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ABSTRACT 
The Artificial Bee Colony (ABC) algorithm is widely used to achieve optimum solution in a 

short time in integer-based optimization problems. However, the complexity of integer-based 
problems such as Knapsack Problems (KP) requires robust algorithms to avoid excessive solution 
search time. ABC algorithm that provides both the exploitation and the exploration approach is used 
as an alternative approach for various KP problems in the literature. However, it is rarely used for the 
Three-Dimensional Bin Packing Problem (3DBPP) which is an important part of the transportation 
systems. In this study, the exploitation and exploration aspects of the ABC algorithm are improved 
by using memory mechanisms and genetic operators to develop two different hybrid ABC algorithms. 
The developed algorithms and the basic ABC algorithm are applied to a generated 3DBPP dataset to 
observe the effects of the memory mechanism and the genetic operators separately. The results show 
that the genetic operators are more effective than the memory mechanism to develop a hybrid ABC 
algorithm, for solving heterogeneous 3DBPPs. 
 

1 INTRODUCTION 
Containers are one of the basic elements of transportation networks. Commonly used containers 

to be filled by many goods for distribution to the same or different locations have a variety of 
dimensions. Allocating items into limited spaces, is a combinatorial optimization problem and bin 
packing problem (BPP) is a branch of knapsack problems (KP), where a set of items is loaded into 
multiple capacitated bins. If the sizes of items and bins differ in all three direction, this type of 
problem is called as the three-dimensional bin packing problem (3D-BPP) [1]. 

First part of 3D-BPP researches focused on to improve the mathematical modellings [2] for 
better item allocation approach, the second part of the researches proposed solution approaches [3] 
for variable bin packing conditions and constraints, and the last part of the researches has improved 



the item allocation orders with heuristic methods [4]–[6] to provide better solutions compared to the 
integer-based programming approaches. 

Artificial Bee Colony (ABC) algorithm is a neuro-inspired meta-heuristic approach based on 
foraging behavior of the bee colonies and the effectiveness of the ABC algorithm has been proved by 
many one-dimensional KP researches [7], [8] beside the previous work [9]. However, the ABC 
algorithm has been scarcely used for 3D-BPP and this study aims to contribute to this branch of BPP, 
by using the ABC algorithm as a solution search approach. 

Genetic Algorithm (GA) based on improving the randomly generated individuals of the 
population thorough iterations, and Tabu Search (TS) based on restricting the search moves to explore 
the best problem solution, are other heuristic methods commonly used for KP and can likewise be 
used for 3D-BPP. Gehring and Bortfeldt [10] proposed one of the first GAs for the Single Container 
Loading Problem (SCLP), a branch of the KP, to satisfy the loading constraints when allocating items 
to the container. Bortfeldt and Gehring [11] also proposed a hybrid GA to optimize the container 
loading plans by building layers of well-classified items. Wu et al. [12] used GA for Strip Packing 
Problem (SPP) to optimize the bin packing plan to determine the height of bins in use. Kang et al. [4] 
used GA to minimize the number of rectangular residual spaces in the bins to reduce the number of 
bins in use. 

Bortfeldt and Gehring [13] also implemented TS for SCLP to minimize the volume of 
rectangular residual spaces in the container by selecting the best item in each allocation. Liu et al. 
[14] used a hybrid TS that selects items not only individually but also as groups in each allocation 
and provides alternatives for container loading solutions by allocating the assigned items vertically 
or horizontally. Mack et al. [15] used TS as a reinforcement to the hybrid algorithm to avoid 
abandoned solutions to be re-generated over a period of time. Zhu et al. [16] used TS to select one of 
item placement strategies (deep-bottom-left or maximum touching area) in each allocation step to 
obtain the optimum loading solution. 

Genetic operators (mutation and crossover) in GA, and TS strategies has been used as 
reinforcement approaches to strengthen the exploration and the exploitation aspects of the ABC 
algorithm respectively. Ozturk et al. [8] and Panahi and Navimipour [17] used genetic operators to 
improve the exploration capability of the ABC algorithm by increasing the number of alternative 
solutions around existing ones in the population. The new alternative solutions were generated in both 
employed bee and onlooker bee phase, using the crossover operator between the current solution, two 
random neighbor solution, zero solution and best solution obtained. All the solutions obtained after 
crossover were mutated before choosing the best alternative as the new solution among the current 
and generated solutions. Chaurasia et al. [18] simplified the search process in the ABC algorithm by 
using 3-point insertion method to generate new solutions from the current one and one of its random 
neighbors. In this way, the number of function evaluations was reduced, compared to the approach in 
[8]. 

TS strategies avoid the repetitive search steps while generating new solutions by classifying 
steps as efficient or inefficient to save in different tabu lists. Chengli et al. [19] integrated a memory 
mechanism into the ABC algorithm to save successful parameter pairs for reuse in next iterations to 
increase the probability of escaping local optimum. In the previous study [9], a memory mechanism 
was integrated into the ABC algorithm to save inefficient solutions into the Short-Term Tabu List 
(STTL) to improve the exploitation ability in the neighborhood search phase. 

This study aims to improve the ABC algorithm separately with genetic operators and a memory 
mechanism, and then observe the effects of the two reinforcement approaches on the ABC algorithm. 
The basic ABC algorithm, the memory integrated ABC (MIABC) algorithm and the genetic operator-
based ABC (GABC) algorithm were separately applied to a generated 3D-BPP data set. The rest of 



the paper organized follows: the brief explanation of 3D-BPP and the way of its implementation in 
this study is provided in Section 2; the proposed solution approaches are explained in Section 3; 
results from applied approaches are represented in Section 4, and Section 5 concludes with the future 
work and inferences about research undertaken. 

 
2 3D BIN PACKING PROBLEM 

3D-BPP is a branch of KP based on placing the entire set of 3D elements into as few 3D bins 
as possible, so the aim is to maximize the average utilization ratio (UR) of the bin in use without item 
intersection and dimensional exceeding. The average utilization ratio is calculated as shown in Eq. 
(1) and Eq. (2), without considering any other variables but the volume of the assigned items: 
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The average UR in Eq. (1) equals the sum of the volumes of all items assigned to the bins 
divided by the total volume of the bins used where 𝑎() ∈ [0, 1] is an item assignment variable, 𝑣() is 
the volume of the assigned item 𝑖 = 1,… , 𝑛, and 𝑉) is the volume of bin 𝑏 = 1,… , 𝐶. In this study, 
𝑉) is identical for all bins. The total volume of the assigned items in each bin cannot be larger than 
the capacity of the bin as shown in Eq. (2). 

 

 
Figure 1: Bin Packing Sequence 

 
In this study, the items are divided into five types for each problem set, and each item type can 

be placed in the bin in six orientation. The bin packing process begins by generating a packing 
sequence consisting of the item types  𝑡	 = 	0, . . . , 5 in the first row and the item orientation 𝑜	 =
	0, . . . , 5 in the second row in each column, as shown in Figure (1). Types and orientations are 
randomly placed in the packing sequence in pairs. Then, the items are placed into the first bin 
according to the placement order using the deep-bottom-left first (DBLF) item placement approach. 
Whole packing sequence is assigned to bins according to first-fit approach, that allocates the next 
item, starting with the first bin each time, whichever bin it can fit in first.  
 



3 HEURISTIC APPROACHES FOR 3D BIN PACKING PROBLEM 
3.1 Artificial Bee Colony Algorithm for 3D Bin Packing Problem 

The ABC algorithm was developed by Karaboga and mimics the foraging behaviors of 
honeybees that are divided into three groups; employed bees, onlooker bees and scout bees. The ABC 
algorithm was originally designed for numerical problems [20] and eventually modified for integer-
based problems [21] due to the easy applicability and the search simplicity. 

The initial population in the basic ABC algorithm is generated from a randomly chosen solution 
using Eq. (3) for numerical problems, where 𝑖	 = 	1. . . 𝑆𝑁 refers to the i-th food source and 𝑆𝑁 refers 
to the total number of bees and food sources in the search area. 𝑗	 = 	1. . . 𝐷 refers to the j-th dimension 
value of the i-th food source between an upper and a lower bound and 𝐷 refers to the total number of 
parameters of the i-th food source to optimize. In this study, the initial population is generated from 
a random packing sequence by replacing one pair of type and orientation variables with a randomly 
selected pair, in each generation process. 

𝑥(H = 	 𝑥HI(, + 𝑟𝑎𝑛𝑑(0,1)O𝑥HIPQ − 𝑥HI(,S  (3) 

In the employed bee phase, each employed bee visits only one solution to generate a new one 
using Eq. (4) for numerical problems, where 𝑣(H is the new solution generated from the interaction 
between the same 𝑗 elements of visited solution 𝑥( and its neighbor solution 𝑥T, and the difference 
between 𝑥( and 𝑥T is weighted by the 𝜙(H, which takes values between [−1, 1]. In this study, the new 
solution is generated according to binary optimization scheme using Eq. (5), where the ⨁ symbol is 
an xor operator [22] corresponding to the (– ) operator in Eq. (4), to measure the difference between 
𝑥( and 𝑥T. If the fitness value 𝑓YZ is better than the visited solution 𝑥(’s, 𝑣( replaces it. Otherwise, the 
failure counter of the visited solution 𝑓𝑎𝑖𝑙𝑢𝑟𝑒( is increased by one. 

𝑣(H = 	 𝑥(H + 𝜙(HO𝑥(H − 𝑥THS  (4) 
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In the onlooker bee phase, the bees in the hive evaluate the fitness values of the solutions 
calculated in Eq. (1) and choose one of them with the probability 𝑝( calculated as in Eq. (6). If the 
onlooker bees improve the current food sources, they memorize the new food sources and forget the 
old one. Otherwise, 𝑓𝑎𝑖𝑙𝑢𝑟𝑒( value is increased by one again. 
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If the maximum failure exceeds the failure limit 𝐿, the onlooker bee abandons the food source, 
except the food source with the best quality, and turns into the scout bee that explores new food 
sources randomly by using Eq. (3). In each of the iteration, only one onlooker bee is allowed to 
become a scout bee. 

 

3.2 Memory Integrated Artificial Bee Colony Algorithm 
The honeybees in ABC algorithm forget all the information about the improvement process, 

once they abandon the food source that reaches the maximum failure limit in the population. 
However, the information about a succeeded or failed move from 𝑥( to 𝑥H can be used by other 



honeybees to accelerate the search process. In this study, the search moves (𝑚𝑜𝑣𝑒(H) are represented 
as arrays in which the processed item with the related elements in 𝑥( and 𝑥H are saved, as shown in 
Fig. (2). In the 𝑚𝑜𝑣𝑒(H array, the first element indicates the packing order of the item and the 
placement information about the item in 𝑥( and 𝑥H is saved respectively in the rest of the array. 

 
Figure 2: The Memory Mechanism for ABC Algorithm 

 

If 𝑚𝑜𝑣𝑒(H improves the solution in the employed and the onlooker bee phase, it is saved in 
Intermediate-Term Tabu List (ITTL). Besides, 𝑚𝑜𝑣𝑒(H is saved in Long-Term Tabu List (LTTL) [23], 
if the scout bee, that abandoned a solution, meets the c𝑓Qdefg −	𝑓Qhc < 	 c𝑓Qh −	𝑓Qjeklc and 𝑓Qh > 	𝑓QZ 
conditions, and manages to carry the solution to a fruitful search area. The next moves in the 
employed and onlooker bee phase are selected randomly from ITTL and LTTL list or generated 
randomly with a weight probability calculated in Eq. (7), where 𝑖𝑤o is the intensification weight of 
the candidate path (ITTL, LTTL or random search) and 𝑖𝑛𝑡𝑠𝑐𝑜𝑟𝑒o is the intensification score that 
must be at least one for all paths. 
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If the selected path 𝑝 improves the visited solution, 𝑖𝑛𝑡𝑠𝑐𝑜𝑟𝑒o is increased by one or reduced 
by one if the path 𝑝 fails to improve the visited solution. On the other hand, if 𝑚𝑜𝑣𝑒(H fails to improve 
the visited solution, it is saved in Short-Term Tabu List (STTL) and is prohibited to be used to 
generate new solutions for a limited number of iterations [9]. 

 

3.3 Genetic Operator Based Artificial Bee Colony Algorithm 
GA algorithm diversifies the search randomly by using cross-over and mutation operators. In 

this section, four types of operator are used for the path selection in the employed bee and onlooker 
bee phase: (i) only cross-over operator, (ii) only mutation operator, (iii) cross-over and mutation 
operator together, and (iv) random search operator. 

Cross-over operator in GA, generates two child solutions by taking the random elements of 
parent solutions 𝑥( and 𝑥T. However, we need the cross-over operator in ABC algorithm to generate 
one child solution for each 𝑥(. Chaurasia et al. [18] proposed a genetic operator-based ABC algorithm, 
in which the multi-point insert method replaces the cross-over operator by generating one child 
solution from two parent solutions as shown in Fig. (3). In genetic operator-based ABC (GABC) 
algorithm, multi-point insert method is used as a path to generate the new solution. 



 
Figure 3: Multi-Point Insert Method 

The path that uses the mutation operator to swap only two item-elements of the 𝑥( to generate 
the new solutions. The third path is to use multi-point insert method and mutation operator 
respectively to generate the new solution 𝑥H. The last path is the random search same as in MIABC 
algorithm. The 𝑖𝑛𝑡𝑠𝑐𝑜𝑟𝑒o and 𝑖𝑤o of the paths are calculated as in Eq. (7) to select the one of paths 
by roulette wheel probability. 

In the GABC algorithm, the solution search paths; (i) random food source replacement 𝑟𝑓𝑠 
using random search and (ii) elite food source guided replacement	𝑒𝑓𝑠 using the interaction between 
the abandoned solution and the elite food sources "	𝑒 ", are weighted to improve the diversification 
aspect in the re-scout bee phase [24]. 
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If the fitness value of the generated solution, that replaces the abandoned one, meets the 
c𝑓Qdefg −	𝑓Qhc < 	 c𝑓Qh −	𝑓Qjeklc and 𝑓Qh > 	𝑓QZ conditions, the diversification score of the path 
𝑑𝑖𝑣𝑠𝑐𝑜𝑟𝑒o is increased by one. The search path in the re-scout bee phase is selected by roulette wheel 
probability calculated as in Eq. (8), where  𝑑𝑤o is the diversification weight of the candidate path 
(𝑟𝑓𝑠 or 𝑒𝑓𝑠). 

 

4 COMPUTATIONAL RESULTS AND DISCUSSION 
The basic ABC, MIABC and GABC algorithms that are developed for 3D-BPP have been 

coded in MATLAB R2016 version software. All experimental runs are performed by the CPU that 
has 4 GB RAM and 3.10 GHz processors using Windows 7 operating system. Developed algorithms 
are tested on a randomly generated dataset according to the random instance generator used by [1]. 
The generated data set includes following five types of random items to allocate into the bins with 
uniform dimensions where 𝐷 = 𝑊 = 𝐻 = 100.  

Each data set class consists of five item type 𝑘 = (1,… ,5), items of type 𝑘 are chosen with 
probability 60%, and the rest four types are chosen with probability 10%, so the developed algorithms 
are tested on three classes of data sets consisting of 25 sub-problems. Each data set class considers 
the number of items to be placed as 20, 50, and 100, respectively. 

Parameter variables of ABC algorithm, the size of population 𝑆𝑁, total number of evaluations 
𝐸𝑣𝑎𝑙, and the failure limit of each bee L determine framework of the solution search process, where 



𝑛 is the number of items to be placed into bins. In addition, the number of elite bees e	determines 
how many problem solutions are capable of attracting others in the population to reduce the duration 
of convergence of the GABC algorithm. The size of the STTL, LTTL and ITTL determines the 
number of search moves saved into the list that guides the search using useful moves and avoiding 
prohibited ones. The parameter values were set as seen in Table 1. 

 
Table 1: Parametric Details of the Algorithmic Configuration 

Algorithm SN	 Eval	 e	 m	 L	
ABC 50 5𝑛� – – 25 
MIABC 50  5𝑛� – 𝑛 × 𝑆𝑁 25 
GABC 50 5𝑛� 10 – 25 

 
The basic ABC algorithm involves generating the first population from one individual and the 

same initial populations are randomly generated for sub-problems of each data set class. The graphs 
in Fig. (4) shows the search history of average obtained values of 25 sub-problems for each data set 
class in the average bin usage ratio (BUR) obtained by the basic ABC algorithm and proposed 
approaches, and Table 2 shows performance of the three approaches on the generated data set. The 
search history of each class is statistically analyzed for the basic ABC and the proposed approaches 
by using one-way ANOVA and Fisher’s Least Significant Difference (LSD) post hoc test. 

 

 

 
Figure 4: Search History of Three Classes of Data Sets in BUR Value 
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Fig. (4) depicts the change of BUR values over the evaluations. The characteristics of the three 
approaches vary according to the data set class they are applied to. The memory mechanism and 
genetic operators affect the basic ABC algorithm significantly as seen in the graphs in Fig. (4), where 
the three approaches are significantly different (𝑝 < .05) for all three data set classes. The MIABC 
algorithm is superior to the GABC algorithm with a difference of 3% for the Class 1 data set and 1% 
for the Class 2 data set, as seen in Table 2. However, as the complexity of the problem increases with 
the number of items to be placed, the MIABC algorithm loses its effectiveness for Class 3 data set 
and even lags the basic ABC algorithm. The memory mechanism shows its effectiveness in early 
stage of the search with significant outcomes; however, the search is limited in the long run by the 
memory mechanism itself. The results of the MIABC algorithm and the search process show that the 
memorized movements can mislead the search. As the number of prohibited moves is increased, the 
possibility of exploring new solutions in the local area is also restricted. On the other hand, the 
memorized moves in ITTL and LTTL are not as effective as expected to lead the solution search to 
fruitful areas in the search space. 

 
Table 2: Average Performance of the Basic ABC Algorithm and Proposed Approaches Over 

Average BUR Values for Each Data Set Class 

  ABC MIABC GABC 
Class 1 (n=20) 0.6870 0.7279 0.6968 
Class 2 (n=50) 0.7302 0.7431 0.7332 
Class 3 (n=100) 0.7440 0.7392 0.7461 

 
GABC algorithm manages to improve the basic ABC algorithm for all data set classes. 

However, although the GABC algorithm obtains significantly better results than the ABC algorithm 
in the early stage, the difference between two approaches closes over time. Unlike the MIABC 
algorithm, the GABC algorithm spreads the solution search through evaluations and provides a 
continuous improvement in the BUR value. Besides, the change in the problem complexity does not 
affect the GABC algorithm as much as the MIABC algorithm. 

As a result, the capacity of memory mechanism is limited for three-dimensional bin packing 
problems and the memory integrated ABC algorithm converges prematurely when it is applied on 
high complex problems. However, the genetic operator integrated ABC algorithm avoids getting 
stuck at the local optimum with its strong diversification aspect, and the genetic operator-based 
reinforcement more useful than the memory mechanism in the long run. 

 
5 CONCLUSION 

The ABC algorithm is commonly used for numeric optimization problems. However, a binary 
optimization-based ABC algorithm has recently been applied to the three-dimensional bin packing 
problems, which is a kind of knapsack problem and one of the main problems of transport systems. 
In most ABC algorithms applied knapsack problem studies, a number of dimensions are considered 
as the number of parameters for each item, while in this study three-dimensional items are regarded 
as orthogonal objects to be placed in a three-dimensional knapsack called as a container. 

The ABC algorithm is a powerful and efficient algorithm for numerical optimization with a 
combination of intensification and diversification aspects. However, enhanced ABC algorithms are 
required to solve complex problems such as 3D bin packing problems. This study focuses on 
enhancing the search mechanisms that are used in local search and global search to develop a robust 
ABC algorithm for container loading problems. A memory mechanism is used to avoid repetitive 



item placement solutions and to benefit from the fruitful ones in local search, while the genetic 
operators are integrated into the basic ABC algorithm to expand the global search area in order to 
discover potential better solutions. Reinforcement approaches that improve different aspects of the 
basic ABC algorithm are analyzed separately to understand their effect on the algorithm. 

As a result, this study proposes a memory-integrated ABC algorithm to meticulously select 
useful search steps in local search, and a genetic operator-based ABC algorithm to intelligently 
generate the next search steps in global search inspired by efficient solutions. The results show that 
using the memory mechanism is more effective in the short run. However, it loses its effectiveness in 
the long run and cannot be applied to the 3D bin packing problems with high complexity, while the 
genetic operator-based ABC algorithm provides better solutions in the long run and is more robust 
than MIABC algorithm, in high complexity. 

The BUR values obtained from the proposed algorithms can be improved in future studies, 
focusing on bin packing heuristics, based on decoding the complete random packing sequence in this 
study. The packing sequences can be generated that place similar items in blocks, layers or stacks to 
reduce spaces in bins. On the other hand, a joint hybrid algorithm, that uses both memory mechanism 
and genetic operators, can be developed to observe the effects of the proposed approaches when they 
are used together as reinforcement approaches for the basic ABC algorithm.  
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