
EasyChair Preprint
№ 12581

Text to Image Conversion

Ankita Gandhi, Govardhan Vamsi Tellakula,
Neeraj Babu Thatiparthi, Ramachandra Pentakota and
Zulfiqar Ahmed Syed

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 18, 2024

TEXT TO IMAGE CONVERSION
Prof.Ankita Gandhi
Assistant professor

Dept. Computer Science
and Engineering,
Parul University,
Vadodara, India.

ankita.gandhi@paruluniversity.ac.in

Tellakula Govardhan Vamsi
Research Scholar,

Dept. Computer Science
and Engineering,
Parul University,
Vadodara, India.

govardhanvamsi0@gmail.com

Thatiparthi Neeraj Babu
Research Scholar,

Dept. Computer Science
and Engineering,
Parul University,
Vadodara, India.

nanineerajbabu@gmail.com

Pentakota Ramachandra
Research Scholar,

Dept. Computer Science
and Engineering,
Parul University,
Vadodara, India.

ramachandrapentakota@gmail.com

Syed Zulfiqar Ahmed
Research Scholar,

Dept. Computer Science
and Engineering,
Parul University,
Vadodara, India.

syedzulfiqarahmed27@gmail.com

Abstract—Text-to-image generation is the process of generating
realistic images from textual descriptions.This involves training
deep learning models to understand the relationship between
textual input and visual output, and using this understanding
to generate images that accurately represent the text.Text-to-
image generation has applications in a variety of fields, including
computer vision, natural language processing, and art.However,
this field still faces many challenges, including generating high-
quality and diverse images, capturing complex visual concepts,
and scaling to handle large datasets.

Keywords: Python, EasyOCR, Streamlit lib, NLP,
DeepLearning, openai

I. INTRODUCTION

Text-to-image generation is an emerging domain that re-
volves around instructing computers to convert text into visual
representations. This involves training deep learning models to
comprehend the connection between textual descriptions and
their visual counterparts, enabling the generation of images
that faithfully depict the provided text. Text-to-image genera-
tion is versatile and finds utility in various fields, including
computer vision, natural language processing, and creative
endeavors. For instance, it can be leveraged to automatically
produce images based on textual inputs, facilitating tasks such
as image retrieval and content creation.

Text-to-image generation involves teaching computers to
interpret written descriptions and create corresponding vi-
suals. This capability has wide-ranging applications, from
simplifying online image searches to generating fresh content.
For instance, typing a description of a sunny beach could
prompt the computer to generate an accurate picture, mak-
ing it valuable for various fields such as computer science,
communication with computers, and creative endeavors like
gaming and filmmaking.

The main challenge lies in helping computers understand
human language well enough to accurately translate it into
images. However, recent advancements have resulted in re-
markably realistic images. Looking forward, this technology
could revolutionize visual content creation and consumption,
potentially transforming industries such as art, entertainment,
and online commerce. Essentially, it’s about teaching comput-
ers to visually interpret our verbal descriptions, paving the way
for exciting possibilities in human-computer interaction.

A. Problem Statement
The task at hand, using the Python library Streamlit and

deep learning, revolves around the generation of images that
are coherent and meaningful when given a textual description.
Essentially, it’s about training a deep learning model to com-
prehend how words and images relate, extract the pertinent
visual elements from the text, and then create images that
accurately depict the text’s content.

B. Scope
The possibilities in text-to-image generation using Python’s

Streamlit and deep learning techniques are extensive and offer
a broad spectrum of potential applications. One key area for its
utilization lies in the realms of virtual and augmented reality,
where it can contribute to creating more lifelike and immersive
digital environments.

C. Aim and Objectives
The primary goal of text-to-image synthesis using Python

is to empower machines to craft authentic images based
on written descriptions, essentially closing the gap between
human language and visual artistry. The objective is to create
models that can comprehend both the meaning and spatial
relationships conveyed in text and produce images that not
only look credible but also align with the text’s message.

II. LITERATURE SURVEY

Imagine a world where computers can interpret words and
transform them into visuals – that’s the essence of text-to-
image conversion. This review delves into the significance of
this technology and its practical applications, particularly when
utilized alongside EasyOCR and Python libraries.

A. Utilization of Text-to-Image Conversion

Module 1: Creative Content Generation
Visualizing ideas without artistic skills sounds like a dream,

right? Text-to-image conversion makes it a reality. With the
assistance of EasyOCR and Python libraries, creators can
translate descriptions into captivating visuals effortlessly.

Module 2: E-commerce and Product Visualization
Ever tried to imagine a product based solely on its descrip-

tion? Text-to-image conversion changes that. By converting
product details into images, online retailers can offer cus-
tomers a clearer understanding of their offerings, thanks to
EasyOCR and Python’s capabilities.

Module 3: Data Augmentation for Computer Vision
Teaching machines to recognize objects requires ample

examples. Text-to-image conversion aids in this by expanding
image datasets. With EasyOCR and Python, researchers can
enhance datasets, empowering computers to perceive the world
more accurately.

Module 4: Content Creation for Social Media
Crafting engaging social media content can be challeng-

ing. However, text-to-image conversion simplifies the process.
Marketers can now effortlessly turn text into visually striking
posts using EasyOCR and Python, capturing attention and
conveying messages effectively.

Module 5: Accessibility and Assistive Technologies
For individuals with visual impairments, navigating the dig-

ital world can be daunting. Text-to-image conversion changes
the narrative by providing descriptive images. Leveraging
EasyOCR and Python, assistive technologies can offer a more
inclusive online experience.

B. Integration of EasyOCR and Python

EasyOCR serves as a powerful tool for extracting text from
images. Paired with Python, it becomes even more potent,
enabling developers to seamlessly generate images from text
using Python’s extensive image processing capabilities.

III. METHODOLOGY

A. Software and Libraries

As you set out to create a Text-to-Image conversion ap-
plication using EasyOCR and Streamlit, there’s a lineup of
crucial software components and libraries you’ll need for the
project’s construction and operation. Below, I’ll furnish you
with a list of these indispensable elements and a foundational
code structure for your Streamlit-based application.

1. Python: Ensure you have Python installed on your system.

2. Streamlit: Install Streamlit, a Python library for creating
web applications with minimal code.

pip install streamlit

3. EasyOCR: Install the EasyOCR library for OCR func-
tionality.

pip install easyocr

4. Pillow: You’ll need Pillow for image manipulation. pip
install Pillow

B. System Architecture

Let’s delve into the system architecture of a Text to Image
conversion application using EasyOCR. The typical setup
involves a front-end web interface, constructed with a user-
friendly framework such as Streamlit. This interface is where
users can get creative by inputting their text and finetuning
image attributes like font size, text color, background color,
and image dimensions. It’s the place where the magic unfolds.

The front-end seamlessly communicates with the backend,
which serves as the operational core of the system. The
backend is like the powerhouse behind the scenes. Here, we
harness the capabilities of the robust EasyOCR library for
Optical Character Recognition, ensuring the generated image’s
text content is impeccably accurate. When it comes to creating
and customizing the images, we turn to the dependable Pillow
library.

The entire architecture is meticulously designed to deliver a
smooth user experience. User inputs effortlessly flow into the
image generation process, with an additional step dedicated to
OCR verification. This step plays a crucial role in guaranteeing
the precision of the text extraction process.

C. Data Flow

Let’s take a step-by-step journey through how data flows
in a text-to-image conversion process using EasyOCR. It all
begins with the user’s input. The user provides the text they
want to transform and personalizes the image’s appearance,
tweaking elements like font size, text color, and background
color. This customization is made super easy through a user-
friendly interface designed to give users full creative control.

Once the user decides to start the conversion process,
their input text and all the custom details are passed over
to the core logic of the application. This is where the real
wizardry happens. We employ the Pillow library to craft a
fresh image, thoughtfully incorporating all the attributes the
user has chosen. Their text is elegantly placed on this canvas.

The end result? A remarkable image that’s both a work of
art and a visual representation of the user’s creativity. We save
this masterpiece and proudly present it to the user for their
admiration and sharing pleasure. It’s a journey that transforms
user ideas into visually striking reality.

D. Text-to-Image Conversion Algorithm

1. Initialize Parameters: Initialize variables with customiza-
tion options, e.g., font, font size, text color, background color,
image width, and image height.

Fig. 1. Dataset

2. Create a Blank Image: Create a new blank image using
an image processing library like Pillow (PIL). Set the image
dimensions to the specified width and height. Set the image
background color to the specified background color.

3. Load Font: Load the selected font to be used for rendering
the text. The font should be compatible with the image
processing library being used.

4. Calculate Text Position: Determine the position to place
the text on the image to ensure it is centered or aligned as
desired. This may involve calculating the width and height of
the text and the image and positioning it accordingly.

5. Draw Text on Image: Using the loaded font and cus-
tomization options, draw the text on the blank image. Use the
calculated text position from step 4.

6. Save or Display Image: Save the generated image to a
file for later use. Optionally, display the image to the user in
the application’s user interface.

7. Optional Post-Processing: Depending on the application,
you can apply additional post processing steps to the image,
such as adding effects or overlays.

8. End of Algorithm: The algorithm completes, and the
resulting image contains the text as specified by the user.

E. OCR Verification

In the realm of Text-to-Image conversion using EasyOCR,
there’s a crucial step known as OCR Verification. This step is
all about guaranteeing the precision and trustworthiness of the
text extracted from the images we’ve created.

Here’s how it plays out: First, we craft these stunning
images, each adorned with the text customized by the user.
Once these visual wonders are ready, we call upon OCR,
which stands for Optical Character Recognition. EasyOCR is
our trusty companion for this task. It meticulously scans the
images, carefully retrieving the text content.

The essence of OCR Verification lies in the evaluation
process. We rigorously cross-check the extracted text against
the original input to ensure a perfect match. But that’s not all.
EasyOCR sweetens the deal by providing us with confidence

Fig. 2. Design Architect

scores, giving us insights into how confident it is about the
recognition. This way, we’re equipped to gauge the reliability
of the OCR results. It’s a safety net that helps us identify and
gracefully handle any instances of uncertainty or inaccuracy.

In a nutshell, OCR Verification stands as a pillar of the text-
to-image conversion process. It’s the guardian of accuracy,
ensuring that the images we produce faithfully reflect the
intended text. It’s our way of maintaining fidelity to the user’s
creative vision.

IV. IMPLEMENTATION

A. User Interface

In our Text-to-Image conversion application, driven by the
dynamic duo of EasyOCR and Streamlit, we’ve put a premium
on user experience. When users step into our world, they’ll
find an interface that’s not only user-friendly but also visually
inviting.

Here’s what they get: A clean canvas where they can easily
enter the text they want to see turned into a stunning image.
Right next to the text input area, there’s a friendly sidebar, kind
of like their creative toolkit. It’s where they can play around
with things like font size, text color, background color, and
image dimensions. This puts them in the driver’s seat, allowing
them to customize the generated image to their heart’s content.

To set the wheels in motion, there’s a prominent ”Generate
Image” button, ready for their click. It’s the launchpad for
turning their text into a visual masterpiece. And when that
image is ready, we don’t just drop it there. We present
it elegantly, but there’s more. We also reveal the Optical
Character Recognition (OCR) results, like showing them how
the magic trick works. This holistic experience empowers
users to effortlessly create personalized textual images.

In essence, our application is all about making creativity a
breeze while putting users at the center of it all. It’s a realm
where ideas transform into beautiful visuals with ease and
sophistication.

B. Code Implementation

In our code implementation, we’ve utilized Streamlit to
create a web interface that’s all about user-friendliness. Here’s
the breakdown of how it all works:

- Users arrive at the interface, where they can smoothly
input their text and let their creativity flow when it comes
to image details. The place for this creative exploration is a
nifty sidebar where they can fine-tune elements like font size,
text color, and background color. It’s like a canvas for their
imagination.

- When they’re ready to see the magic unfold, all they
need to do is hit the ”Generate Image” button. It’s their cue
to witness their customized image come to life. We rely on
Pillow to weave this image, ensuring it matches their precise
specifications.

- But we don’t just stop there. We present the image to
the user with style. However, that’s not the grand finale.
We invite EasyOCR into the act. It’s like the magician’s big
reveal. EasyOCR takes a meticulous look at the created image,
extracting the text with expert precision. And it doesn’t stop
at mere text recognition; it also hands us confidence scores,
showing how certain it is about the results.

- And we make sure that the user gets to see all of this in
a way that’s simple to grasp and enjoy.

In essence, our code isn’t just about turning text into images.
It’s about giving users an experience that’s smooth, delightful,
and dependable. It’s like pulling off the perfect magic trick
that leaves everyone amazed.

C. Error Handling

In a Text-to-Image conversion application that harnesses the
power of EasyOCR via Streamlit, the art of error handling is a
pivotal piece in the puzzle. It plays a starring role in ensuring
the application’s strength and preserving a user experience
that’s as smooth as silk. Let’s dive into the critical areas where
error handling truly shines:

1. **User Inputs:** Errors can sneak in when users input
text or fiddle with image settings. Managing these gracefully
is key to keeping the user experience frustration-free.

2. **Image Generation:** Whether it’s technical glitches
or clashes in customization, handling errors during image
creation is essential for maintaining the creative flow.

3. **OCR Journey:** Hiccups might arise during the
Optical Character Recognition process, and addressing these
ensures that the extracted text is accurately interpreted.

4. **Confidence Scores:** When dealing with OCR confi-
dence scores, it’s paramount to tackle any doubts or inaccura-
cies to guarantee the precision of the recognized text.

5. **User Feedback:** The door to feedback and support
should always be open. If users encounter errors or challenges,

effective error handling includes mechanisms for them to seek
assistance.

6. **Application Stability:** Technical mishaps or appli-
cation hiccups can disrupt the user experience. Astute error
handling aims to minimize these disruptions.

To sum it up, error handling is the unsung hero that keeps
the Text-to-Image conversion application running smoothly,
even when unexpected twists and turns come into play. It’s
all about ensuring that users have a reliable and user-friendly
platform where they can bring their creative ideas to life with
unwavering confidence.

• OCR Failures
• Missing Fonts
• Image Creation Errors
• Input Validation
• File Handling Errors
• Exception Handling

D. Key features and Results

Key Features

• Text Input: Users can enter detailed textual descriptions,
allowing for creative expression and specificity in gener-
ating images.

• Image Quantity Control: Users have the flexibility to
specify the number of images they want the system to
generate based on the given text.

• Image Size Customization: Users can choose their pre-
ferred dimensions for the generated images, enabling
compatibility with various platforms and use cases.

• Advanced AI Algorithms: The system employs state-of-
the-art AI models to convert textual information into co-
herent visual depictions, ensuring a high level of accuracy
and realism.

• Creative Diversity: The generated images cover a wide
spectrum of subjects, settings, and styles, providing users
with a diverse range of visual outputs.

• Real-Time Preview: Users can preview generated images
before finalizing their selections, enabling them to make
adjustments to the text or settings as needed.

• Download and Sharing: Once satisfied with the generated
images, users can download them in their chosen size and
format, making them suitable for various projects. Images
can also be easily shared on social media platforms.

The Text-to-Image Generator is an innovative web applica-
tion that transforms textual descriptions into captivating visual
representations. Users can simply input a description in natural
language, specify the desired number of images, and select the
image size preferences. The application leverages cutting-edge
image generation techniques to create high-quality images that
closely match the provided text.

Fig. 3. Landing Page-1

Fig. 4. Landing Page-1

Fig. 5. Landing Page-1

Fig. 6. Landing Page-1

CONCLUSION AND FUTURE WORK

Text-to-image conversion is like a magic wand that trans-
forms words into pictures, making communication more vi-
brant and engaging. With tools like EasyOCR and Python
libraries, this technology becomes accessible to everyone,
fueling creativity and breaking down barriers in various areas,
from sparking imagination to making digital content more
inclusive. As it evolves, text-to-image conversion promises
to revolutionize our digital experiences, paving the way for
innovation and ensuring that everyone can participate in the
digital world.

The field of text-to-image generation is rapidly evolving,
and there are many exciting directions for future research.
Some potential areas for future work include:

• Elevating Image Quality
• Tackling Complex Text
• Embracing Multimodal Input
• Real-Time Image Generation
• Enhancing Interpretability and Control

REFERENCES

[1] Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X. (2017).
StackGAN: Text to photo-realistic image synthesis with stacked gen-
erative adversarial networks. In Proceedings of the IEEE International
Conference on Computer Vision (pp. 5907-5915).

[2] Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H. (2016).
Generative adversarial text to image synthesis. In Proceedings of the
33rd International Conference on Machine Learning (pp. 1060-1069).

[3] Xu, T., Zhang, P., Huang, Q., Zhang, H., Gan, Z., Huang, X. (2018).
Attngan: Fine-grained text to image generation with attentional gener-
ative adversarial networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (pp. 1316-1324).

[4] Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen,
M., Sutskever, I., Reed, S., Akata, Z., Lee, H., Schiele, B. (2021).
Zero-shot text-to-image generation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (pp.10665-
10675).

[5] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik1 Amit H.
Bermano Gal Chechik, Daniel CohenOr, Hao Tang, Xinxiao Wu, An-An
Liu, Yi Jin, and Nicu Sebe. ”An Image is Worth One Word: Personaliz-
ing Text-to-Image Generation using Textual Inversion.” Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2020, pp. 10670-10679.

[6] Akanksha Singh, Sonam Anekar, Ritika Shenoy, Han Zhang, Jun-
Yan Zhu, Ting-Chun Wang, and Lior Wolf. ”Text to Image using
Deep Learning.” Proceedings of the IEEE International Conference on
Computer Vision Workshops (ICCVW), 2017, pp. 1146-1154.

[7] Wentong Liao, Kai Hu, Michael Ying Yang, Bodo Rosenhahn, Jiebo
Luo, Chen Chen, Qiaoyong Zhong, and Hongyu Yang. ”Text to Image
Generation with Semantic-Spatial Aware GAN.” Proceedings of the
IEEE International Conference on Computer Vision (ICCV), 2019, pp.
10734-10743.

[8] Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H. (2016).
Generative adversarial text to image synthesis. In ICML’16 Proceedings
of the 33rd International Conference on International Conference on
Machine Learning (pp. 1060-1069). University of Michigan, Ann Arbor,
MI, USA.

[9] Shukla, S., Mitra, P., Chaudhuri, B. B., Kulkarni, C. R., Barbadekar,
A. B. (2019). Text Detection and Recognition: A Review. In 2019
3rd International Conference on Trends in Electronics and Informatics
(ICOEI) (pp. 1206-1211). IEEE.

