitness function. The research highlights that an
optimal mutation rate, balancing exploration and exploitation,
can effectively augment the entanglement capabilities of three-
, four-, and five-qubit quantum circuits. Additionally, the study
unveils that increasing the number of gates in the quantum circuit
inversely affects its entanglement capability. These findings offer
valuable insights into the trade-off between circuit complexity
and performance, bearing significant implications for the design
of quantum circuits in various quantum computing applications.
The outcomes of this study hold the potential to substantially
contribute to the advancement of quantum computing technology.

Index Terms—Quantum circuits, Quantum Gates, Entangle-
ment, Evolutionary Algorithms

I. SCOPE AND MOTIVATION

Quantum computing is an innovative field of computer
science that utilizes the principles of quantum mechanics to
perform certain computations faster and more efficiently than
classical computers [1]. The use of quantum bits, or qubits,
which can exist in multiple states simultaneously, is a key
aspect of quantum computing that enables it to solve complex
computational problems [1]. The intersection of quantum
computing and artificial intelligence is an area of research
that has the potential to revolutionize various industries and
scientific fields. Quantum machine learning algorithms and
evolutionary computation using evolutionary algorithms are
emerging technologies that are being actively explored [2]–
[5]. These technologies have the potential to accelerate the

optimization process and improve the overall performance
of computational algorithms. Further research in these areas
is expected to drive the development of more efficient and
effective computing technologies, with potential applications
in various industries and scientific fields.

Evolutionary quantum computation (EQC) is an emerging
paradigm that merges evolutionary algorithms with quantum
computing to solve complex optimization problems. EQC has
shown great potential in a variety of applications, including
entanglement measurement and quantum circuit optimization
[6]–[8]. The main goal of this work is to provide a comprehen-
sive review of recent developments in EQC with addressing
the problem of maximal entanglement. This work will discuss
the key concepts of quantum entanglement and evolutionary
algorithms, and how they are integrated to develop EQC-
based evolutionary algorithms for entanglement measurement.
The work concludes with a discussion of the future prospects
of Evolutionary Quantum Computing (EQC) in entanglement
measurement and other quantum information processing ap-
plications.

Entanglement, a concept in quantum computing, plays a
crucial role in quantum information processing. Quantum
entanglement, first coined by Erwin Schrödinger in 1935, is a
mechanical phenomenon at the quantum level in which the
quantum states of two (or more) particles are intrinsically
correlated, even though these particles may be spatially sep-
arated from each other [9]. An entangled state refers to a
quantum state that is intrinsically correlated between two or
more particles, even if they are spatially separated [10]. In
quantum entanglement, changes in the state of one qubit can
affect the state of the other entangled qubit simultaneously
meaning that qubits are entangled if the amplitudes of an n-



qubit configuration define a correlation between the individual
qubits. Highly entangled quantum systems are more difficult
to simulate on classical computers [11], [12]. Therefore, the
concept of entanglement has significant implications for the
development of quantum information processing technologies.
If a quantum system is not highly entangled, it can often be
simulated efficiently on a classical computer [12], [13].

Consider a system with two-qubit configurations, where the
wave function is given by

|ψ⟩ = 1

2

√
2|00⟩+ |11⟩. (1)

Upon measurement of the first two qubits, the wave function
will collapse to one of the two possible states. The second bit’s
value is thus determined by the result of the measurement
of the first bit, indicating a correlation between the bits.
Entanglement is important because it represents the effects
of a measurement on the system and is common in quantum
mechanical systems. It also allows interference in a quantum
computer, which is the main difference between probabilistic
and quantum computers. Any state of the two-qubit system is
a superposition of the four basis states, namely

|ψ⟩ = α00 |00⟩+ α01 |01⟩+ α10 |10⟩ − α11 |11⟩ , (2)

where α00, α01, α10, and α11 are amplitudes of the corre-
sponding basis states. The normalization of the basis state is
given by

|α00|2 + |α01|2 + |α10|2 + |α11|2 = 1 =
∑

X∈{0,1}2

|ax|2 ,

where X ∈ {0, 1}2 means all binary combinations of length
2. When both qubits are measured simultaneously, there are
four possible outcomes. Consider an example:

|ψ⟩ = 1

2
|00⟩+ 1

2
|01⟩+ 1

2
|10⟩+ 1

2
|11⟩ .

If we measure the first qubit, the outcome of ”0” has proba-
bility 1

2 . And if the outcome of first qubit is 0, the probability
for the second to be 0 or 1 is 1/2 each. So, the qubits are not
entangled.

The exponential growth of possible values for a system
of three or more qubits underlies the power of quantum
computing [1]. The outcome of entanglement leads to a
large number of possible states, making it expensive to run
a quantum program in a classical computer simulation. For
instance, the simulation of a 15-qubit quantum computer
requires 215 floating-point numbers to store the program state
at any instant. As a result, testing and debugging quantum
programs in simulation is only feasible for toy-sized programs.

One of the most well-known examples of the use of entan-
glement in quantum computing is quantum teleportation [14].
In quantum teleportation, the quantum state of a particle is
transmitted from one location to another using entanglement,
without the need for the actual particle to travel. This process
relies on the fact that two entangled particles can share the
same quantum state, even when separated by large distances.

Therefore, entanglement is a valuable resource in quantum
computing, and it is essential for the development of many
quantum technologies. Researchers are actively exploring
ways to better understand and utilize entanglement to advance
the field of quantum computing.

The descriptors, expressibility, and entangling capability has
been used to study the capabilities of the parametrized quan-
tum circuit by quantifying its deviation from random circuits
to approach the research question of how much generalization
is effective enough in a quantum circuit for a given task [15].
The expressibility of a quantum circuit is the ability to generate
pure states that are well representative of the Hilbert space. In
a single qubit, the expressibility corresponds to the circuit’s
ability to explore the Bloch sphere. Sim et al. [15] propose to
quantify the ability of the quantum circuit to generate a pure
state as a representative of Hilbert space by comparing the true
distribution of the fidelities corresponding to the parameterized
quantum circuit (PQC), to the distribution of fidelities from the
ensemble of Haar random states. For example, they propose
to approximate the distribution of the fidelities, the overlapped
state which is defined as F = |⟨ψθ|ψθ⟩|2, of the PQC.
The ensemble of the Haar random state can be calculated
analytically as PHaar = (N − 1)(1 − F )N−2, where N is
the dimension of the Hilbert space [16].

Here we focus on the entangling capability and use the
the Meyer-Wallach entanglement measure (Meyer and Wallach
2002 [17]) defined as

Q(|ψ⟩) = 4

n

n∑
j=1

D(lj(0)|ψ⟩, lj(1)|ψ⟩) , (3)

where lj(b) represents a linear mapping for a system of n
qubits that act on a computational basis with bj ∈ {0, 1} :
lj(b)|b1....bn Sim et al. [15] approximated the measure of the
PQC by sampling and defined the estimate of the entangling
capability of the quantum circuit as follows:

Ent =
1

|S|
∑
θi∈S

Q(|ψθi⟩) , (4)

where S is the set of sample circuit parameter vectors θ.
For more than two systems, most entanglement measures

require knowledge of the state itself, which involves perform-
ing quantum state tomography. For a pure state of n qubits,
Equation 3 [18] can be simplified as ,

Q(|ψ⟩) = 4

n

n∑
j=1

D(|ûk⟩ , |v̂k⟩) , (5)

where |ûk⟩ and |v̂k⟩ are vectors in C2n−2 which are non-
normalized (indicated by theˆ) and obtained by projecting on
state |ψ⟩ with local projectors on the kth qubit,

|ψ⟩ = |0⟩k ⊗ |ûk⟩+ |1⟩k ⊗ |v̂k⟩ . (6)

The function D(|ûk⟩ , |v̂k⟩) measures a distance between the
two vectors |ûk⟩ and |v̂k⟩. It is obtained by taking the
generalized cross-product:



D(|ûk⟩ , |v̂k⟩) =
∑
i<j

|ûki v̂kj − ûkj v̂
k
i |2. (7)

Also, the state |ψ⟩ can be written in the form of Schmidt
decomposition over the bipartite division of the k and the other
qubits as:

|ψ⟩ = |0̄⟩k ⊗ |x̂k⟩+ |1̄⟩k ⊗ |ŷk⟩ , (8)

where ⟨x̂k|ŷk⟩ = 0, and ||0̄⟩k⟩ , |1̄⟩k are related to ||0⟩k⟩ , |1⟩k
by a logical unitary operator Uk. The purity of the state of
qubit k is therefore Tr[ρ2k] = ⟨x̂k|x̂k⟩2+⟨ŷk|ŷk⟩2. The gener-
alized cross product under logical unitaries, D(|ûk⟩ , |v̂k⟩) =
D(|x̂k⟩ , |ŷk⟩) in relation to the norm of an anti-symmetric
tensor Mk = |x̂k⟩ ⟨ŷ∗k| − |ŷk⟩ ⟨x̂∗k| is written as [18]

D(|x̂k⟩ , |ŷk⟩) =
∑
i<j

|ûki v̂kj − ûkj v̂
k
i |2

=
1

2

∑
i,j

(M†
k)ij(M

†
k)ji

=
1

2
Tr[M†

kMk]

= ⟨x̂k|x̂k⟩ ⟨ŷk|ŷk⟩

=
1

2
(1− Tr[ρ2k]).

Therefore,

Q(|ψ⟩) = 2(1− 1

n

n−1∑
k=0

Tr[ρ2k]). (9)

This equation of the entanglement measure Q simplified
the physical meaning of the multi-particle entanglement as an
average over the entanglements of each qubit with the rest of
the system.

The given equation is an expression for the quantum purity
of a state |ψ⟩, denoted by Q(|ψ⟩). The purity is a measure of
how pure or mixed a quantum state is, and it is defined as the
trace of the square of the density matrix ρ that represents the
state. Here, n is the number of times the state is measured or
prepared, and ρk is the density matrix of the state after the kth

measurement or preparation. To understand how this equation
relates to the purity of the state, we can start by considering
the purity of a pure state. If the state |ψ⟩ is pure, then its
density matrix is given by ρ = |ψ⟩ ⟨ψ|, and its purity is:

Tr[ρ2] = Tr[(|ψ⟩ ⟨ψ|)(|ψ⟩ ⟨ψ|)]
= Tr[|ψ⟩ ⟨ψ|ψ⟩ ⟨ψ|] = Tr[|ψ⟩ ⟨ψ|] = 1

Therefore, for a pure state, the expression
1− 1

n

∑n−1
k=0 Tr[ρ

2
k] is equal to zero.

For a mixed state, the density matrix can be written as a
convex combination of pure states, ρ =

∑
i pi |ψi⟩ ⟨ψi|, where

pi are probabilities and
∑

i pi = 1. The purity of this mixed
state is:

Tr[ρ2] = Tr

(∑
i

pi |ψi⟩ ⟨ψi|

)∑
j

pj |ψj⟩ ⟨ψj |


=
∑
i

p2i Tr[|ψi⟩ ⟨ψi|] +
∑
i̸=j

pipj Tr[|ψi⟩ ⟨ψj | |ψj⟩ ⟨ψi|]

=
∑
i

p2i +
∑
i ̸=j

pipj | ⟨ψi|ψj⟩ |2

≤
∑
i

p2i +
∑
i ̸=j

pipj =

(∑
i

pi

)2

= 1

Therefore, the purity of a mixed state is always less than or
equal to one. Using this result, we can see that the expression
1− 1

n

∑n−1
k=0 Tr[ρ

2
k] is a measure of how mixed the state is. If

the state is pure, then this expression is zero, and if the state
is entangled/mixed, then this expression is positive.

II. IMPLEMENTING THE EVOLUTIONARY ALGORITHM: A
STEP-BY-STEP GUIDE

The use of evolutionary algorithms to generate quantum
circuits has become increasingly popular. In this approach,
an algorithm optimizes the types of quantum gates and their
connectivity by generating a list of integers representing the
gates and their connections. The fitness function evaluates
each chromosome and identifies the current best solution,
which is then used to perform operations such as entangling
qubits and computing mutations. This creates a quantum evo-
lutionary circuit that performs genetic evolution on a quantum
device and identifies a new best solution. We evaluated the
performance of our proposed approach using a simulator
provided by Qiskit and created a string representation of
the circuits, gates, and connections. Our results show the
potential of this approach for solving optimization problems
in quantum computing. The implementation was initially done
for evolving quantum circuits to determine stochastic and
deterministic cellular automata rules, and this work has already
been published [19]. The implementation code is available
at GitHub repository https://github.com/Overskott/Quevo. In
this study, we modified the same algorithm used for evolving
stochastic and deterministic cellular automata rules to include
the Mayor Wallach entanglement measure as a fitness function
for quantum circuit design with the measure of entanglement
of thus generated circuits. Specifically, the algorithm aims to
maximize entanglement in three, four, and five-qubit quantum
circuits.

A. Main Ingredients of Implementation

The implementation of our approach was carried out in
Python and resulted in a Python module called QUEVO.
This module consists of three classes: Chromosome,
Generation, and Circuit. The Chromosome and the
Generation classes are part of the genetic algorithm, while
the Circuit class is responsible for generating and simulat-
ing quantum circuits.

https://github.com/Overskott/Quevo


1) The Chromosome: The Chromosome class is the core
of the genetic algorithm used for generating quantum cir-
cuits. It handles the integer representation of the gates and
their connections. The class contains a list of integers and
functions for generating and mutating the list. It also handles
the initialization of the population and the evolution of the
population into a new one. Mutations in the Chromosome
class can occur in two different ways: replacing gates from the
pool of gates in the chromosome with a randomly generated
new one or replacing the chromosome to generate the four
best parents. The class is also responsible for checking the
chromosome for gates that connect multiple qubits. If the gate
has an invalid connection, meaning that it is connected to itself
through the randomly generated integers, the class generates
a valid configuration randomly. Overall, the Chromosome
class handles the creation of random series, the list of angles
needed by some of the gates, mutation of the series, and other
list-related functions. It takes a list of the desired gate types
as a parameter on construction and automatically creates the
tables needed for parsing.

2) The Generation: The Generation class is another
important class in the QUEVO module, responsible for man-
aging the population of chromosomes. It is a collection of
chromosomes that undergo evolution for a specified number
of generations. After each evolution step, changes in the
chromosomes in the generation occur by selecting a fixed
number of chromosomes as elite and allowing the rest of them
to evolve further. In each evolution step, the chromosomes
are evaluated with the fitness function, and the fittest chromo-
somes become the parents for the next generation. The rest of
the chromosomes are reset for the initial chromosomes. The
Generation class stores a generation of chromosomes, the
fitness associated with each chromosome, methods for running
and retrieving fitness for two different fitness functions, and
functions for printing. It provides methods for performing
selection, crossover, and mutation to generate a new popu-
lation of chromosomes. The class also provides methods for
evaluating the fitness of the chromosomes, a crucial step in
determining the parents for the next generation.

3) The Circuit Class: The Circuit class in the QUEVO
module is responsible for generating a Qiskit quantum circuit
from a string representation, simulating the circuit, performing
measurements, and visualizing the circuit. The class is run on
the Qiskit AER simulator and returns the results as a dictio-
nary. The class can be configured to mimic an IBMQ back-
end using the aer sim = Aer.get backend(’aer simulator’)
method, which configures the simulator to use the user’s
quantum gates for that backend, as well as the same basis
gates and coupling map.

The Circuit class is a crucial component of the QUEVO
module because it enables the implementation of the genetic
algorithm to generate, simulate, and measure quantum circuits.
The class interfaces with Qiskit to create and simulate circuits
using the gates specified in the chromosomes. The results
of the simulations are used to evaluate the fitness of each
chromosome and guide the search for an optimal solution.

The performance of the algorithm depends on the quality of
the simulations and the accuracy of the measurements. The
accuracy of the simulations is affected by the number of
qubits in the circuit, the complexity of the gates used, and the
noise and other sources of errors associated with the quantum
circuits.

B. Mayor Wallach Entanglement measures as fitness functions

The compute_MW_entanglement method is an imple-
mentation of the Mayer-Wallach measure of entanglement,
which is a commonly used entanglement measure in quantum
information theory. The method takes in a state vector as
an input, which represents the quantum state of the circuit.
The state vector is reshaped into a tensor of dimensions 2n

x 2n, where n is the number of qubits in the circuit. The
Mayer-Wallach measure of entanglement is then calculated
by computing the reduced density matrix of each qubit and
summing over the squared eigenvalues of the reduced density
matrix. Specifically, for each qubit k, the reduced density
matrix is obtained by tracing out all the other qubits from the
quantum state. The squared eigenvalues of the reduced density
matrix are then computed and summed over all qubits to obtain
the entanglement value. The entanglement value is then scaled
by a factor of 1− 1

n to ensure that it lies between 0 and 1. The
Mayer-Wallach measure of entanglement provides a useful fit-
ness function for evolutionary algorithms because it quantifies
the degree of entanglement in a quantum circuit. Maximizing
the Mayer-Wallach measure of entanglement can lead to the
generation of highly entangled quantum circuits, which may
have practical applications in quantum communication and
quantum computing. For more information about the module
and instructions on how to use it, please visit the Github
repository https://github.com/shailendrabhandari/QUEVO1.

III. SIMULATIONS AND RESULTS

This section presents the results of an evolutionary algo-
rithm for quantum circuit design that employs the Mayor-
Wallach entanglement measure as a fitness function. Our
experiments involved 3, 4, and 5 qubit circuits, and the
algorithm’s performance was evaluated using varying mutation
probabilities and numbers of gates. We conducted 50 iterations
over 500 generations and present the results as the mean fitness
with standard error of the mean and the best fitness with its
standard error. The results are elaborated separately for the 3,
4, and 5 qubit circuits.

Quantum entanglement is a fundamental aspect of quantum
computing that enables the generation of correlations between
quantum systems. However, designing efficient quantum cir-
cuits with maximum entanglement can be challenging due to
the exponential increase in the number of parameters with the
problem size. Recently, evolutionary algorithms (EAs) have
emerged as a promising tool for quantum circuit design [7],
[8], [20]. In this chapter, we present our implementation of
EAs for quantum circuit design, which aims to maximize en-
tanglement. Our QUEVO framework employs an evolutionary

https://github.com/shailendrabhandari/QUEVO1


algorithm to automatically generate quantum circuits that sat-
isfy defined properties specified through a fitness function. The
evolution properties can be controlled by tuning parameters
such as initial population, number of generations, probability
of mutation operator, number of gates in the circuit, and the
chosen fitness function.

A. Evolutionary algorithm for three-qubit quantum circuit
design

Figure 1 displays the average and best fitness scores of
a three-qubit quantum circuit generated by an evolutionary
algorithm over 500 generations. This study investigated the
effectiveness of different mutation rates (5%, 10%, and 15%)
in generating a quantum circuit having different numbers of
gates(3, 5, 8, 10, and 12) with maximum entanglement. The
best fitness scores obtained for all mutation rates approached
unity, indicating that the generated circuits had a high degree
of entanglement between the qubits. The fitness function used
in the study was the Mayor-Wallach entanglement measure
[18], which is based on the largest eigenvalue of the partial
transpose of a quantum system’s density matrix and has been
widely used to quantify entanglement in various quantum
systems.

The results of the experiment suggest that evolutionary
algorithms can be an effective method for designing three-
qubit quantum circuits with a desired degree of entanglement.
The optimal mutation rate was found to be 10%, which struck
a balance between exploring different solutions in the search
space and exploiting the best solutions. A mutation probability
of 1/9 (11.11%) is needed to replace at least one individual
population consisting of nine integer lists (three lists of integer
gates for each qubit). Therefore, 10% which can at least
replace one individual population in each generation can be
considered an optimal probability for the mutation rate. Figure
2 (Top) supports the finding that a lower mutation rate is
able to strike a balance between exploration and exploitation,
leading to a higher average fitness score across all runs.
However, a mutation rate of 10% can be more effective in
discovering the best-performing circuit in each run due to the
higher degree of exploration it allows.

However, Figure 2 (Top) shows, the best fitness score
obtained for each run over 50 runs is highest for a mutation
rate of 10%. This indicates that a lower mutation rate is
able to strike a balance between exploration and exploitation,
leading to a higher average fitness score across all runs. On
the other hand, a mutation rate of 10% may be more effective
in discovering the best-performing circuit in each run due to
the higher degree of exploration it allows.

In the experiment where the number of gates in the quantum
circuit varied from 3 to 12 while the mutation rate was fixed
at 10%, it was observed that the fitness score decreased as the
number of gates in the circuit increased as shown in Figure
2 (Bottom). This suggests that as the circuit becomes more
complex with an increasing number of gates, the fitness score
reduces, indicating that the circuit is less efficient at perform-
ing the desired task. There may be a trade-off between circuit
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Fig. 1. Evolutionary optimization of three-qubit quantum circuits with 3
gates using the Meyer-Wallach entanglement measure as the fitness function.
The plot shows the mean fitness (green line) and its shaded standard error,
as well as the mean of the best fitness (red line) and its shaded standard
error, against the number of generations for different mutation percentages in
the evolutionary algorithm: Top (Top) 5%, Top (Middle) 10%, and (Bottom)
15%. The blue dashed line represents the third-order polynomial fit to the
mean fitness.

complexity and performance, and there may be an optimal
number of gates that provides the best balance between the
two.

The visualization of the best-generated three-qubit quantum
circuit with three gates, as shown in Figure 3(Top) with a
fitness score of 0.9999999999999996, provides a concrete ex-
ample of the potential of evolutionary algorithms for designing
highly entangled quantum circuits. Figure 3(Bottom) shows
another example of a three-qubit quantum circuit with 12 gates
having a fitness value of 0.999999887999999. These three-
qubit circuits appear to be relatively simple, yet they achieve
a very high degree of entanglement between the qubits.

However, it is important to consider the robustness of the
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Fig. 2. Comparison of best fitness generated for (Top) different mutation rates
for 3 gates and (Bottom) different numbers of gates for a constant mutation
probability of 10%. The results are averaged over 50 runs and the error bars
represent the standard error of the mean best fitness.

Fig. 3. Two examples of three-qubit circuits evolved with a 10% mutation
probability and optimized for MW-entanglement fitness scores. (Top) A circuit
with only 3 gates achieved a high fitness score of 0.9999999999999996.
(Bottom) A more complex circuit with 12 gates achieved a slightly lower
fitness score of 0.999999887999999.

generated circuits to noise and other sources of interference, as
this is a critical factor in the practical applications of quantum
circuits. Further research will be needed to investigate the
robustness of circuits generated using evolutionary algorithms
and to identify methods for improving their resilience to noise.

It is worth noting that the choice of gate set used in the study
could impact the results. Different gate sets may have different
levels of expressivity and may lead to different results in terms
of the entanglement and fitness scores of the generated circuits.

Further studies may consider exploring the effectiveness of
different gate sets in generating highly entangled circuits.

The reduced density matrices for a three-qubit system are
calculated by tracing over the other two qubits in a three-
qubit system. The use of reduced density matrices as a tool
for analyzing the properties of entangled states in complex
quantum systems. After calculating the reduced density matrix
for all qubits, the code computes the entanglement of the
circuit using the Mayor Wallach entanglement measure. The
reduced density matrix of a subsystem can reveal the degree
of entanglement between the qubits in that subsystem, but not
necessarily the degree of entanglement of the entire system.
Therefore, calculating the entanglement measure of a quantum
circuit by tracing out all qubits is necessary to obtain an
accurate assessment of the entanglement of the circuit.

Overall, the effectiveness of evolutionary algorithms in
designing three-qubit quantum circuits with a desired level of
entanglement has been investigated. Our findings indicate that
the choice of mutation rate and the number of gates is crucial
in achieving the desired level of entanglement. We found that a
mutation rate of 10% struck a balance between exploration and
exploitation, leading to a higher average fitness score across all
runs. Furthermore, we observed that as the number of gates in
the circuit increased, the fitness score decreased, suggesting
a trade-off between circuit complexity and performance. By
carefully balancing exploration and exploitation through the
selection of an appropriate fitness function, initial population,
and mutation rate, it may be possible to generate circuits with
even higher degrees of entanglement. These findings could
have significant implications for the development of quantum
computing and could lead to the design of new and more
powerful quantum circuits.

B. Evolutionary algorithm for four-qubit quantum circuit de-
sign

In addition to studying the evolution of three-qubit and five-
qubit quantum circuits, the evolution of four-qubit quantum
circuits will be examined. Specifically, the results for the
evolution of quantum circuits with four gates and a 10%
mutation probability generate the fitness of the circuit. By
examining the evolution of quantum circuits with varying
numbers of qubits and gates, and with different mutation rates,
insights into the impact of these factors on the evolution of
quantum circuits and the degree of entanglement that can be
achieved.

Figure 4 shows the evolutionary algorithm optimization
of four-qubit quantum circuits with four gates and a 10%
mutation probability, using the Meyer-Wallach entanglement
measure as the fitness function. The plot shows the mean
fitness (green line) and its shaded standard error, as well as
the mean of the best fitness (red line) and its shaded standard
error, against the number of generations. The blue dashed line
represents the third-order polynomial fit to the mean fitness. It
can be seen from the figure that the mean fitness score is near
0.5, while the mean of the best fitness score is close to 0.9.
This indicates that circuits generated with the best fitness score
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Fig. 4. Evolutionary algorithm optimization of four-qubit quantum circuits
with four gates and 10% mutation probability, using the Meyer-Wallach
entanglement measure as the fitness function. The plot shows the mean
fitness (green line) and its shaded standard error, as well as the mean of
the best fitness (red line) and its shaded standard error, against the number of
generations. The blue dashed line represents the third-order polynomial fit to
the mean fitness.
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Fig. 5. Comparison of the best fitness generated for five different numbers of
gate sets in a four-qubit circuit using 10% mutation, 20 chromosomes. The
results are averaged with 50 runs over 500 generations and the error bars
represent the standard error of the mean best fitness.

in each generation have a very high degree of entanglement
among the qubits.

The experiment with a 10% mutation probability for four-
qubit circuits was repeated for circuits with varying numbers
of gates. Figure 5 displays the best fitness scores for circuits
with 4 to 12 gates. The figure shows that as the number of
gates increases, the circuit becomes more complex and the
fitness score decreases, indicating lower entanglement. This
finding is consistent with the results obtained for three-qubit
and five-qubit circuits, suggesting a potential trade-off between
circuit complexity and entanglement capability.

Figure 6 represents an example of a four-qubit circuit that
was generated using an evolutionary algorithm, consisting of
four gates and having a fitness score of 0.999957846. This
demonstrates that evolutionary algorithms hold promise as a
tool for designing quantum circuits that exhibit high levels of

Fig. 6. Evolutionary generation of four-gate four-qubit circuits with MW-
entanglement fitness scores using a 10% mutation probability with a fitness
score of 0.999957846.

entanglement between qubits.

C. Evolutionary algorithm for five-qubit quantum circuit de-
sign

Figure 7 displays the results of a study that investigated
the effectiveness of an evolutionary algorithm in generating a
five-qubit quantum circuit with five gates. The figure includes
the average fitness, third-order polynomial fit to the average
fitness, and the best fitness values. The study explored the
impact of different mutation rates (3%, 5%, and 15%) on the
generated circuits’ average and best fitness scores over 500
generations. The best fitness scores obtained for all mutation
rates were close to 0.8, with an expected target fitness value
of one, indicating a high degree of entanglement between the
qubits. The third-order polynomial fit to the average fitness
shows a smooth curve that approximates the general trend of
the data.

The results of the study indicate that a mutation rate of
3% was the most effective in optimizing the quantum circuit,
as shown in Figure 7, which displays the best and average
fitness values obtained. The study also found that increasing
the mutation rate beyond 5% resulted in a decrease in the
average fitness value, indicating that excessive randomness in
the optimization process can have a negative impact on circuit
performance. However, it was observed that the average of
the best fitness value was not affected by a higher mutation
rate. The results of this study highlight the importance of
selecting an appropriate mutation rate for optimizing quantum
circuits. To determine the optimal mutation rate, we calculated
the probability of replacing at least one individual population,
which consisted of 15 integer lists (three lists of integer
gates for each of the 5 qubits). Our analysis found that the
probability of this occurring was 6.67%. Based on this finding,
we determined that a mutation rate of 5% (close to 6.67%)
would be an optimal probability for the mutation rate, as it
would be sufficient to replace at least one individual population
in each generation.
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Fig. 7. Evolutionary optimization of five-qubit quantum circuits with five
gates using the Meyer-Wallach entanglement measure as the fitness function.
The plot shows the mean fitness (green line) and its shaded standard error, as
well as the mean of the best fitness (red line) and its shaded standard error,
against the number of generations for different mutation percentages in the
evolutionary algorithm: Top (Left) 3%, Top (Right) 5%, and Bottom 15%.
The blue dashed line represents the third-order polynomial fit to the mean
fitness.

In the second step of our investigation, we kept the mutation
rate constant at 5% (optimal to replace at least one individual
in each generation) and varied the number of gates to explore
the entanglement capacity of the generated quantum circuit.
The results, as shown in Figure 8, indicates that the fitness
score is maximum or close to 1 for the 3-gate 5-qubit circuit.
However, as the number of gates increases, the fitness scores
decrease continuously. This finding suggests that increasing
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Fig. 8. Comparison of the best fitness generated for five different numbers
of gate sets in a 5-qubit circuit using 5% mutation, 20 chromosomes, and 50
runs over 500 generations.

the number of gates in the quantum circuit (i.e., increasing
the circuit depth) reduces the entanglement capability of the
generated quantum circuits. Overall, the study suggests that
a simpler quantum circuit with fewer gates may have better
entanglement capability than a more complex circuit with
more gates. These findings could be useful for researchers
and practitioners who are interested in optimizing the design
of five-qubit quantum circuits using evolutionary algorithms.

The best-generated five-qubit quantum circuit with five
gates, shown in Figure 9(Top) with a fitness score of
0.999656736, provides a concrete example of the potential
of evolutionary algorithms for designing highly entangled
quantum circuits. Despite its simplicity, with only 5 gates,
the circuit achieves a remarkably high degree of entanglement
between the qubits. This high degree of entanglement makes
it useful for various applications in quantum information pro-
cessing such as quantum teleportation, quantum cryptography,
and quantum error correction. This visualization highlights the
power of evolutionary algorithms in optimizing quantum cir-
cuits for specific tasks, such as generating high-entanglement
states. Increasing the circuit depth, i.e., the number of gates
in a circuit increases the complexity of the quantum circuit
and hence decreases the entanglement capability of the circuit
as shown in Figure 8. The lower fitness score of the 12-gate
circuit is evidence of this fact. However, a deeper circuit can
still be useful for specific quantum algorithms that require a
specific gate sequence.

IV. DISCUSSION AND CONCLUSIONS

In this work, we have demonstrated the effectiveness of evo-
lutionary algorithms in generating highly entangled quantum
circuits and calculating their reduced density matrices. The
circuits we generated for three, four, and five-qubit systems
exhibited a high degree of entanglement, as measured by the
Mayor-Wallach entanglement measure. By tracing out all other
qubits, we showed how the reduced density matrices could
be used to extract information about the entanglement of the
circuit. Our results highlight the importance of circuit depth in
determining the entanglement capability of a quantum circuit,
and we found that increasing the circuit depth decreases its



Fig. 9. Evolutionary generation of five-qubit circuits with MW-entanglement
fitness scores using a 5% mutation probability with a five-gate having a fitness
score of 0.999656736.

entanglement capability. Our study also found that an optimal
mutation rate can effectively optimize quantum circuits for
entanglement generation, with different numbers of qubits and
gates. For example, the optimal mutation rate was found to be
10% for three-qubit circuits and 5% for five-qubit circuits.

Our findings demonstrate the potential of evolutionary al-
gorithms as a useful tool for quantum circuit design and
optimization and provide insights that could guide future
research. Future research could explore the use of other
fitness functions (the Von Neumann entropy [21], and Schmidt
[22], [23]) and hybrid optimization methods to maximize
the entanglement capacity of quantum circuits. Additionally,
more complex quantum circuits with a higher number of
qubits and gates could be investigated using more advanced
evolutionary algorithms. Overall, the results presented in this
study demonstrate the potential of evolutionary algorithms for
quantum circuit design and provide a foundation for further
research in this field.
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