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Abstract

We introduce a neural model for approximate logical reasoning based upon learned
bi-directional graph convolutions on directed syntax graphs. The model avoids inflexible
inductive bias found in some previous work on this domain, while still producing competi-
tive results on a benchmark propositional entailment dataset. We further demonstrate the
generality of our work in a first-order context with a premise selection task. Such models
have applications for learned functions of logical data, such as in guiding theorem provers.

1 Introduction

Neural networks are ubiquitous in tasks in which features must be extracted from unstructured
data — tasks such as computer vision, or natural language processing. However, learning in a
similar way from data that are already highly-structured is only beginning to be studied, but
is sorely needed in fields such as program synthesis or automated reasoning. We approach this
area from guidance of automatic theorem provers for first-order logic: an undecidable setting
that nevertheless might benefit from heuristic guidance, as strategies for a subset of “useful
problems” can be learned this way. It should be noted that we do not aim to solve known
computationally-hard or undecidable problems with this approach, merely approximate these
functions for practical purposes. In this work we explore the use of neural models for heuristic
tasks on logical data, first in a propositional context, then progressing to a first-order setting.

Propositional Task and Dataset Evans et al. [3] introduce a dataset for studying the ability
of neural networks to perform tasks which are “primarily or purely about sequence structure”.
The dataset consists of tuples of the form (A,B, y) where A and B are propositional formulae
and y is the binary output variable. The task is to predict logical entailment: whether or not
A |= B holds in classical propositional logic. A and B use only propositional variables and the
connectives {¬,∧,∨,⇒} with the usual semantics. The dataset provides training, validation
and test sets, with the test set split into several categories: “easy”, “hard”, “big”, “massive”
and “exam”. The “massive” set is of particular interest to us as it contains larger entailment
problems, more similar in size to those found in real-world problems.

Previous Approaches PossibleWorldNet is introduced alongside this dataset as a possible
solution to the task: an unusual neural network architecture making use of algorithmic assis-
tance in generating repeated random “worlds” to test the truth of the entailment in that world,
in a similar way to model-based heuristic SAT solving. This approach performs exceptionally
well, but does suffer from inflexibility: it is unclear how this model would perform on harder
tasks without a finite number of possible worlds, or tasks where model-based heuristics don’t
perform as well. Tending instead toward a purely-neural approach, Chvalovský introduces Top-
DownNet [1], a recursively-evaluated neural network with impressive results on this dataset.
Graphical representations have been used with some success for logical tasks: Oľsák et al. intro-
duce a model based on message-passing networks working on hypergraphs [14], while Paliwal et
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Figure 1: Producing a DAG representation of (¬P ∧Q) ∨ ¬¬P .

al [15] use undirected graph convolutions for a higher-order task. An interesting effort related
to the propositional task is that of NeuroSAT [20], a neural network that learns to solve SAT
problems presented in conjunctive normal form.

Graph Neural Networks Graphs have historically proven difficult for learning algorithms
of various varieties, mostly due to a very rich structure. However, recent advances [12] have
produced a family of methods generally known as Graph Neural Networks, with graph convo-
lutions as a central technique. These are simple, efficient networks practically useful for many
tasks operating on graph data.

Contributions Our main contribution is a neural model working directly on logical syntax
that performs well on benchmark datasets, while remaining subjectively simple and flexible. In-
put representations retain all relevant information required to reconstruct a logically-equivalent
input. To achieve this we utilise a bi-directional convolution operator working over directed
graphs and experiment with different architectures to accommodate this approach. Strong per-
formance is shown on the propositional entailment dataset discussed above. Progressing to
first-order logic, we also demonstrate a lossless first-order encoding method and investigate the
performance of an identical network architecture.

2 Input Encoding

Directed acyclic graphs (DAGs) are a natural, lossless representation for most types of logical
formulae the authors are aware of; including modal, first-order and higher-order logics, as well
as other structural data such as type systems or parsed natural language. A formula-graph is
formed by taking a syntax tree and merging common sub-trees, followed by mapping distinct
named nodes to nameless nodes that remain distinct: an example is shown in Figure 1. Such
graphs have previously been used for problems such as premise selection [24] or search guidance
of automatic theorem provers [18]. It should be noted that the acyclic property of these graphs
does not seem to be particularly important — it just so happens that convenient representations
happen to be acyclic. This representation has several desirable properties:
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Table 1: Encoding Statistics

valid easy hard big massive exam

mean node count 23.5 23.7 47.5 51.4 80.2 9.1
maximum node count 37 39 65 86 102 13
standard deviation 4.6 4.7 5.9 11.0 6.7 2.1

mean symbol count 5.2 5.3 5.8 5.2 18.5 2.4

Compact size. Sufficiently de-duplicated syntax DAGs have little to no redundancy, and in
pathological cases syntax trees are made exponentially smaller.

Shared processing of redundant terms. Common sub-trees are mapped to the same DAG
node, so models that work on the DAG can identify common sub-terms trivially.

Bounded number of node labels. By use of nameless nodes, a finite number of different
node labels are found in any DAG. This allows for simple node representations and does
not require a separate textual embedding network, although this can be employed.

Natural representation of bound variables. Representing bound variables such as those
found in first-order logic can be difficult [17] — this representation side-steps most, if not
all, of these issues and naturally encodes α-equivalence.

One drawback of such DAGs as a representation for logical formulae is that they lack ordering
among node children: with a näıve encoding, the representation for A ⇒ B is the same as
B ⇒ A, but the two are clearly not equivalent in general. The same problem also arises with
first-order terms: f(c, x) is indistinguishable from f(x, c) [24]. However, this problem can be
removed by use of auxiliary nodes and edges such that an ordering can be retrieved, as shown
in Section 5. For the propositional dataset, the classical equivalence A⇒ B ≡ ¬A ∨B is used
to rewrite formulae, avoiding ordering issues. We also recast the entailment problem A |= B as
a satisfiability problem: is A ∧ ¬B unsatisfiable? These methods reduce the total number of
node labels used (4 in total — one for propositional variables, and one for each of {¬,∧,∨}),
and allow the network to re-use learned embeddings and filters for the existing operators.

3 Model

We introduce and motivate a novel neural architecture for learning based on DAG representa-
tions of logical formulae. Unusual neural structures were found to be useful, and are described
first, before these blocks are then combined into the model architecture.

3.1 Bi-directional Graph Convolutions

We assume the input DAG is a graph (X,A) where X is the node feature matrix and A is the
directed graph adjacency matrix. Various graph convolution operators [25] (denoted conv(X,A)
here as an arbitrary operator) have enjoyed recent success. These generalise the trainable
convolution operators found in image-processing networks to work on graphs, by allowing each
layer of the network to produce an output node per input node based on the input node’s
existing data and that of neighbouring nodes connected with incoming edges. This can be seen
as passing messages around the graph: with k convolution layers, a conceptual “message” may
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Figure 2: Information flow in a formula DAG representing P ∧Q ∨ P .

propagate k hops across the graph. Here, we use the standard convolutional layer found in
Graph Convolutional Networks [12]. This operator suffers from a shortcoming (illustrated in
Figure 2) on DAGs such as those used here: information will only pass in one direction through
the DAG, as messages propagate only along incoming edges. Unidirectional messages are not
necessarily a problem: bottom-up schemes such as TreeRNNs [23] exist, Chvalovský uses a
top-down approach [1], and cyclic edges are another possible solution. However, to play to the
strengths of the graphical approach the ideal would have messages passed in both directions,
with messages from incoming and outgoing edges dealt with separately. It is possible to simply
make the input graph undirected, but this approach discards much of the crucial encoded
structure and was not found to perform much better than chance on the propositional task.
Instead, a bi-directional convolution is one possible solution:

biconv(X,A) = conv(X,A)‖conv(X,AT)

where the ‖ operator denotes feature concatenation. By convolving in both edge directions
and concatenating the node-level features produced, information may flow through the graph
in either direction while retaining edge direction information. A concern with the use of bi-
directional convolution in deep networks is that each unidirectional convolution must decrease
the size of output features by a factor of at least 2 in order to avoid exponential blowup in
the size of feature vectors as the graph propagates through the network. Due to the use of a
DenseNet-style block with feature reduction built-in, this was not an issue here.

3.2 DenseNet-style blocks

Recent trends in deep learning for image processing suggest that including shorter “skip” con-
nections between earlier stages and later stages in a deep convolutional network can be ben-
eficial [8]. DenseNets [9] take this to a logical extreme, introducing direct connections from
any layer in a block to all subsequent layers. We found a graphical analogue of this style of
architecture very useful. Suppose that Xi−1 is the input of some convolutional layer Hi. Then,
by analogy with DenseNets, Hi should also be given the outputs of previous layers as input:

Xi = Hi (X0‖X1‖ . . . ‖Xi−1,A)

However, in later layers this node-level input vector becomes very large for a computationally-
expensive convolutional layer such as Hi. DenseNets also include measures designed to reduce
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the size of inputs to convolutional layers, such as 1 × 1 convolutions. We include an analo-
gous “compression” fully-connected layer h, which reduces the input size before convolution by
allowing the network to project relevant node features from previous layers:

Xi = Hi (h (X0‖X1‖ . . . ‖Xi−1) ,A)

3.3 Graph Isomorphism Networks and Pooling

It has been shown that the standard graph convolution layer is incapable of distinguishing
some types of graph. Since logical reasoning is almost entirely about graph structure and is
known to be computationally hard, it was expected that the more-powerful Graph Isomorphism
Networks [25] would produce better results, but this was not found to be the case. Similarly, lo-
calised pooling is well-known to be useful in image processing tasks, and its graphical analogues
such as top-k pooling [5] and edge contraction pooling [2] also perform well on some benchmark
tasks. These also appear useful here, perhaps corresponding to the human approach of simpli-
fying sub-formulae. However, these were also not found to be useful, possibly due to the lack of
redundancy in formula graphs. Further investigations into integrating these powerful methods
is left as future work.

3.4 Architecture

A simplistic neural architecture is described. Batch normalisation (BN) [10] is utilised before
convolutional and fully-connected layers, and rectified linear units (ReLU) [13] are used as
nonlinearities throughout, except for the embedding layer (no activation) and the output layer.

Embedding. An embedding layer maps one-hot input node features into node features of the
size used in convolutional layers.

Dense Block. DenseNet-style convolutional layers follow, including the fully-connected net-
work so that each layer consists ReLU-BN-FC-ReLU-BN-BiConv. Only one block is used,
with each layer using all previous layers’ outputs.

Global Average Pooling. At this point the graph is collapsed via whole-graph average pool-
ing into a single vector. Passing forward outputs from all layers in the dense block to be
pooled was found to stabilise and accelerate training significantly.

Output Layer. A fully-connected layer produces the final classification output.

A relatively large number of convolutional layers — 48 — are included in the dense block, for
both theoretical and practical reasons. Theoretically, if information from one part of the graph
must be passed to another some distance away in order to determine entailment or otherwise,
then a greater number of layers can prevent the network running out of “hops” to transmit this
information. Practically, more layers were found to perform better, particularly on the larger
test categories, confirming the theoretical intuition. In principle there is no limit to the number
of layers that might be gainfully included.

4 Experimental Setup and Results

Source code for an implementation using the PyTorch Geometric [4] extension library for Py-
Torch [16] is available1.

1https://github.com/MichaelRawson/gnn-entailment
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Table 2: Network and Training Hyper-Parameters

network training

input features 4 batch size 64
convolutional features 16 momentum 0.9
convolutional layers 48 weight decay 0.0001

initial min. learning rate 0.01
initial max. learning rate 0.1
learning rate decay factor 0.99995
learning rate cycle length 8000

Table 3: Propositional Entailment Accuracy

model valid easy hard big massive exam

PossibleWorldNet 98.7 98.6 96.7 93.9 73.4 96.0
TopDownNet 95.5 95.9 83.2 81.6 83.6 96.0

Contribution 99.4 99.3 91.2 88.3 89.2 97.0

Training Training setup generally follows that suggested for DenseNets [9]: the network
is trained using stochastic gradient descent with Nesterov momentum [22] and weight decay,
with the suggested parameters. Parameter initialisation uses PyTorch’s defaults: “Xavier”
initialisation [6] for convolutional weights and “He” initialisation [7] for fully-connected weights.
A cyclic learning rate [21] was found to be useful for this model — we applied a learning rate
schedule (“exp range” in PyTorch) in which the learning rate cycles between minimum and
maximum learning rates over a certain number of minibatches, while these extremes themselves
decay over time. Training continued until validation loss ceased to improve. See Table 2 for
training parameter details.

Augmentation No data augmentation is used as the dataset is relatively large already, and
further it is unclear what augmentation would be applied: the “symbolic vocabulary permu-
tation” approach [3] is not applicable here due to the nameless representation, but randomly
altering the structure of the graph does not seem useful as it could well change the value of y
unintentionally. One could imagine a semantic augmentation in which A is made stronger or
B weaker — this would produce data augmentation without invalidating the value of y.

Reproducibility Results are reproducible, but with caveats. Training runs performed on a
CPU are fully deterministic, but tediously slow. Conversely, training runs performed on a GPU
are not fully deterministic2, but are significantly accelerated. The results reported here are
obtained with a GPU, but produce very similar results on repeated runs in practice. This is a
significant limitation of this work that we hope to address if and when a suitable deterministic
implementation becomes available.

2An unfortunate consequence of GPU-accelerated “scatter” operations. See https://pytorch.org/docs/

stable/notes/randomness.html
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Results Experimental results are shown in Table 3. Results reported from PossibleWorldNet
and TopDownNet (d = 1024) are also included verbatim, without reproduction, for compari-
son. Test scores of the best-performing model on each data split are highlighted. Results show
that our model is competitive on the test categories, both with algorithmically-assisted ap-
proaches (PossibleWorldNet), and with the a pure neural approach (TopDownNet). The model
significantly outperforms on the “massive” test category.

Discussion We conjecture that our model generalises to some degree the approach taken
with TopDownNet. In our model arbitrary message-passing schemes within the entire DAG
are permitted, rather than TopDownNet’s strict top-down/recurrent approach, which may go
some way to explaining the difference in performance. However, the relationship with Possible-
WorldNet is less clear-cut, and this is reflected in results: PossibleWorldNet remains unbeaten
on the “hard” and “big” categories, but is surpassed on all others.

5 First-Order Logic

We demonstrate the flexibility and generality of our approach by also applying the same model
without further adaptation or tuning to a different dataset expressed in first-order logic.

Dataset We employ the Mizar/DeepMath premise-selection dataset [11] used in the evalu-
ation of the hypergraph model of Oľsák et al. The task is to predict whether or not a given
premise is required for a given conjecture, both expressed in full first-order logic. Unfortunately,
we cannot produce a direct comparison as formulae are clausified in their work, which we do
not attempt and simply encode the whole formula as presented. It is unclear to what extent
clausification helps or hinders machine learning approaches.

Representation A similar representation to that in the propositional case is used here. How-
ever, argument order in function and predicate application must be preserved in order to main-
tain a lossless representation. This is achieved by use of an auxiliary “argument node” for
each argument in an application, connected by edges indicating the order of arguments, shown
in Figure 3. Quantifier nodes have two children: the variable which they bind, and the sub-
formula in which the variable is bound. More space-efficient or otherwise performant graph
representations are a possibility left as future work. 17 node types are used in total.

Training and Results We used an identical configuration as with the propositional case: it
is possible that with some tuning better performance can be produced. We do however note
that using fewer layers, (down to around 24 — half of the original number) did not seem to
hurt performance for this benchmark and significantly reduced computation requirements and
memory usage. Data was split at the conjecture level into 29,144 training conjectures, 3252
testing conjectures, and a validation set of 128. The model achieves a classification accuracy
around 76% on the unseen test set.

Discussion On this task the network does not reach the state of the art. However, without
tuning we consider this a good result: the network architecture is able to perform without much
adaptation on more complex tasks expressed in different logics.
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Figure 3: First-order graph encodings, showing (a) argument ordering and (b) variable binding.

6 Conclusions and Future Work

We explore directed-graph representations and a new architecture for logical approximation
tasks and show that they have a number of advantages — notably simplicity — and good
performance characteristics. The approach can work over many different logics in principle,
and practical experiment suggests this is true in practice. The network does not utilise any
algorithmic assistance as PossibleWorldNet does, yet achieves competitive performance — this
allows the network to process similar tasks which do not have a useful concept of “possible
worlds”. Combining this work with the best of other approaches, such as using the densely-
connected network architecture with hypergraph methods, is a promising direction.

In some applications, such as guiding automatic theorem provers, network prediction through-
put is crucial. High-performance automatic theorem prover internals typically use a graphical
representation [19], so graphs are a natural choice for these structures. Additionally, graph neu-
ral networks parallelise [4] somewhat more naturally than previous approaches such as TreeNets,
suggesting that this style of network may be more applicable to these domains.

Much future work is possible. No systematic effort has been made to tune network hyper-
parameters or overall architecture yet. In particular, we suspect that multiple dense blocks
might use fewer parameters or perform better than one large block. Other convolution methods
and the conspicuous absence of local pooling may also be investigated. We aim to apply some
variation of this work to guidance scenarios for first-order provers in the medium-term.
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