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Abstract. Spiking neural network (SNN) has been shown to be a bio-
logically plausible and energy efficient alternative to Deep Neural Net-
work in Reinforcement Learning (RL). In prevailing SNN models for RL,
fully-connected architectures with inter-layer connections are commonly
employed. However, the incorporation of intra-layer connections is ne-
glected, which impedes the feature representation and information pro-
cessing capacities of SNNs in the context of reinforcement learning. To
address these limitations, we propose Lateral Interactions Spiking Actor
Network (LISAN) to improve decision-making in reinforcement learn-
ing tasks with high performance. LISAN integrates lateral interactions
between neighboring neurons into the spiking neuron membrane poten-
tial equation. Moreover, we incorporate soft reset mechanism to enhance
model’s functionality recognizing the significance of residual potentials in
preserving valuable information within biological neurons. To verify the
effectiveness of our proposed framework, LISAN is evaluated using four
continuous control tasks from OpenAI gym as well as different encoding
methods. The results show that LISAN substantially improves the per-
formance compared to state-of-the-art models. We hope that our work
will contribute to a deeper understanding of the mechanisms involved in
information capturing and processing in the brain.

Keywords: Reinforcement Learning · Spiking Neural Networks · Lat-
eral Interactions

1 Introduction

Deep learning has a significant impact on machine learning, particularly in
reinforcement learning (RL), leading to the development of Deep Reinforce-
ment Learning (DRL) [1]. Recent advancements in DRL have pushed its per-
formance beyond human-level capabilities across various reinforcement learning
tasks [11,8,16]. However, the resource-intensive nature of DRL combined with
Deep Neural Networks (DNNs) presents challenges in applications such as mobile
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robots which require power-efficient and low-latency processing systems[12,9].
As a result, there is a growing need to explore energy-efficient and low-latency
alternative networks for DRL.

Compared to DNNs, Spiking Neural Networks (SNNs) show great potential in
simulating brain-inspired topology and functions due to the complex dynamics.
By integrating spiking neurons with biologically plausible plasticity principles,
complex cognitive functions can be generated. The biological brain achieves effi-
cient computation through cell assembly which prioritizes spatial-temporal cod-
ing for memory over decision-making readout [7]. In recent works, there has been
a growing interest in integrating SNN into reinforcement learning algorithms
[4,19,5]. While these approaches frequently depend on reward-modulated local
plasticity rules which have shown success in simple control tasks, they often face
challenges when they are applied to complex robotic control tasks due to their
limited optimization capabilities. To address this limitation, several approaches
have emerged that integrate SNNs with DRL optimization. One notable ap-
proach involves a hybrid learning framework proposed by [17], which introduces
a population coded spiking actor network (PopSAN) trained alongside a deep
critic network using DRL. This approach has shown impressive performance and
energy efficiency in continuous control tasks. Another approach [20] presents a
multi-scale dynamic coding improved spiking actor network (MDC-SAN) for re-
inforcement learning, aiming to achieve effective decision-making. It combines
population coding at the network scale with dynamic neurons coding and in-
corporates 2nd-order neuronal dynamics to enable a powerful spatial-temporal
state representation.

Although SNNs have shown promising results in the field of RL, there are
still significant avenues for exploration regarding the neuronal behavior and dy-
namical equations of SNNs. In recent researches, Residual Membrane Potential
(RMP) spiking neurons based on soft reset [6] have been proposed to preserve
the high dynamics of biological neurons. These RMP neurons have demonstrated
near lossless conversion from Artificial Neural Networks (ANN) to SNN, show-
casing their effectiveness on challenging datasets. Existing SNN models for rein-
forcement learning predominantly utilize the leaky-integrate-and-fire (LIF) neu-
ron model [10], which effectively extracts object features. While these models
incorporate inter-layer connections for feedforward processing, they often over-
look the importance of intra-layer connections which is a critical mechanism in
biological neural systems for object recognition. Neuroscientists have observed
that lateral interactions among retina neurons can enhance the perception of
visual object edges [13]. In the fields of computational neuroscience and cog-
nitive science, Dynamic Neuronal Field (DNF) models have gained popularity
as recurrent neural networks with attractor dynamics. In DNF, a neuron ex-
cites nearby neurons while inhibiting others [14,15].This mechanism effectively
enhances important input regions, suppresses areas with noise, and preserves
valuable information within the neuron population [3]. Therefore, further explo-
ration of dynamical improvements in SNNs in the context of RL remains valuable
and worthwhile.
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In this paper, we introduce a novel Lateral Interactions Spiking Actor Net-
work(LISAN) to enhance the state representation capabilities of our model in
solving complex RL tasks. Our model integrates lateral interactions between
adjacent neurons into the equation which governs the spiking neuron’s mem-
brane potential. Additionally, considering the significance of residual potentials
observed in biological neurons, we incorporate soft reset mechanism to enhance
our model’s overall functionality. This comprehensive approach enables a robust
and effective information processing capability within the network. Our approach
leverages a hybrid Actor-Critic network by combining the strengths of SNN and
DNN. To address the coding challenges introduced by multi-dimensional state
inputs in continuous RL tasks, we employ population coding techniques [17].
The gradient loss of each output action is computed by a deep critic network,
which is integrated with the Twin Delayed Deep Deterministic policy gradient
algorithm (TD3). Experiment results conducted on the continuous control tasks
from the OpenAI gym benchmark demonstrate the superior performance of our
method in terms of rewards gained compared to state-of-the-art models. Fur-
thermore, we conduct evaluations of our model’s performance using different
encoding methods. The results consistently demonstrate the robust performance
of LISAN.

Fig. 1: The overall architecture of proposed LISAN

2 Method

In this section, we introduce the implementation details of our proposed model
Lateral Interactions Spiking Actor Network (LISAN). The overall structure of
LISAN is shown in Fig. 1.
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2.1 Population Encoder

Population encoder refers to the encoding of information using the joint activity
of multiple neurons within a population [17]. In our work, we utilize the popula-
tion and deterministic coding method [20] to translate state information in RL
task into spike trains that can be used as input to SNN.

For each dimension of the state S, we adopt a neuron population to per-
form encoding. Within each neuron population, the state information is initially
transformed into stimulation strength through a Gaussian receptive field. Sub-
sequently, the obtained stimulation strength represents the output of the pre-
synaptic neuron, which is added to the membrane potential of the post-synaptic
neuron. The sum is then compared to the threshold to determine whether a spike
is fired. The overall process can be mathematically formulated as follows:

Pi,j = EXP (− (Si−µi,j)
2

2σ2
i,j

)

Vi,j(t) = Vi,j(t− 1) + Pi,j

Oi,j(t) =

{
1, if Vi,j(t) > Vth

0, otherwise

(1)

where Si is the i-th dimension of the state S, µ and σ denote the mean and stan-
dard deviation within the Gaussian receptive field, Pi,j represents the stimulation
strength of the j-th neuron within the neuron population which is responsible
for encoding the i-th dimension of the state, Vi,j(t) and Oi,j(t) correspond to the
membrane potential and spike activity of the neuron at time t, Vth is the firing
threshold. Vi,j(t) is reset to 0 if Oi,j(t) is 1.

The µ and σ of the Gaussian receptive field are adjustable parameters, allow-
ing the population encoder to progressively enhance its capability in representing
the state information during the iterative training of the network.

2.2 Lateral Interactions Spiking Neuron Network

This section first provides an introduction to the conventional Leaky Integrate-
and-Fire (LIF) neuron model, followed by a comprehensive definition and de-
scription of our proposed improved Lateral Interactions Spiking Neuron (LISN)
framework.

LIF Neuron Model. The LIF model stands as a widely adopted mathematical
framework for simulating physiological processes. The orignal LIF model can be
described by:

τ
dV (t)

dt
= −V (t) +RI (t) (2)

where τ is the time constant, I(t) denotes the input current accumulated from
synapses and integrated into V (t), which represents the membrane potential.
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To capture the temporal and spatial relationship among neurons, we adopt
a discretized time-step approach and partition the forward propagation within
spiking neurons. This iterative model is formulated as follows:

Ii (t) = αIi (t− 1) +
∑
j

WijOj(t− 1) (3)

Vi(t) = βVi(t− 1) + Ii(t) (4)

Oi(t) = Θ(Vi(t)− Vth) (5)

where Vi(t) and Ii(t) represent the i-th neuron’s current and voltage at time t,
respectively. α, β are the current and voltage decay factor, and

∑
j WijOj(t− 1)

is the weighted sum of the incoming spikes from the previous layer j. Oi(t) is
the output spike and Θ is the Heaviside step function which is described by:

Θ(x) =

{
1, if x > Vth

0, otherwise (6)

When the membrane potential exceeds the firing threshold Vth, the neuron fires
a spike and resets its membrane potential to zero. This mechanism is known as
"Hard Reset".

Lateral Interactions and Soft Reset Improved Model

Soft Reset. Unlike hard reset which immediately reset the membrane potential
to its initial value, soft reset allows a partial reset of the membrane potential
after crossing a threshold. We content that the preservation of residual voltage
which follows neuron firing confers enhanced efficacy upon SNN in complex spa-
tiotemporal representation. Hence, to implement the soft reset mechanism in our
model, we make the following modification to Eq.4:

Vi(t) = β(Vi(t− 1)−Oi(t− 1) ∗ Vth) + Ii(t) (7)

Lateral Interactions. Currently, a plethora of studies shows that incorporating
internal connections within neural networks enhance computational performance
in many fields [2,18]. Consequently,we propose merging the internal connections
among neurons into the construction of SNN. We aim to investigate the poten-
tial enhancement of processing performance for RL tasks by introducing lateral
interactions among neurons within the same layer in the spiking actor network.

Furthermore, we make the following enhancements to Eq.7 in our study:

Vi(t) = β(Vi(t− 1)−Oi(t− 1) ∗ Vth) + Ii(t) + (Oj(t− 1) ∗WN ) (8)

where Oj(t− 1) is the spiking output of the neighbors in the same layer at time
t− 1, WN is a learnable matrix which characterizes the interconnections among
neurons within the same layer to increase network flexibility.
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In conclusion, we refer to the constructed model as Lateral Interactions Spik-
ing Neuron (LISN). To observe the difference in information representation abil-
ity between LISN model and LIF model, We present sinusoidal wave signals to
simulate the voltage inputs (weighted sum of pre-synaptic neuron outputs) to
the neurons. We also simulate four neighboring neurons in the LISN model. The
lateral interaction weight matrix WN is initialized with random values from a
normal distribution with mean 0 and standard deviation 0.05. Under identical
inputs, the contrasting dynamics between LISN and traditional LIF neuron are
depicted in Fig. 2. It is evident that under identical voltage inputs, the LISN and
LIF neurons exhibit distinctive voltage dynamics, leading to disparate spike pat-
terns. Specifically, the LISN neuron model produces a total of 6 output spikes,
while the LIF model generates 9 spikes (see Fig. 2b). This observation highlights
that the LISN neuron, with the incorporation of soft reset and interconnection,
is less susceptible to continuous fluctuations in input voltages. Furthermore, for
the sake of clarity in presentation, we maintain fixed parameters for the WN .
However, it is important to note that in actual experimental settings, WN is sub-
ject to learning during the training iterations which enables LISN to robustly
process intricate input information.

(a) Simulation of voltage input with sinusoidal wave
variations

(b) Temporal Evolution of Membrane Potential.
(Left) LISN Neuron (Right) LIF Neuron

Fig. 2: Contrasting dynamics between LISN and traditional LIF neurons with
the same voltage inputs and threshold.
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2.3 Surrogate Gradient

The non-differentiable nature of the firing function (Eq.8) poses challenges in
training SNNs by backpropagation. To overcome the issue of gradient vanishing
caused by the non-differentiable property of firing function, researchers have
introduced the concept of surrogate gradient to facilitate gradient propagation in
deep SNNs. In our work, we use the rectangular function equation to approximate
the gradient of a spike.

d(x) =

{
1, if |x− Vth| < 0.5
0, otherwise (9)

where d is the pseudo-gradient, x is membrane voltage, and Vth is the firing
threshold.

2.4 Population Decoder

In the population decoding process, spikes generated at the output layer are
accumulated within a predefined time window to calculate the average firing
rate. Subsequently, the output action is obtained by applying a weighted sum to
the computed average firing rate.

3 Experiment

In this section, we adopt LISAN as the model for the actor network with DNN as
the critic networks. We evaluate LISAN in different environments and compare
it with the mainstream models.

3.1 Benchmarking LISAN against mainstream models

Environment. We choose four classic MuJoCo continuous robot control tasks
from the OpenAI gym (see Fig. 3) as our RL environment, the dimension infor-
mation of each environment is shown in Table 1.

Benchmarking. We first compare LISAN to existing models DAN and Pop-
SAN [17]. To investigate how soft reset and lateral interactions works on LIF
neurons, We integrate them to PopSAN for comparison: PopSAN+SR(soft re-
set), PopSAN+LI(Lateral interactions). All models are trained using the TD3
algorithm combined with deep critic networks of the same structure. The hyper-
parameter configurations of these models are as follows:

• DAN: Actor network (256, relu, 256, relu, tanh), learning rate = 1e− 3; critic
network (256, relu, 256, relu, linear), learning rate = 1e − 3; mini-batch size
n = 100; reward discount factor γ = 0.99; soft target update factor µ = 0.005;
policy delay factor d = 2; maximum size of replay buffer is 1M .
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• PopSAN: Actor network (Population Encoder, 256, LIF, 256, LIF, Popula-
tion Decoder); input population size for single state dimension is 10; output
population size for single action dimension is 10; firing threshold Vth = 0.5;
current decay factor α = 0.5; voltage decay factor β = 0.5; SNN time window
T = 5; the remaining parameters are the same as DAN.

• LISAN: Actor network (Population Encoder, 256, LISN, 256, LISN, Popu-
lation Decoder); the remaining parameters are the same as PopSAN.

• PopSAN+SR: PopSAN improved with Soft Reset.

• PopSAN+LI: PopSAN improved with Lateral Interactions.

(a) Ant (b) HalfCheetah

(c) Walker2d (d) Hopper

Fig. 3: The overview of four OpenAI gym tasks in the simulation environment: (a)
Ant: make a quadruped crawling robot run as fast as possible; (b) HalfCheetah:
make a biped robot walk as fast as possible; (c) Walker2d: make a biped robot
walk quickly; (d) Hopper: make a 2D robot hop forward.

Table 1: Dimension information of four OpenAI gym environments
Environment State Dimension Action Dimension

Ant 111 8
HalfCheetah 17 6

Walker2d 17 6
Hopper 11 3
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Training In our experiment, we perform ten independent trainings on each
model, using the same 10 random seeds to ensure consistency. During our train-
ing procedure, we train the models in each environment for one million steps,
and we test every 10K steps. During each test, we calculate the average reward
across 10 episodes with each episode capped at 1K steps.

Result The experimental results are shown in Fig. 4 and Table 2. LISAN
achieves the best performance in both simple and complex continuous con-
trol tasks. On the other had, DAN only performs well in simple environments,
and fails to perform well with reinforcement learning tasks that involve high-
dimensional environments and actions. Furthermore, we notice that the enhance-
ment in model performance resulting from the soft reset mechanism is inconsis-
tent. The residual voltage generated by soft reset proves advantageous to the
model only in specific scenarios where it captures more dynamic information
and leads to improved performance. And it is also obvious that LISAN exhibits
a notable performance improvement even in the absence of soft reset.

(a) Ant (b) HalfCheetah

(c) Walker2d (d) Hopper

Fig. 4: Learning curves for different algorithms in the MuJoCo environment
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Table 2: The maximum average return over 10 random seeds. LISAN achieves
the best performance marked in bold.

Actor Network Ant HalfCheetah Walker2d Hopper

DAN 5038 10588 4745 3685
PopSAN 5736 10899 5605 3772

PopSAN+SR 5799 11295 5379 3590
PopSAN+LI 5811 11170 5816 3675

LISAN 5965 11893 5901 3781

3.2 Discussion of Different Input Codings for LISAN

We employ four different population coding methods [20] to encode the input
state information, namely pure population coding (Cpop), population and Pois-
son coding (Cpop+Cpoi), population and deterministic coding (Cpop+Cdet), and
population and uniform coding (Cpop + Cuni). We apply these coding methods
to LISAN to test the performance of the Hopper task. Fig. 5 shows the four
integrated population-based coding methods with LISAN. All of them achieve
good performance in the Hopper environment. Notably, the population and de-
terministic coding achieves the most rewards thanks to its faster convergence
speed while the pure population coding achieves the fewest rewards. These ob-
servations highlight the robust adaptability and processing capabilities of our
LISAN model across diverse coding methods.

Fig. 5: Comprehensive comparison of the impact of various input coding methods
on Hopper task
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4 Conclusion

In this paper, we propose the Lateral Interactions Spiking Actor Network (LISAN)
for deep reinforcement learning. LISAN utilizes the lateral interaction neuron
model and incorporates soft reset mechanism for efficient training, which enables
it to handle complex information while maintaining energy efficiency. Through
extensive experiments conducted on four continuous control tasks from the Ope-
nAI Gym, we demonstrate that LISAN outperforms the state-of-the-art deep
neuron model as well as the same hybrid architecture SNN model. Additionally,
we evaluate the performance of LISAN under different encoding methods, and
show that LISAN achieves promising results across all of them. We hope that
our work can serve as a fundamental building block for the emerging field of
Spiking-RL and can be extended to a wide range of tasks in future research.
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