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Abstract—Space flight software is no longer a closely guarded
secret for space vehicle developers, owners and operators - it is
open-sourced and available as a commercial-off-the-shelf module.
Despite its wide availability, limited security research has been
conducted on flight software in an unclassified environment.
This paper proposes a research agenda that outlines critical
challenges for space flight software and proposes a series of
research and development efforts that could ultimately aid in
developing inherently secure space vehicles.

Index Terms—space flight software, space cybersecurity, flight
software security

I. INTRODUCTION

Flight software is fundamental to the successful perfor-
mance of any space vehicle’s mission. The reliability of flight
software is not a new topic and has been studied extensively
for the past decades through the lens of quality assurance, fault
tolerance and fail-safe operations, with particular attention
to instrumenting flight software with layers of redundancy.
Despite attention to fault management principles and practice,
there has been limited attention to the cybersecurity of flight
software. The principal difference between fault tolerance for
flight software and security challenges for the same is that
fault tolerance assumes faults are probabilistic in nature and
that failures will occur in a predicable order from predictable
environmental effects. Cybersecurity threats to flight software
are propagated by an intelligent adversary that may be actively
engaging with the flight software, despite fail-safe mechanisms
or available defenses, intentionally stressing its processes in
an unanticipated fashion. An attacker’s pursuit or next move
is not as predictable as an environment-propagated failure.

While the flight software community has historically oper-
ated under the guise of security by obscurity, the increasingly
open-source and commercial-off-the-shelf (COTS) availability
of flight modules have erased any perceived security benefits.
NASA’s core Flight System (cFS) and NASA’s Jet Propulsion
Laboratory’s F’ flight software is readily available for adver-
saries and security researchers alike to explore, which forces a
public discourse about space flight software security practices
and requirements for the ’new’ space era. This paper presents
a research agenda for flight software security, discussing the
robust related research conducted thus far in related fields and

describing opportunities to improve the security posture and
cyber resilience of flight software against future threats.

II. CYBER RESILIENCE AND FLIGHT SOFTWARE

A. Defining Flight Software

Space missions can use software in many different places
in a typical space vehicle architecture. For this paper, we
will focus on the core of a space vehicle’s software, usually
known as ”flight software,” made up of the real-time operating
system (RTOS) and mission applications running on a space
vehicle’s primary computer. This is a necessarily generic
definition due to the wide variety of computing architectures
used in space vehicles. Flight software implements a variety
of fundamental space vehicle functionality, such as command
and data handling, fail-safe mode operations, guidance, nav-
igation, managing instruments and payloads, controlling sub-
systems like thermal management and power, and managing
communications. Many other types of space vehicle-related
software exist, including embedded firmware within hardware
components, dedicated software running within instruments
and hosted payloads that interface with the space vehicle’s
primary flight software. They are not the focus of this paper,
but deserve scrutiny as well.

B. Why is Cyber Resilience Necessary?

Space is an increasingly important landscape for national
security, national policy, economics, science, and national
prestige; this has led to an increase in the recognition by
governments of the need to protect and defend critical space
systems, one example being recognition in the US as critical
national infrastructure [1]. An important part of this protective
landscape is recognition of the need for increased cyber
resilience and cybersecurity in space systems, both in hardware
and software [2] [3].

Cyber resilience is defined by NIST [4, p. 9] as the ability to
anticipate, withstand, recover and adapt to adverse conditions,
stresses, attacks, or compromises that use or are enabled
by cyber resources; that is, information systems, computing
architectures, networking and other interconnected electronic
devices . These resources can be attacked by malicious outside
entities who seek to damage, degrade, deny, or otherwise
impair the ability of the system to perform its intended



function. Attacks can take many forms and are dependent on
the technology involved and the desired effect; this is also true
of mitigations.

Historically, space vehicles have not been a prominent target
of cyber attack, so their developers have not built them with
cyber resilience in mind. There is lack of cybersecurity stan-
dards focused on the unique challenges of the space domain
and space-focused systems [5] [6]. Organizations developing
flight software do not usually specialize or have significant
expertise in cybersecurity or secure software engineering
practices. The nature of space mission development yields
a wide variety of organizations’ involvement in developing
flight software, where many of these organizations have in-
house software engineering groups dedicated to their flight
software needs. Some are civilian space agencies focused on
scientific missions and human spaceflight, such as NASA and
ESA. These organizations oversee many space efforts with
a wide variety of goals. Overlapping with this category are
universities and other research establishments designing their
own missions. Some of these organizations are developing
their missions for civilian space agencies, and others are
simply pursuing a line of research. Another area is the military
and its associated defense contractors. Like scientific missions,
military missions have very specific requirements that vary
among mission types, and so many defense contractors de-
velop their flight software in-house and for specific missions
or related mission sets. Finally, commercial companies who
develop space vehicles must develop flight software tailored
to their needs and the needs of their customers. All of these
organizations need to use flight software, whether they develop
it in house, modify an existing software stack, buy it from
someone else, or use open source software. These organiza-
tions all have different needs when it comes to cyber resilience,
which must be discovered, documented and integrated into the
development process.

C. Threats Against Flight Software

An important part of building cyber resilience into systems
is understanding the threat landscape. This encompasses the
known adversary organizations or types of organizations that
may seek to target a system, as well as the tactics and
techniques that an adversary can use to reconnoiter, exploit,
or maliciously affect a system.

Flight software is a prime target for attack by malicious
parties. Because of the central nature of the flight software
for operation of the space vehicle, access to it can lead
to partial or total control of space vehicle functions, which
adversaries can co-opt for their own goals. Like any other piece
of software, flight software is imperfect and vulnerabilities
will probably exist in currently used software components
and languages. Since authorized users access them remotely,
a secure ground system does not necessarily mean a space
vehicle is secure as well. In addition, the growing complexity
of software architectures on space vehicles, and increasing
use of common software platforms instead of custom-built
software components, means that there are more possible

pathways for an adversary to take to perform an attack on the
space vehicle’s systems and introduces a supply-chain aspect
to securing these systems.

There is a lack of open source literature about cyber
attacks against space vehicles. The Space Attack Research &
Tactic Analysis (SPARTA) project [7] was recently started to
document and categorize threats against space vehicles but is
in its early stages and needs validation and extension.

D. Moving Towards Cyber Resilience

Organizations developing space missions must consider
cybersecurity and adversary activity and design their systems
accordingly. Cyber attackers do not limit their activities to
military targets. Securing one portion of a system alone is
not sufficient; mission designers must incorporate resilience
against attack into the design of the complete system, includ-
ing both software and hardware. NIST has released compre-
hensive guidance for developing cyber-resilient systems [4],
however, developers implement few of these recommendations
in flight software, much less the entirety of a space system.
A potential reason for the meager adoption of such resilience
guidelines is that they are not written specifically for space
system developers as is the intention of future international
space standards [8].

The NIST guidelines offer a broad set of objectives not
specific to space systems. These include the following: preven-
tion or avoidance of adverse conditions; preparation of course
of action to address adversity; maximizing the duration and
viability of essential functions during adversary; constraining
damage; and providing the ability to quickly or reliably restore
service after adverse conditions. Bailey lays out a set of cyber
resilience principles that can be applied to the development
of space vehicles [9]. These are being robust, being opaque,
constraining behavior, and being responsive.

Developers can apply all these principles to flight software,
but the robustness and constraint principles are the most
applicable to the software domain. When applied to flight
software design, these principles can provide ways to provide
resistance against attacks, containment of attacks as they move
through components, or mitigation against successful attacks.
Flight software must constrain or eliminate unsafe or undesired
behavior such that an attacker can not co-opt or leverage
system components to produce harmful effects.

III. DESIGN CONSIDERATIONS FOR CYBER RESILIENCE

To understand how and where to add cyber resilience to
flight software systems, we have taken a comprehensive look
at how these systems are currently developed and fielded and
examined their current ability to address cyber threats. This
analysis resulted in a set of design considerations that we use
to frame the problem and understand how to address funda-
mental cybersecurity challenges in various sections of flight
software development and operations. At the same time, these
considerations also allowed us to understand what was missing
from the development landscape, so that we could produce
a research agenda to explore creation of new techniques or



application of techniques to areas where they were previously
not fielded.

A. Requirements and Quality Assurance

Space vehicle development projects, including flight soft-
ware, typically have associated sets of detailed requirements
and engineering guidelines. These are designed to ensure
the software is developed to its desired purpose, meets the
needs of mission owners, includes required technical functions,
and will execute according to its intended design with risk
that is mitigated and appropriately traded off. Examples of
these types of standards include NASA’s Software Engineering
Requirements [10], the European Space Agency (ESA) code
standards [11], the Jet Propulsion Laboratory (JPL) F’ flight
software system [12], and JPL’s standards for using the C
programming language [13].

Software quality is an important and highly developed
discipline within software engineering, especially for flight
software. Flight software developers build their systems with
a focus on reliability and fault tolerance and are often on the
cutting edge of various quality related software engineering
practices. Holzmann provides a detailed case study of software
quality in the Mars Science Laboratory mission and highlights
the need for reliable code and detailed software engineering
processes [14].

Since many existing quality standards focus on ensuring
the software meets its intended design, they do not specifi-
cally include understanding, measuring or requiring resilience
against cyber attacks or related security concerns. Cyberse-
curity requirements, when they do exist for flight software
systems, are often extremely specific, focused on compliance,
and lack traceability to mission needs or specific cyber threats
[15]. Because the pace of development of cyber threats is often
faster than the development of complex systems, these systems
can be insecure immediately upon going into operations.
These reasons make existing quality standards insufficient,
but not unnecessary, for addressing the security of a flight
software system. Developers should apply quality standards
to mitigations used to make a flight software system more
resilient to cyber attack, and disallow harmful features or
design patterns that are known to be leveraged by adversaries.

B. Security Analysis and Testing

One way to augment existing quality assurance processes
to increase security is to leverage security-focused and adver-
sarial testing and evaluation methods to look for cyber-related
weaknesses. These tools and methods take many forms and
can be applied at distinct steps of the systems engineering
lifecycle. During the development phase, code analysis tools
can be used to scan and identify weaknesses in source code
and binaries. Today, many of these tools are used for quality
assurance by searching for flaws in code that may result in
incorrect program behavior. While important, this does not go
far enough to evaluate the security of the system.

Static code analysis is straightforward to implement for
many code bases and static code analyzers are available

for many languages, both commercially and open-source.
However, static code analysis often provides false positives
and hard to understand results. Wheeler et al. present a
detailed discussion of the use of static code analysis in flight
software [16]. Dynamic analysis tools can bridge some of
the gaps in static analysis tools by providing varying test
inputs and running code to find problems, but dynamic analysis
is more difficult to instantiate and requires dedicated test
setups and properly emulated system inputs. One example
of a comprehensive dynamic analysis setup is NASA’s Jon
McBride Software Testing and Research (JSTAR) Laboratory
which provides IV&V services to NASA missions [17]. NASA
has also developed large scale cyber ranges for IV&V testing
and training of cyber defenders [18].

Another set of approaches focuses on emulating the adver-
sary. Penetration testing and red teaming refer to a specific
style of testing that seeks to employ known adversary tech-
niques to find and exploit weaknesses in running systems.
Developers can use these testing methods at various steps
of the development lifecycle, either as feedback while they
write code (in the form of assessments used incrementally
in the development process), test events during integration
activities that attack a component or set of components of
a running system, all the way to full-up in situ testing of a
fully developed and integrated system that is feature-complete.
In all cases, these methods rely on accurate and timely threat
intelligence of cyber adversary techniques and tools.

Both sets of testing methods presented above, code analysis
and penetration testing/red teaming, are empirical techniques
based on observation and experimentation to uncover defects
that adversaries use to attack systems. While these techniques
have proven useful, they require a large body of knowledge
to know where to look and what to do. In addition, these
empirical techniques do not prove correctness of a specific
software implementation, instead they help verify that either
specific attack patterns are not possible or are difficult to
execute. More performant code analysis tools and efficient red
teaming methodologies only decrease the uncertainty around
defects, but do not remove them completely.

C. Security Aspects of Architectural Design

Designing software architectures with security-specific fea-
tures in mind is a way to limit unsafe and unwanted system
behavior at the lowest levels of the overall software architec-
ture and earliest stages of development. One method is to use
a design language to specify system behaviors and interfaces
and verify that software components follow the specification.
This is the approach of the Architecture Analysis and Design
Language (AADL), which is used in the avionics world and
is beginning to be applied to space vehicle design [19] [20].

Another approach is to enforce separation of concerns and
isolate system components so that they can only interact
with each other when necessary and enforcing that by secure
software design such as formal verification. One example of
this approach is the seL4 microkernel [21]. Mission developers
can use this fully verified, provably secure low-level operating



system as a foundation where the various components can only
communicate as allowed. This allows the usage of possibly
untrusted software components, or components leveraging
unsafe technologies, since they will not be able to breach the
walls of their containment due to the secure nature of the
seL4 isolation environment. Another example of this approach,
from ESA, presents a methodology for developing functional
requirements implementing security isolation and partitioning
(in time and space) for flight software [22].

A prominent example of secure architectures and use of
formal methods for the development of secure software is
the DARPA High-Assurance Cyber Military Systems program.
This program developed software for two aircraft platforms
(a quadcopter and a full helicopter) using verified operating
systems providing isolation and application code developed
using memory-safe programming techniques. Fisher describes
the ways formal methods were used in application develop-
ment during the project [23], and Klein et al. detail the use of
the seL4 microkernel and how it was used to derive security
guarantees for the entire architecture [24].

D. Security of the RTOS

Real time operating systems are foundational to flight
software. Many flight software projects choose to use an out-
of-the-box, commonly used RTOS, with popular options being
vxWorks, FreeRTOS, and RTEMS. Because of the real-time
processing needs of these types of embedded systems, and
these RTOSes are typically written in low-level languages
such as C or C++. However, these languages have unsafe
characteristics if not used correctly. Methods exist to check the
RTOS code base to ensure that common problems are avoided,
such as static and dynamic code analysis methods, model
checking, and implementation of critical portions of the RTOS
in formally verified languages. Many RTOS projects have
implemented several of these solutions, but they are typically
targeted at quality-related issues, not cyber resilience issues,
due to current practice as mentioned elsewhere. Because of
the core nature of the RTOS, it is a key target for adversaries
looking for weaknesses, and any vulnerability that is discov-
ered may cause an outsized impact. Therefore, flight software
developers should keep security and adversary activity in mind
and highly scruitinze the RTOS, hardware interfaces (such as
platform support kits) and the interface to the rest of the flight
software stack.

E. Security of Mission Applications and Hosted Pay-
loads/Instruments

Mission applications running on top of the RTOS must
also be built securely and have unique security challenges.
There are usually multiple applications running in parallel
and communicating with each other, the RTOS and multiple
space vehicle components (such as instruments, core hardware
subsystems, and hosted payloads). Developers must address
each mission application’s implementation decisions and se-
curity concerns. Some concerns, such as programming safety,
may be common to all applications if they are using the same

language and development environment. Others, however, may
depend on application functionality. One example is handling
of communication protocols, performed by the command
and data handling (C&DH) subsystem. Any processing of
unvalidated input presents a possible attack surface and code
that serializes or deserializes protocol traffic is especially
vulnerable to such attacks and requires extra attention. Mission
applications may also use a common middleware application
programming interface (API) or shared code libraries, and
these may also introduce unique security concerns that can
affect every subsystem that uses them. Some space vehicles
host multiple payloads, instruments, or subsystems with their
own firmware, and the interactions between these parts of
the architecture may provide adversaries ways to hide and
additional weaknesses to leverage. Interfaces between separate
parts of the system should be especially scrutinized, especially
those using communication busses which may not have any
security in their design (such as MIL-STD-1553).

F. Programming Language Selection

Systems programming languages typically provide access
to low-level computing and hardware functionality to meet
timing and resource management guarantees necessary for the
performance of embedded systems, such as space vehicles.
However, not all languages are created equal and some carry
significant risk and flight software developers have recognized
the need to consider safer languages for development. Snavely,
Meyers, Inacio and Runyon [25] provide a perspective on
choosing a language for flight software development, consider
the history of safer languages for systems development (in-
cluding C, C++, Ada, Java, and Rust) and detail an approach
that leverages an ISO/IEC standard for avoiding vulnerabilities
through selection of a safer language [26]. As Wheeler et al.
point out, the aerospace industry does not seem to be moving
to these newer languages en masse [16].

There are several features to consider in the selection
of a programming language that provides the functionality
necessary for systems programming, while providing various
types of safety against common attack vectors. Memory safety
has been the primary concern of many efforts over decades
of computer science research. This includes both tracking and
proper usage of memory allocation techniques, but also defen-
sive measures that interface with hardware, such as memory
addressing schemes (e.g. ASLR). Type safety is another area
of consideration around the management and usage of data
structures within programs. A well typed program only allows
operations to occur that are a property of the relevant data, and
the degree by which the language enforces these operations
provides a way to characterize and understand risk. Some
languages only support simple types built into the language
(such as integers, floats, strings) while some allow for creation
of algebraic data structures that can represent complex data as
well as the operations that can be performed. If a language
provides complex type safety functionality, the domain can be
encoded into the type system and the language’s features can
prevent undefined or anomalous behavior.



Modern-day programming language design has provided
numerous options to consider that can still provide systems
programming features such as direct memory access and low-
level control of hardware while avoiding unsafe behaviors, and
in some cases guaranteeing that unsafe behavior can not be
implemented at all. When considering undesirable behavior
to eliminate, the biggest and most targeted area is memory
safety. Recently the National Security Agency released of-
ficial guidance recommending memory-safe languages [27].
The C language has well-documented flaws that allow for
unsafe usage [28]. Numerous efforts exist to extend C with
memory safety, including the CompCert C compiler [29] and
Microsoft’s Checked C project [30].

Rust is by far the most well known and mature language
implementing memory safety as a core design principle, and is
picking up steam in many systems-programming communities,
including being used for portions of the Linux kernel (which
is otherwise implemented in C) [31]. Other languages with
memory safety include Ada SPARK [32], D [33], Nim [34],
and Ivory [35]. There is existing work to extend Rust with
formal methods and other high assurance techniques, including
the Rust Formal Methods Interest Group [36], the High
Assurance Rust project [37], and the Prusti formal verification
project [38], among others. The application of these languages
to the space domain is nascent and largely unexplored.

Additional features from the cutting edge of programming
language theory provides some ways to safely reason about
programs that, while not production-ready today, may make
their way into systems languages in the future as additional
ways to restrict unsafe behavior. One promising example is
dependent type systems, which can add safety by embedding
additional information about types into programs, allowing for
better static analysis, as demonstrated in the Deputy system
[39]. Another area are types systems based on linear logic,
which can provide ways to reason about and control resource
allocation [40].

IV. A PROPOSED RESEARCH AGENDA

The following is a proposed research agenda for inves-
tigating how to develop cyber resilience in flight software.
This agenda evaluates the proposed design considerations and
outlines activities that can strengthen or add cyber resilience to
various activities. These additions can improve security where
it is weak, help gain a greater understanding of adversary
attacks and capabilities against specific portions of flight
software, and help evaluate the utility and effectiveness of
cyber resilience-focused approaches.

A. Develop Cyber Resilience Requirements for Flight Soft-
ware

Flight software development projects should have require-
ments dealing with needs related to cyber resilience, which can
be verified, validated, implemented and tested alongside other
mission requirements. This activity would consider a specific
mission and develop a set of cyber resilience requirements
tailored to that mission, as well as an implementation guide

for how to do the same process for other projects, using lessons
learned from the sample project. These requirements can
address multiple cyber resilience goals across a broad swathe
of flight software implementation areas, ensuring that devel-
opers mitigate possible vulnerabilities at the most appropriate
parts of the overall process. Quality assurance processes can
be leveraged as insertion points for implementation of these
requirements. Quality-related software development processes
can be modified with additional checks against commonly
used adversary techniques and weaknesses in languages and
frameworks. A framework such as SPARTA can be used to
check coverage of adversary tactics and techniques. Coding
guidelines and style guides can be modified to ensure that
developers do not use language or tool features that are not
secure or properly mitigated in the software architecture.

NIST has published cyber resilience guidelines that could
be used as a starting point [4], and Bailey has produced a
high level set of guidelines that can be expanded upon [9].
These guidelines should be converted into technical standards
that apply to software development, procedures for testing
software using adversarial methods, exercises and tabletops for
evaluating processes, and reviews that developers can integrate
into the existing flight software lifecycle. While this is the
intention of the recently launched IEEE Standard Association’s
Standard for Space System Cybersecurity Working Group, an
international effort to develop a technical standard for space
system cybersecurity, there is much work to be done [8].

B. Investigate RTOS Security in the Context of Flight Software

The RTOS is the bedrock of flight software and deserves
special scrutiny for security. This activity would perform
detailed studies of RTOS security as it relates to programming
language features, system design considerations, and adversary
techniques specifically targeted against RTOS features such as
boot loaders, low level memory access and device drivers. This
would be done in the context of space vehicle development and
the unique needs of space systems, since many RTOSes used
for flight software are not custom-built for that use case. This
would also consider existing security features of RTOS’ and
measure their effectiveness against attacks unique to the space
domain, including such features as isolation and the usage of
formal methods for checking specific segments of RTOS code.
Different RTOSes have distinct features and security qualities,
and an analysis of alternatives of existing solutions to identify
gaps and understand common attacks that would be performed.
Further work should consider restricting the capabilities of an
RTOS to only serve the purpose of flight software, thereby
reducing the attack surface.

C. Investigate Mission Application and Payload Security

Similarly to the RTOS investigation, mission applications,
additional payloads, and the sections of the flight software
above the RTOS should also be investigated for security in
the context of space systems. This activity would perform
detailed studies into application-level security between and
within mission applications and payloads. This would include



analyzing interactions between applications, communications,
network and protocol handling, busses, interfacing with hard-
ware, task management functions, scheduling functions, and
other services provided by the flight software. Several parts
of the application layer deserve special scrutiny and are called
out separately in this agenda.

D. Perform Detailed Analysis of Command and Data Han-
dling Subsystems

The command and data handling (C&DH) subsystem is
possibly the most important subsystem within a flight software
stack and deserves additional attention from a security and
implementation perspective. This activity would analyze the
functionality and implementation of the C&DH subsystem,
including how commands are handled, command prioritiza-
tion, how the C&DH subsystem interacts with other important
subsystems, and how mission data is handled. Adversary at-
tacks such as command intrusion are especially important and
hardening the C&DH subsystem against these attacks should
be investigated. Some missions have critical commanding
that happens within the radio or RF subsystem. The critical
commanding function’s implementation and how it relates to
the rest of the C&DH subsystem should be analyzed, as this
presents an appealing target for adversaries. Another area of
significant interest is the safe mode behavior of space vehicles,
including how it is initiated, handled by the C&DH subsystem,
and how transitions are handled between safe mode and any
other operating modes of the space vehicle.

E. Perform Detailed Analysis of Guidance, Navigation and
Control Subsystems

Another important subsystem that adversaries may seek to
influence or modify is the guidance, navigation and control
(GNC) subsystem. This activity would analyze the func-
tionality and implementation of the GNC subsystem in a
threat context. One style of developing a GNC subsystem
is developing a model-based design using tools like Matlab
and Simulink, where the necessary guidance algorithms are
implemented in a high level language then transpiled into C
code that is then embedded into the flight software. A security
audit and vulnerability analysis of the toolchain and GNC
implementation would be performed, to understand what se-
curity features are present in the host language and toolchain,
what kind of C code the transpiler generates, and if any
code analysis is done on the original code or final generated
code. Alternatives that use safe programming languages would
be investigated or proposed in this activity. In addition, the
performance of the guidance algorithms themselves may be
susceptible to perturbation or modification by adversaries and
should be evaluated, and GNC subsystem connections to other
subsystems should be inspected. Like the quality assurance
processes described before, safety is an integral feature of
space vehicle guidance, but defense against adversary attack
and integrity of guidance data is likely not.

F. Perform Detailed Analysis of Autonomy Subsystems and
Processes

Flight software implements many autonomy-related features
of modern space vehicles. This activity would investigate the
security landscape around the development of autonomy rules
and the implementation of the flight software subsystems that
store, manage and execute those rules. Autonomy in space is
getting more complex, with robotic rendevous and missions
with little to no contact with ground-side controllers planned
[41]. Adversaries will seek to modify or influence autonomy
to their own ends, so the tactics and techniques available must
be analyzed and mitigations developed. Similar work exists
for autonomous underwater vehicles and could be leveraged
and extended into the space domain [42].

G. Develop a Deeper Understanding of the Flight Software
Threat Landscape

Frameworks such as SPARTA [7] and TREKS [43] provide
a way to understand the currently known landscape of adver-
sary tactics and techniques available to attack flight software.
However, this work is fairly recent and needs expansion
and refinement in several ways. First, the full breadth of
tactics and techniques are likely not captured by the current
frameworks. Second, each existing technique does not have a
full body of evidence showing how adversaries leverage those
techniques, either theoretically or via real-world evidence.
Third, protection measures and mitigations are not available
for every technique, or sample implementations available to
leverage for new systems under development. To provide better
guidance on the breadth and depth of the threat landscape,
activities should be stood up that explore these areas so that
better information is available to flight software developers
and testers. Comprehensive examples exist that demonstrate
the usage of SPARTA for complex space system attacks, such
as the ”PCSpoof” attack on Time-Triggered Ethernet [44] [45]
and an analysis of the demonstration of the takeover of an ESA
satellite during the CYSAT conference [46] [47].

H. Investigate Adversarial Persistence and Exploitation
Within Flight Software

As with any other type of operating system and computing
environment, adversaries seek ways to gain a foothold, per-
form exploitation, maintain persistence, and perform lateral
movement within the system and between systems. How
adversaries perform these activities on ground-based systems
is well-known, but performing them within a flight software
architecture is different and not well explored in the open
literature. This activity would seek to characterize, describe,
and build proofs-of-concept for how adversaries can perform
exploitation and persistence within the FSW environment,
especially in the case of little to no command and control
from the ground. FSW features exist that can be taken ad-
vantage of by malicious payloads for persistence (e.g. task
scheduling routines) and due to FSW systems commonly
lacking internal access controls or security-focused separation
between processes, a payload may have multiple ways to



find and exploit weaknesses in implementations that can be
used for persistence, manipulation of internal data, and other
cyber effects. An addition to this activity would consider
how adversaries can leverage weaknesses in flight software
to perform lateral movement within a single space vehicle
and between space vehicles connected with cross-links, never
requiring communications with the ground.

I. Develop a Methodology to Understand the Attack Surface
of Flight Software

Understanding the attack surface available to an adversary
is a fundamental part of engineering a software system that is
resilient against cyber attack. Frameworks such as SPARTA are
used to categorize and characterize the techniques necessary to
perform a full attack, and what parts of the attack surface each
technique uses. With this information, flight software develop-
ers can prioritize and begin mitigating these techniques. Many
current efforts only focus on specific parts of the software
used in a space system, such as the RTOS or specific mission
applications. A comprehensive methodology that looks at the
entire software stack present on a space vehicle should be
developed and used to fully understand where adversaries may
be able to take advantage of a system. This activity would
seek to perform a set of these types of surveys to build a
comprehensive methodology.

One way of characterizing the software stack is architec-
turally, starting with the lowest-level code and moving up
to user-facing applications. A typical decomposition of these
layers might look like this:

1) CPU running microcode
2) operating system kernel CPU/memory management
3) operating system kernel core services (task scheduler,

process handling, etc.)
4) operating system kernel system call interface and device

drivers
5) operating system userspace services (language runtimes,

device handling)
6) application layer core services and API
7) mission-specific applications (possibly multiple layers)

Besides this layer cake, there’s a breadth-wise relationship
between multiple user-space applications running on the same
OS, the interfaces between which depend on the system
architecture. There is also a breadth-wise relationship between
the CPU and other hardware components residing on the
system, each of which may have interfaces with the operating
system.

All these of these touchpoints are interfaces where two
software components must communicate, be it by low level
memory access, over a shared interface (bus or network),
with a specific API, or a combination of all the above. Each
interface is a seam in the system that, if used incorrectly, can
cause undefined behavior or unknown state if the software
component is not designed to handle the misusage. Several
questions arise when considering how the flight software
should securely operate.

1) Understanding the spread of interfaces across the entire
system - how many are there, where are they in the
system in relationship to each other?

2) What are the interfaces used to do? What components
do they connect?

3) How are the interfaces developed? What
language/protocol/schema is used to communicate
using the interface?

Expanding this view to the entire system, an attacker can
look at the combined set of attack surfaces and think about
ways to cause effects on the behavior of the system to their
desired end.

From an attacker point of view, the related questions be-
come:

1) To produce a desired effect, what interfaces do I have
to traverse?

2) Which interfaces do I need to use and are there ways to
abuse their functionality?

3) Are there low-level design flaws in each interface on my
desired path that I can utilize to produce the behavior
I’m looking for that will allow me to move to the next
step in my attack graph?

Current typical vulnerability analysis practices are empirical
and search driven. Vulnerability analysts look for bugs or poor
design decisions and then try to derive other impacts from
them. They examine previous vulnerabilities for applicability
to the system under test. While this is a useful process in terms
of ensuring that a system is not vulnerable to specific types
of flaws, this is not fundamentally driven by the design of the
system and the mission it performs. Where the system has been
historically secure or not secure does not necessarily correlate
with where the system must be the most secure. Therefore, this
approach only gets a system partway to being cyber resilient.

J. Investigate Implementation of Adversarial Testing for Flight
Software

Simply performing analysis on source code to search for
weaknesses is not enough to ensure that flight software is
resistant against attack; live systems must be tested by de-
veloping appropriate testbeds and test harnesses, emulating
adversary behavior and techniques, and attacking target sys-
tems in situ. This activity would develop methods and tools
to attack running flight software, discover weaknesses and
vulnerabilities, and measure their impact within the context of
a mission. Various testbeds would be developed (or existing
testbeds modified) to allow for use of these for vulnerabil-
ity analysis, red teaming, and penetration testing activities,
across a spectrum of fidelity levels as needed to perform or
fully understand the impact of adversary behavior on mission
effectiveness. A methodology can then be developed that
can use this adversarial information to inform security-based
implementation guidance at various stages of the software
development lifecycle - development, IV&V, various levels
of testing and system checkout, and for active mitigation in
operations.



K. Investigate Cyber Resilience of Software Within Complex
Space Systems

Space systems have grown more complex than a simple
single-board computer running a single flight software stack.
Many space vehicles are being proposed, developed and built
that use multiple computers, on-board networks, multiple com-
munication architectures, and are parts of large space-based
networks. The Artemis cislunar architecture is an example
where multiple, complex, and in some cases crewed space ve-
hicles will be in operation and will have many embedded com-
puting and networking components. These complex designs re-
quire a different security and cyber resilience analysis process.
This activity would investigate and develop cyber resilience
and secure systems engineering guidance for the software
implementations within complex space systems, space stations,
lunar bases and other large-scale craft where there is a complex
interplay of software, networking, and hardware. Security
beyond the operating system itself, to the network layer, will
be evaluated, given the existence of a cislunar ”internet”
using delay-tolerant networking to communicate within the
architecture and with Earth. Future missions will extend this
architecture to Mars and beyond. Cyber defenders will not be
physically present to access these directly, and communication
times with Earth will be longer, so autonomous cyber defense,
security orchestration, and rapid recovery technology will be
important to ensure cyber resilience and mission resilience.
The techniques and technology necessary to implement these
cyber resilience needs in space systems doesn’t exist today
and must be developed.

L. Develop Prototype Secure-by-Design Flight Software Ar-
chitecture

We believe developers must take a threat-informed look
at flight software architectures in light of the many issues
raised in this paper and elsewhere. This activity should seek
to address security needs by building a secure-by-design flight
software architecture and implementing many of the security
enhancements mentioned elsewhere. Formal methods and ver-
ification would be integral to the design, to guarantee correct-
ness, ensure architecture requirements are validated, and verify
behavior of the entire stack top to bottom. Techniques such as
isolation, secure input handling, and memory safety would be
fundamental to the design. Safe programming languages would
be used throughout to implement all subsystems. Resilient
approaches to core operating system functionality such as
scheduling, task management, protocol handling, hardware
interfaces, and interprocess communication should be utilized.
The role of the RTOS should be scrutinized and alternatives
to the current style of flight software architecture explored.
Implementing a security-first architecture would allow for
comparative analysis to be performed against older flight
software systems so that risks can be properly understood
and measured. This information would then be used to inform
tradeoffs for future systems.

V. CONCLUSION

As space vehicles get more complex and more software
driven, and determined adversaries increase efforts to cause
harmful effects, to the need for better cyber resilience in their
software design and implementation becomes more critical.
Flight software must be actively redesigned to mitigate and
neutralize adversary attacks and reduce their impact on the
mission.

Current flight software quality work focuses on mission
assurance and protection from loss, not on defending against
adversary attack. When security is considered for flight soft-
ware, most work today focuses on empirical vulnerability
analysis, formal verification, and secure system models such
as isolation. We believe this does not go far enough and
that a fresh look at vulnerability analysis methods, software
architectures, and programming languages is required.

This paper lays out a research agenda that addresses risks
from cyber adversaries in both design and implementation
and bring secure, cyber resilient software engineering methods
firmly into space vehicle flight software development.
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