
EasyChair Preprint
№ 9201

A Comprehensive Survey of Metaheuristic
Algorithms Applying in Mechanical Design
Optimization Problems

Hsu-Hsing Chen and Feng-Cheng Yang

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 31, 2022



A Comprehensive Survey of Metaheuristic
Algorithms Applying in Mechanical Design

Optimization Problems
Hsu-Hsing Chen

Institute of Industrial Engineering
National Taiwan University

Taipei, Taiwan
hsuhsingchen@ntu.edu.tw

Feng-Cheng Yang
Institute of Industrial Engineering

National Taiwan University
Taipei, Taiwan

iefcyang@ntu.edu.tw

Abstract—Metaheuristic algorithms have received great pop-
ularity since the first metaheuristic algorithm—Genetic Algo-
rithm—was proposed in 1975. However, conventionally the per-
formances of metaheuristic algorithms are evaluated by a series
of unconstrained mathematical functions. Unfortunately, in real-
world problems, for example, mechanical design optimization
problems, the landscapes of the search area are far different from
mathematical ones, and most importantly, the constraints are
almost always imposed. Therefore, in this work, 19 metaheuristic
algorithms have been implemented to solve three mechanical
design optimization problems and evaluate their performance.
Results show that the performances of metaheuristic algorithms
could be determined by the initial convergence speed.

Index Terms—Metaheuristic algorithm, Evolutionary algo-
rithm, optimization, mechanical design

I. INTRODUCTION

Design problems have always been of great concern in
mechanical engineering. However, delivering a feasible design
is not the only interest. Instead, an engineer may want to
find the best design, and the process of finding this best
design is called optimization [1]. Nowadays, some analytic
methods are widely used to help engineering design. How-
ever, these methods are usually restricted to problems having
exact solutions. For example, numerical solutions for the two-
position double-rocker design [2]; if there’s no exact solution,
some proposed guidelines may be considered, but the result
is often far from the optimum—for example, the Ziegler-
Nichols method for PID controller tuning [3]. Therefore, more
advanced and versatile methods should be employed. In this
project, the approach is called the metaheuristic algorithm.

A. Metaheuristic algorithms

In optimization problems, the goal is to find the best solution
among all feasible solutions [4]. However, the optimization
problem one might face is often non-linear and with many
local optima, where gradient-based methods would often fail
to find the best solution. To solve this problem, scientists
have turned to seek better solutions from animals or natural
phenomena, which is so-called metaheuristic algorithms.

In literature, dozens of metaheuristic algorithms have been
proposed. Some of the popular algorithms are Genetic Algo-
rithm (GA)[5], Particle Swarm Optimization (PSO)[6], Simu-
lated Annealing (SA)[7], Differential Evolution (DE)[8], and
Imperialist Competitive Algorithm (ICA)[9].

However, comprehensive surveys on the performance of
metaheuristic algorithms in real-life optimization problems,
especially in mechanical design optimization problems, are
still lacking. Even though, as suggested by the no free lunch
theorem [10], the performance of any algorithm is equivalent
when it is averaged out across all optimization problems. But
when we focus on only a particular optimization problem, an
algorithm may significantly outperform others. That is why
selecting a promising algorithm is vital for a specific problem.

Unfortunately, the suggestion of algorithm selection is
hardly found in the literature for mechanical design optimiza-
tion problems. Most of the papers either merely compare
the performance of a few types of algorithms on a single
mechanical design optimization problem or apply only one
particular algorithm to solving several problems. No thorough
comparison had proposed.

Therefore, we investigated 19 different metaheuristic al-
gorithms and compared their performances in three classic
mechanical engineering design problems. We hope this
research results will help engineers select robust and efficient
algorithms for their design optimization problems.

II. RELATED WORKS

Wu & Chow [11] reviewed four mechanical design opti-
mization problems [12] to test the performance of GA. Using
binary encoding, no specially designed crossover or mutation
was needed to deal with a mixed (discrete and continuous)
optimization problem.

Coello [13] provided a comprehensive review of
constrained-handling techniques for evolutionary algorithms
(EAs). In his work, solving techniques were categorized
by five approaches: 1) penalty functions, 2) dedicated
representations and operators, 3) repair algorithms, 4)
separation of objectives and constraints, and 5) hybrid



methods. By evaluating two mechanical design optimization
problems, the results suggested no significant difference
between these techniques. A more complicated constraint-
handling technique would only improve the result slightly.
Despite delivering comparisons of a wide variety of
constraint-handling techniques, his conclusion suggested
that when facing an unknown problem, the penalty-based
approaches are always the first choice due to their simplicity
and efficiency. Once the problem is identified, other
techniques should be explored and applied to cope with the
characteristics of the problem. For example, for combinatorial
optimization problems, the approach of repair algorithms
should be promising, or when dealing with linear constraints,
the special representation approach should be convenient.

Acharyya & Mandal [14] gave a comparative report on ap-
plying three evolutionary algorithms (EAs), Genetic Algorithm
(GA), Particle Swarm Optimization (PSO), and Differential
Evolution (DE), to four-bar linkage path generating problems.
By setting some prescribed points and corresponding angles of
the input member, the desired path is generated, and the point
of interest on the linkage can traverse the path approximately.
Once the motion equations are formulated, the position of the
point can be calculated from the given angle of the input.
Therefore, the deviation from the generated path of the point
can be calculated. The result suggested that DE outperformed
the other two EAs with quite a margin in the solution quality
and convergence speed.

III. METHODOLOGY

In this work, a python library was implemented1 to perform
the comparison of the 19 metaheuristic algorithms (brief
introduction to each algorithm is listed in the subsequent
section) on solving three mechanical design optimization
problems–Pressure Vessel Design, Spring Design, and Gear
Train Design. In solving a problem, an initial population was
established and used in all algorithms, and each algorithm was
independently executed for 30 runs to obtain the best objective
value, the objective average, and the standard deviation among
the 30 runs.

TABLE I
FULL LIST OF THE 19 METAHEURSITIC ALGORITHMS

Ant Lion Optimizer (ALO) Harmony Search (HS)
Bat Algorithm (BA) Memetic Algorithm (MA)
Cuckoo Search (CS) Particle Swarm Optimization (PSO)
Differential Evolution (DE) Simulated Annealing (SA)
Firefly Algorithm (FA) Sine Cosine Algorithm (SCA)
Genetic Algorithm (GA) Grey Wolf Optimizer (GWO)
Artificial Bee Colony Algorithm (ABC)
Flower Pollination Algorithm (FPA)
Gravitational Search Algorithm (GSA)
Imperialist Competitive Algorithm (ICA)
Shuffled Frog-Leaping Algorithm (SFLA)
Teaching-Learning-based Optimization (TLBO)
Whale Optimization Algorithm (WOA)

1https://github.com/markmarkchen/Metaheuristic-Algorithms

A. Brief Introduction to the 19 Metaheuristic Algorithms

The algorithms presented below are organized by their
similarities.

1) Differential evolution (DE): First introduced by Storn
& Price [8], Differential evolution (DE) has enjoyed great
success in the optimization field due to its simplicity and
robustness. Even though several variants of DE have later been
proposed, the underlying design paradigm remains the same:
improve each individual by comparing with a mutant solution
and accept the fitter one. In each variant of DE, the method
of producing a mutant is slightly different, but all follow the
following steps.

(i) Select an individual as the base vector.
(ii) Select a pair(s) of individuals and calculate their differ-

ences.
(iii) Conduct a weighted sum over the result from the step

(ii) and add it to the base vector to produce a temporary
mutant. (The weights are parameters and are sometimes
called the amplification factors.)

(iv) Apply a crossover between the temporary mutant and the
to-be-improved individual to produce the mutant.

2) Ant Lion Optimizer (ALO): In ALO [15], the whole
population is formed by antlions, and the goal is to improve
each antlion. To achieve that, in each iteration, ants (being the
preys) are sent out to perform random walks in the vicinity
of the assigned antlion. Once an ant finds a better solution,
the antlion would move to that place (improvement) to mimic
the hunting behavior. In addition, ALO also implements the
transition from exploration to exploitation by shrinking the
search radius of random walks during the process.

3) Artificial Bee Colony (ABC): The idea behind Artificial
Bee Colony [16] is to form a simplified model to simulate the
swarm intelligence of honey bees in maintaining the ecosystem
of a honeycomb. In the model, the to-be-improved individuals
(solutions) are referred to as food sources, and an employed
bee is assigned to each food source. During the optimization
process, the employed bee would first try to search for another
food source to find a better food location. Afterward, bees of
another type, called onlookers, are sent out to exploit each
food source further (a local search). If the food source does
not improve after a prescribed limit of iterations, the food
source is abandoned, and a new one is established randomly
in the search space.

4) Cuckoo Search(CS): The essential concept of Cuckoo
Search [17] is to simulate the unique hatching strategy of
cuckoo birds. Unlike other birds, some cuckoo species lay
their eggs in other birds’ nests called brood parasites. CS
performs a different updating strategy on each to-be-improved
individual—the host nest to simulate this behavior. In each
iteration, a cuckoo would randomly move to a location around
the assigned host nest by a particular method called Levy
flight. After evaluating the location, another host nest is
randomly picked; if the location is better, the newly picked
nest will move on to that location. At the end of each iteration,

https://github.com/markmarkchen/Metaheuristic-Algorithms


a specified portion of nests would be abandoned, and new ones
would be randomly located in the search space.

5) Shuffled Frog-Leaping Algorithm (SFLA): In Shuffled
Frog-Leaping Algorithm [18], the population is first divided
into sub-populations called memeplexes. In an iteration, the
goal is to improve the worst individual in each memeplex by
moving it toward the best individual of the memeplex. If not
improved, it would then try to move toward the best individual
of the entire population. If still not improved, generate a
random solution to replace it. After several such iterations,
all memeplexes would reunite, and new memeplexes would
be formed.

6) Imperialist Competitive Algorithm (ICA): As the name
suggests, Imperialist Competitive Algorithm [9] is inspired by
the conquer or be conquered operations in the 19th and the
20th century, when western countries were trying to expand
their power and spread their culture. Following this concept,
ICA refers to each solution agent as a country. The best
countries are assigned as the empires (or mother countries to
prevent confusion), while others are colonies. In the initial-
ization stage, colonies are partitioned by mother countries to
form empires. During the optimization process, each colony in
an empire would move toward the mother country, and once
a better solution is found, the mother country would move
on to that place. After updating the locations of colonies,
competition between each empire would start, and the weakest
empire, calculated by the total fitness of the empire, should
give up one of its colonies to the most substantial empire.

7) Particle Swarm Optimization (PSO): Particle swarm
optimization [6] is a population-based algorithm using swarm
intelligence. Each individual is analogous to a particle in PSO.
In each iteration, each particle would move toward the best
individual so far and its own previously best location. The
strengths of the two factors are controlled by two parameters
called learning parameters or acceleration constants.

8) Flower Pollination Algorithm (FPA): Similar to Particle
Swarm Optimization, each individual in Flower Pollination
Algorithm [19] either moves toward the best individual so far
by Levy flight or conducts a local search around itself. The
selection between the two methods is determined by chance.

9) Bat Algorithm (BA): With an almost identical approach
as Flower Pollination Algorithm, the only differences between
Bat Algorithm [20] and Flower Pollination Algorithm are that
the chance level between the two methods is adaptive during
the process and the Levy flight is replaced.

10) Teaching-Learning-based Optimization (TLBO): In
each iteration, there are two stages: the teaching stage and
the learning (competition) stage [21]. In the learning stage,
the difference between the mean of all individuals and the
teacher (the best individual) is calculated, and all individuals
are expected to move closer to the teacher. After updating the
location, all individuals would start competing with others by
randomly selecting another individual and deciding whether
to move toward or away from it by comparing their fitness.

11) Grey Wolf Optimizer (GWO): In Grey Wolf Optimizer
[22], the population is modeled as a wolf herd. In the herd, the

three leading wolves are called alpha, beta, and delta, respec-
tively. During the optimization process, these three leading
wolves are the top three individuals and would significantly
affect the searching direction of the entire herd. Therefore,
in the algorithm, all other wolves will simultaneously move
toward alpha, beta, and delta to locate in the promising search
region.

12) Sine Cosine Algorithm (SCA): Unlike Grey Wolf
Optimizer, Sine Cosine Algorithm [23] only leverages the
best individual as the moving direction. By coupling the sine
and the cosine terms in the location updating function, the
algorithm is thus called by the name.

13) Whale Optimization Algorithm (WOA): In contrast to
GWO and SCA, Whale Optimization Algorithm [24] adopts
more conditions when updating the location. First, each in-
dividual would either round in the best individual or move
toward others, which is determined stochastically. If the latter
move is selected, it has to determine whether apply the
exploration operation or the exploitation operation with the
magnitude of a parameter indicating the progress.

14) Genetic Algorithm (GA): Developed by Holland in
1975 [5], the Genetic Algorithm (GA) has been one of the
most popular metaheuristic algorithms. Inspired by the concept
of natural selection proposed by C. Darwin, GA intends to
find the optimal solution to the problem through a series of
processes that mimic the evolution of creatures under excessive
fertility and limited resources. In GA, the goal is to find
the genotype (solution) with the best phenotype (objective
value) in terms of its fitness (optimality) through gene manip-
ulations and competition among all chromosomes (explained
later). The solution agent of GA is called the chromosome,
derived from biological terminology that organelle consists of
genes. The gene encodings may vary for different optimization
problems, yet the gene value manipulations are categorized
into crossover, mutation, and selection. In each generation,
initially, there are parent chromosomes with the size of Np.
With two user-specified parameters: the crossover rate (Cr) and
the mutation rate (Mr), one can control the extent of crossover
and mutation. The typical setting of CR is [0.5, 0.95], and MR
is [0.01, 0.3] (refer to [25] for a comprehensive discussion
about setting crossover and mutation rates). After crossover
and mutation operations, a new population of chromosomes
has resulted. The selection operation is adopted to choose the
elite chromosomes as new parents for the next generation, and
the remaining chromosomes are discarded.

15) Memetic Algorithm (MA): Basically, Memetic Algo-
rithm [26] is the same as Genetic algorithm. The only dif-
ference is that before selection, each chromosome (or meme)
would be given the opportunity to further improve itself by
performing a local search.

16) Simulated Annealing: Simulated annealing was intro-
duced by Kirkpatrick et al. in 1983[7], based on the early
work by Metropolis et al. [27]. SA mimics the process of
cooling materials. During the procedure, due to the high
initial temperature, each particle would fluctuate dramatically
at first. After the temperature drops, each particle gradually



moves to a relatively low energy position and forms the
crystalline lattices. Following this concept, one can model
the cooling process based on Maxwell–Boltzmann statistics,
which describes the distribution of material particles with
different energy states under thermal equilibrium [28].

17) Harmony Search (HS): Harmony Search [29] is in-
spired by the process of music composing and improvising.
The basic concept of Harmony Search is to construct each note
(design variable) by three methods: using other existing notes,
adjusting the note pitch (local random walk), or choosing
randomly within the variable bound.

18) Gravitational Search Algorithm (GSA): The Gravita-
tional Search Algorithm [30] is established on the concept
of celestial mechanics. Based on the assumption that fitter
solution agents (or objects) should be endowed with more
mass, one can compute the gravitational forces of each object
exerted on other objects and update the position following
the rule of gravity and object movement with some random
deviations. At the end of the optimization process, one should
expect to find the optimal solution at the position where all
objects are located after convergence.

19) Firefly Algorithm (FA): With a similar updating mech-
anism as GSA, Firefly Algorithm [31], instead, is inspired by
the mating mechanism of fireflies. In FA, the analogy of mass
in GSA is the brightness of the flashing light of each firefly
(solution agent) which is proportional to its fitness. After
finding the distance between each firefly, one can obtain the
light intensity, exponentially decaying with respect to distance,
from other fireflies and update its position.

IV. NUMERICAL TESTS

A. Pressure Vessel Design

The pressure vessel design problem was first proposed in
[12]. The goal is to minimize the welding cost, the material
cost, and the forming cost, which can be modeled as the
following.

Fig. 1. Pressure Vessel Design Problem [20]

x =
[
Ts Th R L

]T
=

[
x1 x2 x3 x4

]T
(1)

f(x) =0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1611x2

1x4

+ 19.8621x2
1x3 (2)

And the constraints can be modeled as below.

g1(x) = 0.0193x3 − x1 ≤ 0 (3)
g2(x) = 0.00954x3 − x2 ≤ 0 (4)

g3(x) = 1296000− πx2
3x4 −

4

3
πx3

3 ≤ 0 (5)

g4(x) = x4 − 240 ≤ 0 (6)
x1 ∈ [1.125, 99× 0.0625] (7)
x2 ∈ [0.625, 99× 0.0625] (8)
x3 ∈ [50, 70] (9)
x4 ∈ [30, 50] (10)

Where Ts and Th should be multiples of 0.0625, the nom-
inal thickness of rolled plate. The violation amounts were
multiplied by a penalty factor of 1e6 and combined into the
objective function.

Fig. 2. Convergence curve of PSO, SA, and GWO in pressure vessel design
problem

Table II and Fig. 2 shows that GWO and SA have the most
robust performance in terms of the best-case scenario and the
mean performance. While PSO has the potential ability to
acquire promising results, but yet it is easier to be trapped
in local minimum.

B. Tension/compression Spring Design

Fig. 3. Tension/compression Spring Design Problem[20]

The goal of the design problem is to minimize the total
weight (volume) by changing the configurations of the spring.



TABLE II
RESULT OF PRESSURE VESSEL DESIGN

Solver Best Mean STD
GSA 43086.94 317658.8 104803.8
SFLA 63847.4 177825.4 50083.42
PSO 7310.856 42388.23 43484.35
BA 7263.999 8613.832 1073.165
GA 7304.813 7638.339 617.9234
CS 7202.354 7475.772 202.854

WOA 7235.009 7386.61 126.6179
MA 7198.005 7365.327 160.1555
FA 7310.856 7310.858 0.002448

FPA 7198.005 7246.907 56.8776
TLBO 7198.005 7228.099 50.75764
ICA 7198.005 7220.576 45.91202
SCA 7199.279 7216.108 10.36912
ALO 7198.005 7215.008 23.0375
HS 7199.062 7210.739 10.48913

ABC 7198.005 7210.049 34.24981
DE 7198.005 7203.884 18.24369
SA 7198.179 7199.674 0.82635

GWO 7198.282 7199.526 0.765927

The design variables are: x1 (wire diameter), x2 (mean coil
diameter), and x3 (number of active coils). And the objective
function and constraints can be modeled as follows.

f(x) = (x3 + 2)x2x
2
1 (11)

g1(x) = 1− x3
2x3

71875x4
1

≤ 0 (12)

(Deflection constraint)

g2(x) =
4x2

2 − x1x2

4000π(x3
1x2 − x4

1)
+

0.615

1000πx2
x

− 1 ≤ 0 (13)

(Maximum shear stress)

g3(x) = 1−

√
1.15×1011

14.76684

200πx1x2
2x3

≤ 0 (14)

(Frequency of surge wave)

g4(x) =
x1 + x2

1.5
− 1 ≤ 0 (15)

(Diameter constraint)
x1 ∈ [0.05, 0.2] (16)
x2 ∈ [0.25, 1.3] (17)
x3 ∈ [2, 15] (18)

In Table III, the overall performances of all algorithms are
not significantly different. After examining the convergence
curves, it is obvious that DE and FPA show a significant
convergent ability compared to GA and GSA.

C. Gear Train Design

The problem was originally model by [12], and the goal is
to find the best teeth number of each gear that would produce
a gear ratio as close as possible to 1

6.931 .

Fig. 4. Convergence curve of the best and the worst algorithms in Ten-
sion/compression Spring Design Problem

TABLE III
RESULT OF TENSION/COMPRESSION SPRING DESIGN

Solver Best Mean STD
GA 0.015396 0.019423 0.001896

GSA 0.012792 0.015854 0.006326
MA 0.012817 0.015373 0.00194

SFLA 0.013041 0.015106 0.002156
ICA 0.012683 0.013978 0.001877
HS 0.012739 0.013512 0.000654

PSO 0.012678 0.013321 0.001239
WOA 0.012907 0.013211 0.000507

BA 0.01268 0.013162 0.000899
SCA 0.012777 0.012967 0.000127
SA 0.01274 0.012951 0.000126

ABC 0.012684 0.012898 0.000161
ALO 0.012678 0.012866 0.000178
CS 0.012678 0.012844 0.000202
FA 0.012763 0.012806 2.76E-05

GWO 0.012683 0.012721 1.93E-05
TLBO 0.012678 0.012686 7.80E-06
FPA 0.012678 0.012678 1.62E-06
DE 0.012678 0.012678 1.17E-06

Fig. 5. Gear Train Design Problem[32]



The objective function is modeled as below.

x =
[
Td Tb Ta Tf

]T
(19)

f(x) = (
1

6.931
− x1x2

x3x4
)2 (20)

xi ∈ [12, 60] and xi ∈ N, i = 1, 2, 3, 4 (21)

Fig. 6. Convergence curve of ABC, FA, FPA, and GSA in gear train design
problem

The results show little information about each algorithm,
but in Fig. 6, it is obvious that FA and GSA had prematurely
converged while ABC and FPA still kept the improvement
tendency toward the end of solution evolution.

TABLE IV
RESULT OF GEAR TRAIN DESIGN

Solver Best Mean STD
FA 1.83E-08 9.18E-05 0.000173

GSA 1.62E-08 7.06E-06 1.97E-05
GA 2.36E-09 4.90E-06 8.58E-06
MA 2.31E-11 3.35E-06 9.13E-06
BA 1.83E-08 9.02E-07 9.83E-07

PSO 8.70E-09 9.86E-08 1.84E-07
SFLA 2.70E-12 4.25E-08 1.32E-07
ALO 2.70E-12 7.82E-09 7.61E-09
SA 8.89E-10 6.71E-09 4.68E-09

ICA 2.31E-11 5.60E-09 1.52E-08
CS 2.31E-11 3.24E-09 4.98E-09
DE 2.70E-12 2.14E-09 2.92E-09

WOA 2.70E-12 2.01E-09 5.80E-09
TLBO 2.70E-12 1.30E-09 3.23E-09
SCA 2.70E-12 1.01E-09 6.54E-10
HS 2.70E-12 3.28E-10 5.27E-10

GWO 2.70E-12 3.19E-10 4.52E-10
FPA 2.70E-12 1.43E-10 3.19E-10
ABC 2.70E-12 2.70E-12 1.23E-27

V. CONCLUSION AND DISCUSSION

In the numerical tests, different algorithms have shown
quite diverged behaviors in their optimizing processes. But by
comparing with each other on the same benchmark problem,

the convergence curves can be easily observed to come to
the conclusion of which algorithm is better in solving that
problem. Generally, the one that converges faster in the early
stage tends to acquire a better solution at the end. This
tendency is repeatedly discovered in nearly every benchmark.
Therefore, it is suggested that choosing the one with more
convergence ability is always a good start in solving various
design optimization problems.

REFERENCES

[1] A. Parkinson, R. Balling, and J. Hedengren, Optimization
Methods for Engineering Design, 2nd ed. Brigham
Young University, 2018. [Online]. Available: http:
//apmonitor.com/me575/index.php/Main/BookChapters

[2] K. J. Waldron, G. L. Kinzel, and S. K.
Agrawal, Kinematics, Dynamics, and Design of
Machinery. New York, UNITED KINGDOM:
John Wiley Sons, Incorporated, 2016. [Online].
Available: http://ebookcentral.proquest.com/lib/ntuedu/
detail.action?docID=4526800

[3] M. s. Saad, H. Jamaluddin, and I. Mat Darus, “Pid
controller tuning using evolutionary algorithms,” WSEAS
Transactions on Systems and Control, vol. 7, pp. 139–
149, 2012.

[4] More Natural Optimization Algorithms, 2003, pp. 187–
203. [Online]. Available: https://onlinelibrary.wiley.com/
doi /abs/10.1002/0471671746.ch7https: / /onlinelibrary.
wiley.com/doi/10.1002/0471671746.ch7

[5] J. H. Holland, Adaptation in natural and artificial sys-
tems: an introductory analysis with applications to bi-
ology, control, and artificial intelligence. MIT press,
1992.

[6] J. Kennedy and R. Eberhart, “Particle swarm
optimization,” in Proceedings of ICNN’95 - International
Conference on Neural Networks, vol. 4, Conference
Proceedings, pp. 1942–1948 vol.4. [Online]. Available:
https://ieeexplore.ieee.org/document/488968/

[7] S. Kirkpatrick, J. Gelatt, C. D., and M. P.
Vecchi, “Optimization by simulated annealing,”
Science, vol. 220, no. 4598, pp. 671–80, 1983,
kirkpatrick, S Gelatt, C D Jr Vecchi, M
P eng Science. 1983 May 13;220(4598):671-80.
doi: 10.1126/science.220.4598.671. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pubmed/17813860https:
//science.sciencemag.org/content/sci/220/4598/671.full.
pdf

[8] R. Storn and K. Price, “Differential evolution – a simple
and efficient heuristic for global optimization over
continuous spaces,” Journal of Global Optimization,
vol. 11, no. 4, pp. 341–359, 1997. [Online]. Available:
https://doi.org/10.1023/A:1008202821328https://link.
springer.com/content/pdf/10.1023/A:1008202821328.pdf

[9] E. Atashpaz-Gargari and C. Lucas, “Imperialist compet-
itive algorithm: An algorithm for optimization inspired
by imperialistic competition,” in 2007 IEEE Congress

http://apmonitor.com/me575/index.php/Main/BookChapters
http://apmonitor.com/me575/index.php/Main/BookChapters
http://ebookcentral.proquest.com/lib/ntuedu/detail.action?docID=4526800
http://ebookcentral.proquest.com/lib/ntuedu/detail.action?docID=4526800
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471671746.ch7 https://onlinelibrary.wiley.com/doi/10.1002/0471671746.ch7
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471671746.ch7 https://onlinelibrary.wiley.com/doi/10.1002/0471671746.ch7
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471671746.ch7 https://onlinelibrary.wiley.com/doi/10.1002/0471671746.ch7
https://ieeexplore.ieee.org/document/488968/
https://www.ncbi.nlm.nih.gov/pubmed/17813860 https://science.sciencemag.org/content/sci/220/4598/671.full.pdf
https://www.ncbi.nlm.nih.gov/pubmed/17813860 https://science.sciencemag.org/content/sci/220/4598/671.full.pdf
https://www.ncbi.nlm.nih.gov/pubmed/17813860 https://science.sciencemag.org/content/sci/220/4598/671.full.pdf
https://doi.org/10.1023/A:1008202821328 https://link.springer.com/content/pdf/10.1023/A:1008202821328.pdf
https://doi.org/10.1023/A:1008202821328 https://link.springer.com/content/pdf/10.1023/A:1008202821328.pdf


on Evolutionary Computation, Conference Proceedings,
pp. 4661–4667.

[10] D. H. Wolpert and W. G. Macready, “No free lunch
theorems for optimization,” IEEE Transactions on Evo-
lutionary Computation, vol. 1, no. 1, pp. 67–82, 1997.

[11] S.-J. Wu and P.-T. Chow, “Genetic algorithms for
solving mixed-discrete optimization problems,” Journal
of the Franklin Institute, vol. 331, no. 4, pp. 381–401,
1994. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/0016003294900043

[12] E. Sandgren, “Nonlinear integer and discrete
programming in mechanical design optimization,”
Journal of Mechanical Design, vol. 112, no. 2,
pp. 223–229, 1990. [Online]. Available: https://
doi.org/10.1115/1.2912596https://asmedigitalcollection.
asme.org/mechanicaldesign/article- abstract/112/2/223/
417355/Nonlinear- Integer- and-Discrete-Programming-
in?redirectedFrom=fulltext

[13] C. A. Coello Coello, “Theoretical and numerical
constraint-handling techniques used with evolutionary
algorithms: a survey of the state of the art,” Computer
Methods in Applied Mechanics and Engineering, vol.
191, no. 11-12, pp. 1245–1287, 2002. [Online].
Available: https://dx.doi.org/10.1016/s0045-7825(01)
00323-1

[14] S. K. Acharyya and M. Mandal, “Performance of eas
for four-bar linkage synthesis,” Mechanism and Machine
Theory, vol. 44, no. 9, pp. 1784–1794, 2009.

[15] S. Mirjalili, “The ant lion optimizer,” Advances in
Engineering Software, vol. 83, pp. 80–98, 2015. [Online].
Available: http://www.sciencedirect.com/science/article/
pii/S0965997815000113

[16] D. Karaboga and B. Basturk, “On the performance
of artificial bee colony (abc) algorithm,” Applied Soft
Computing, vol. 8, no. 1, pp. 687–697, 2008. [Online].
Available: https://dx.doi.org/10.1016/j.asoc.2007.05.007

[17] X.-S. Yang and S. Deb, “Cuckoo search via lévy flights,”
in 2009 World congress on nature biologically inspired
computing (NaBIC). Ieee, Conference Proceedings, pp.
210–214.

[18] M. M. Eusuff and K. E. Lansey, “Optimization of water
distribution network design using the shuffled frog leap-
ing algorithm,” Journal of Water Resources planning and
management, vol. 129, no. 3, pp. 210–225, 2003.

[19] X.-S. Yang, “Flower pollination algorithm for global
optimization,” in International conference on unconven-
tional computing and natural computation. Springer,
Conference Proceedings, pp. 240–249.

[20] A. H. Gandomi, X.-S. Yang, A. H. Alavi, and
S. Talatahari, “Bat algorithm for constrained optimization
tasks,” Neural Computing and Applications, vol. 22,
no. 6, pp. 1239–1255, 2013. [Online]. Available: https://
doi.org/10.1007/s00521-012-1028-9https://link.springer.
com/content/pdf/10.1007/s00521-012-1028-9.pdf

[21] R. V. Rao, V. J. Savsani, and D. Vakharia,
“Teaching–learning-based optimization: a novel

method for constrained mechanical design optimization
problems,” Computer-Aided Design, vol. 43, no. 3, pp.
303–315, 2011.

[22] S. Mirjalili, S. M. Mirjalili, and A. Lewis,
“Grey wolf optimizer,” Advances in Engineering
Software, vol. 69, pp. 46–61, 2014. [Online].
Available: https://www.sciencedirect.com/science/article/
pii/S0965997813001853

[23] S. Mirjalili, “Sca: A sine cosine algorithm for
solving optimization problems,” Knowledge-Based
Systems, vol. 96, pp. 120–133, 2016. [Online].
Available: https://www.sciencedirect.com/science/article/
pii/S0950705115005043https://www.sciencedirect.com/
science/article/abs/pii/S0950705115005043?via%3Dihub

[24] S. Mirjalili and A. Lewis, “The whale optimization
algorithm,” Advances in engineering software, vol. 95,
pp. 51–67, 2016.

[25] A. Hassanat, K. Almohammadi, E. Alkafaween,
E. Abunawas, A. Hammouri, and V. B. S. Prasath,
“Choosing mutation and crossover ratios for genetic
algorithms—a review with a new dynamic approach,”
Information, vol. 10, no. 12, p. 390, 2019. [Online].
Available: https://www.mdpi.com/2078-2489/10/12/390

[26] P. Moscato, “On evolution, search, optimization, genetic
algorithms and martial arts: Towards memetic algo-
rithms,” Caltech concurrent computation program, C3P
Report, vol. 826, p. 1989, 1989.

[27] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth,
A. H. Teller, and E. Teller, “Equation of state calculations
by fast computing machines,” The Journal of Chemical
Physics, vol. 21, no. 6, pp. 1087–1092, 1953. [Online].
Available: https://dx.doi.org/10.1063/1.1699114https:
//aip.scitation.org/doi/pdf/10.1063/1.1699114

[28] A. H. Carter, “Classical and statistical thermodynamics,”
2000.

[29] Z. W. Geem, J. H. Kim, and G. V. Loganathan,
“A new heuristic optimization algorithm: Harmony
search,” Simulation, vol. 76, no. 2, pp. 60–68,
2001, 434mg Times Cited:3246 Cited References
Count:19. [Online]. Available: ⟨GotoISI⟩://WOS:
000168819000001https://journals.sagepub.com/doi/pdf/
10.1177/003754970107600201

[30] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, “Gsa:
a gravitational search algorithm,” Information sciences,
vol. 179, no. 13, pp. 2232–2248, 2009.

[31] X.-S. Yang, “Firefly algorithms for multimodal optimiza-
tion,” in International symposium on stochastic algo-
rithms. Springer, Conference Proceedings, pp. 169–178.

[32] A. Kaveh and S. Talatahari, “Imperialist competitive al-
gorithm for engineering design problems,” Asian Journal
of Civil Engineering (Building and Housing), vol. 11, 01
2010.

http://www.sciencedirect.com/science/article/pii/0016003294900043
http://www.sciencedirect.com/science/article/pii/0016003294900043
https://doi.org/10.1115/1.2912596 https://asmedigitalcollection.asme.org/mechanicaldesign/article-abstract/112/2/223/417355/Nonlinear-Integer-and-Discrete-Programming-in?redirectedFrom=fulltext
https://doi.org/10.1115/1.2912596 https://asmedigitalcollection.asme.org/mechanicaldesign/article-abstract/112/2/223/417355/Nonlinear-Integer-and-Discrete-Programming-in?redirectedFrom=fulltext
https://doi.org/10.1115/1.2912596 https://asmedigitalcollection.asme.org/mechanicaldesign/article-abstract/112/2/223/417355/Nonlinear-Integer-and-Discrete-Programming-in?redirectedFrom=fulltext
https://doi.org/10.1115/1.2912596 https://asmedigitalcollection.asme.org/mechanicaldesign/article-abstract/112/2/223/417355/Nonlinear-Integer-and-Discrete-Programming-in?redirectedFrom=fulltext
https://doi.org/10.1115/1.2912596 https://asmedigitalcollection.asme.org/mechanicaldesign/article-abstract/112/2/223/417355/Nonlinear-Integer-and-Discrete-Programming-in?redirectedFrom=fulltext
https://dx.doi.org/10.1016/s0045-7825(01)00323-1
https://dx.doi.org/10.1016/s0045-7825(01)00323-1
http://www.sciencedirect.com/science/article/pii/S0965997815000113
http://www.sciencedirect.com/science/article/pii/S0965997815000113
https://dx.doi.org/10.1016/j.asoc.2007.05.007
https://doi.org/10.1007/s00521-012-1028-9 https://link.springer.com/content/pdf/10.1007/s00521-012-1028-9.pdf
https://doi.org/10.1007/s00521-012-1028-9 https://link.springer.com/content/pdf/10.1007/s00521-012-1028-9.pdf
https://doi.org/10.1007/s00521-012-1028-9 https://link.springer.com/content/pdf/10.1007/s00521-012-1028-9.pdf
https://www.sciencedirect.com/science/article/pii/S0965997813001853
https://www.sciencedirect.com/science/article/pii/S0965997813001853
https://www.sciencedirect.com/science/article/pii/S0950705115005043 https://www.sciencedirect.com/science/article/abs/pii/S0950705115005043?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0950705115005043 https://www.sciencedirect.com/science/article/abs/pii/S0950705115005043?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0950705115005043 https://www.sciencedirect.com/science/article/abs/pii/S0950705115005043?via%3Dihub
https://www.mdpi.com/2078-2489/10/12/390
https://dx.doi.org/10.1063/1.1699114 https://aip.scitation.org/doi/pdf/10.1063/1.1699114
https://dx.doi.org/10.1063/1.1699114 https://aip.scitation.org/doi/pdf/10.1063/1.1699114
<Go to ISI>://WOS:000168819000001 https://journals.sagepub.com/doi/pdf/10.1177/003754970107600201
<Go to ISI>://WOS:000168819000001 https://journals.sagepub.com/doi/pdf/10.1177/003754970107600201
<Go to ISI>://WOS:000168819000001 https://journals.sagepub.com/doi/pdf/10.1177/003754970107600201

	Introduction
	Metaheuristic algorithms

	Related Works
	Methodology
	Brief Introduction to the 19 Metaheuristic Algorithms
	Differential evolution (DE)
	Ant Lion Optimizer (ALO)
	Artificial Bee Colony (ABC)
	Cuckoo Search(CS)
	Shuffled Frog-Leaping Algorithm (SFLA)
	Imperialist Competitive Algorithm (ICA)
	Particle Swarm Optimization (PSO)
	Flower Pollination Algorithm (FPA)
	Bat Algorithm (BA)
	Teaching-Learning-based Optimization (TLBO)
	Grey Wolf Optimizer (GWO)
	Sine Cosine Algorithm (SCA)
	Whale Optimization Algorithm (WOA)
	Genetic Algorithm (GA)
	Memetic Algorithm (MA)
	Simulated Annealing
	Harmony Search (HS)
	Gravitational Search Algorithm (GSA)
	Firefly Algorithm (FA)


	Numerical Tests
	Pressure Vessel Design
	Tension/compression Spring Design
	Gear Train Design

	Conclusion and Discussion

