
EasyChair Preprint
№ 5169

Resurrecting FPGA Intrinsic Analog Evolvable
Hardware

Derek Whitley, Jason Yoder and Nicklas Carpenter

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 16, 2021

Resurrecting FPGA Intrinsic Analog Evolvable Hardware

Derek Whitley1,2, Jason Yoder3, and Nicklas Carpenter3

1Indiana University, Bloomington, IN 47405
2Thinker Labs, Bloomington, IN 47404

3Rose-Hulman Institute of Technology, Terre Haute, IN 47803
dcwhitle@iu.edu

Abstract

In the spirit of past century evolvable hardware, we ex-
plore the application of evolutionary algorithms to field pro-
grammable gate arrays and provide an open source platform
for performing intrinsic analog evolvable hardware experi-
ments. We target the reproduction of seminal field experi-
ments that generated complex analog dynamics of unclocked
FPGAs which were evolved through genetic manipulation of
their binary circuit representation: the bitstream. Further, we
demonstrate the intrinsic evolution of two non-trivial analog
circuits with intriguing properties: amplitude maximization
and pulse oscillation. Lastly, we explore the robustness of
evolved circuits to temperature variation and across-chip cir-
cuit translation.

Introduction
In 1991, Hugo de Garis postulated that evolutionary algo-
rithms such as genetic programming “will probably lead
to electronic circuits being ‘grown’ in special hardware”.
Contextually, he was referring to a research domain known
as embryological electronics (de Garis, 1991); however,
only two years later, in conjunction with Tetsuya Higuchi
(Higuchi et al., 1993), they conceptualized the field of evolv-
able hardware (EHW): the application of evolutionary al-
gorithms to hardware systems during design, operation, or
both. It is a technique that has demonstrated the capability of
producing unique and often optimal solutions to many types
of scientific and industry problems (Higuchi et al., 1999;
Thompson, 1997; Haddow and Tyrrell, 2018; Miller et al.,
2014). And the tool of choice was the field programmable
gate array (FPGA).

FPGAs are one of the primary research tools used in EHW
research because their physically reprogrammable architec-
ture can emulate candidate circuits. When combined with an
evolutionary algorithm (EA) running on a host CPU, circuits
can be systematically selected from a population, loaded on
the FPGA, evaluated for their performance according to a fit-
ness function, selected for progenation, then mutated and re-
combined for the subsequent population, gradually improv-
ing the performance of a population of circuits.

As the field was forming, Adrian Thompson at the Uni-
versity of Sussex evolved a series of bitstream-evolution cir-
cuits that would canonize the evolutionary approach to cir-
cuit design, specifically for analog EHW. The first among
these circuits was a completely analog millisecond oscillator
(Thompson, 1995). Ultimately, this was meant to be a tool
for future robotics experiments, providing a temporal bridge
for signals that operate at biological timescales. Later exper-
iments demonstrated the impressive search power provided
by artificial evolution, most notably: Thompson’s evolved
tone-discriminator circuit (Thompson, 1997).

The End of an Era

Unfortunately for the budding research field, shortly after
these cornerstone achievements, the Xilinx Corporation dis-
continued the electronic tool of choice for evolvable hard-
ware: the Xilinx XC6200 series FPGA. To comprehend the
severity of this loss, it is imperative to understand what a
bitstream is and how it was used in evolvable hardware ex-
periments. The bitstream of an FPGA is a binary configu-
ration file used to define and program a circuit architecture
for emulation. It is the lowest level of programmable in-
struction akin to assembly language, though instead of ex-
ecuting a series of instructions, it configures a circuit using
the re-programmable interconnects and logic resources on
an FPGA. In essence, the bitstream is the genome of phys-
ically realizable circuits on an FPGA. The XC6200 series
was unique in that its bitstream format was made available,
ergo 1:1 relationships between configuration file entries and
in silico resources were unambiguously documented for the
end user. However, for cost and security reasons, FPGA
manufacturers moved away from open bitstream documen-
tation and began employing strongly encrypted bitstreams.

While prudent on behalf of industry concerns, the dis-
continuation of openly documented bitstreams temporar-
ily halted research on intrinsic analog evolvable hardware.
Without complete knowledge of a bitstream’s format, EHW
researchers were unable to perform analog experiments in-
trinsic to the FPGA. And although other forms of dynami-
cally reconfigurable hardware have been available to practi-

tioners of EHW, such as field programmable analog arrays
(FPAAs) and transistor arrays (FPTAs), none of these tech-
nologies are as widely accessible or employed as the FPGA.

On Evolvable Hardware
The broader field of evolvable hardware is taxonomized into
several sub-domains and practices: digital or analog, in-
trinsic, extrinsic, or mixtrinsic (Stoica et al., 2000), adap-
tive hardware (AH) or evolvable hardware design (EHD) to
name a few. For a complete overview of the field’s struc-
ture, please refer to (Haddow and Tyrrell, 2018). The focus
of the work presented here is formally categorized as intrin-
sic analog evolvable hardware design; meaning populations
of circuits are evolved intrinsic to a hardware substrate and
do not actively adapt to changes in their environment.

At its origin, EHW aimed to revolutionize the way elec-
tronics were designed, both digital and analog. Unlike its
digital counterpart, though, analog circuit design must inher-
ently contend with the unique semiconductor physics at each
timescale relevant to its operational states; an obstacle that
digital circuit design overcomes by abstracting away contin-
uous state values through the employment of clock signals
(Johnson and Graham, 1993). Analog EHW offered a way to
simplify the creation of these complex circuits by delegating
the search and design process to artificial evolution.

Further, one of the hallmark characteristics of intrinsic
analog EHW is the ability for evolution to employ physi-
cal properties of the target hardware that would otherwise
be abstracted away during digital operation or simulation
due to the complex nature of real-world high-speed semi-
conductor physics. Simulations generally perform this ab-
straction to account for the slight error introduced during
fabrication (i.e. transistor doping levels, variation in copper
tracing thickness, etc.). The effects that such manufactur-
ing imperfections have on the operation of a given circuit
are non-linear and can interact in unpredictable ways. Such
attempts to simulate analog circuit operation prior to em-
bedding in physical hardware must contend with the reality
gap — the abstract distance between a simulated system’s
behavior and a real system’s behavior (Rieffel and Sayles,
2010). This is where the intrinsic approach to hardware evo-
lution shines. Famously, Thompson’s tone discriminator ex-
ploited just such physical properties of the FPGA, using only
100 logic gates of the available 24,000, to accomplish a task
that was thought to be impossible under the resource con-
straints he placed on the experiment (Thompson, 1997).

As mentioned in the previous section, the termination of
the Xilinx XC6200 series FPGA halted bitstream-level in-
trinsic analog EHW experiments. However, recent reverse-
engineering efforts by (Wolf and Lasser, 2021) have paved
a way using a different FPGA technology stack altogether.
The Lattice iCE40 — an ultra-low power, economy-grade
FPGA package whose fully documented bitstream was ex-
posed in work demonstrated at the Chaos Communication

Congress in Hamburg, Germany in 2015 — now enables
further research into FPGA-intrinsic analog EHW. Although
the purpose of reverse-engineering the iCE40 bitstream was
not motivated by EHW research, a fully documented bit-
stream is now available for just that.

According to the literature, retrospective justifications
for the discontinued research into FPGA-intrinsic analog
EHW focused on the difficulties of scaling experiments,
lengthy circuit evaluation periods, and other technical minu-
tiae rather than the discontinuation of the XC6200 (Haddow
and Tyrrell, 2018). Such justifications were used to moti-
vate more abstract methods of EHW such as the use of vir-
tually reconfigurable circuits (Torresen, 2000), the employ-
ment of other reconfigurable arrays, and the creation of alter-
nate experimental platforms altogether (Miller et al., 2014),
all while avoiding one of the research sub-domains that gen-
erated such excitement in the first place. To onlookers of
EHW, it appeared that the whole field went silent (Clarke,
2012), when in fact it was blossoming in areas that didn’t
draw as much attention (Cancare et al., 2011). And while
there is no evidence indicating a dead-end for this specific
vein of research, many assumed it reached an untimely end.
On the contrary, we argue the opposite; that FPGA-intrinsic
analog evolvable hardware is still fertile with potential.

Methods
In classical evolvable hardware fashion, the experimental
setup is as follows (see Figure 1):

FPGAMCU

CPU

3

12

4

Figure 1: Experiment Setup

1. A host CPU running an evolutionary algorithm generates
a population of pseudo-random bitstreams and systemati-
cally uploads each one to the FPGA for evaluation.

2. The host CPU prompts a microcontroller (MCU) to begin
capturing samples from the analog signal emitted from the
FPGA during circuit operation.

3. The MCU reads the output from the FPGA and performs
12-bit analog-to-digital conversion (ADC).

4. The MCU transmits the ADC buffer from the sample set
back to the host CPU where fitness is calculated by the
evolutionary algorithm.

For all tasks that require an output from the FPGA, there
is a high probability that a random circuit has a fitness value
of zero. This is largely due to the probability that an output
route is disconnected from the output pin or that connectivity
between blocks is extremely sparse. To overcome this obsta-
cle, prior to generating the initial population of bitstreams, a
random search loop is executed to identify a candidate cir-
cuit that yields a non-zero fitness (further defined in the next
section). Generally this search requires only sampling a few
dozen circuits before generating a viable candidate with a
very-low, yet positive fitness. Once found, the non-zero fit-
ness circuit becomes the seed from which the initial random
population is generated. It should also be explicitly noted
that all circuits discussed in the present work operate with
no clock and are fundamentally non-digital.

Concerning the Bitstream
Upload Delay Uploading a bitstream to an FPGA is a time
consuming process that depends on bitstream complexity,
on-chip resources, SRAM bandwidth, and whether or not the
FPGA is outfitted for dynamic reconfiguration among other
factors. Similar to the experiments performed by Thompson
in the mid-90s, the FPGAs used here have an average upload
speed of approximately 3.5 seconds. This time delay is by
far the most limiting obstacle when performing experiments;
making even the simplest questions a painstaking endeavor
to ask. This obstacle is further exacerbated by the inability
to parallelize across multiple identical FPGAs; a problem
also discussed in subsequent sections.

Combinatorial Complexity The complete, unconstrained
bitstream of an iCE40 FPGA configuration logic block
(CLB) is 864 bits long. When multiplied by the number of
CLBs included in an evolutionary run (96 CLBs in the work
performed here) the total genotypic length yields a combi-
natorial space far too large to search in reasonable time, es-
pecially when combined with the lengthy upload and eval-
uation periods. To reduce the combinatorial complexity of
the search space, we constrained the bitstream in the three
important ways:

1. Reduced the signal routing capabilities by excluding all
spanning wires and allowing connectivity only to the 8
nearest neighbors (Moore’s neighborhood).

2. Limited the number of configurable inputs to allow in-
coming signals from a maximum of two neighboring
CLBs at a time.

3. Restrict the number of potential output operations to a sin-
gle Boolean logic function (e.g. no carry-in or cascade
chains).

Incoming Global
Route

Local Input
Configuration

Boolean Logic
Operation

Figure 2: Phenotype Map

The above constraints provide the evolutionary algorithm
access to three basic circuit-building capabilities: selection
of incoming signals from neighboring CLBs, configuration
of incoming signals into the CLB, and the Boolean logic
operation to perform.

Relevant Technological Differences
Although the high-level concepts of operation for FPGA-
intrinsic EHW remain the same, certain technological con-
cessions were made for the work performed here due to
fundamental differences between the discontinued Xilinx
XC6216 and the Lattice iCE40HX1K. The first and most im-
portant difference between these devices is that the routing
capabilities of modern FPGAs are sufficiently more com-
plex than those thirty years ago; as such, we have substi-
tuted the simplistic north, east, west, south (NEWS) neigh-
borhood routing capability with a Moore’s neighborhood
routing schema (all 8 surrounding neighbors). The second
difference is that, as a result of modern routing complex-
ity, CLB pass-through routing necessitates complicated pair-
wise relationships within the bitstream to pass signals be-
tween neighbors when not performing a logical operation;
because of this, we have clamped pass-through signals off.
The third difference is that the density of logic resources is
drastically larger in modern FPGAs, such that a single CLB
on the Lattice board has 8 logic elements in comparison to
the single logic element found in an XC6216 CLB. Though
we have disabled all but one logic element per CLB, the
additional ‘passive’ resources may help or hinder evolution
during search. The last difference is the number of CLBs ac-
cessible to evolution; Thompson’s experiments used only a
small portion of the total FPGA resources — a 10x10 array
of CLBs at the farthest top-left location of the XC6216 —
whereas the largest contiguous block of CLBs on the mod-
ern iCE40HX1K is 6x16 (96 CLBs) and occupies the entire
central column of the FPGA. Though the total number of
CLBs is fairly close, the varied dimensions of the matrix are
substantially disparate and may lead to potential geometric
constraints during the course of evolution.

Establishing a Baseline
Early research into FPGA-intrinsic EHW showed not only
that evolution may employ device-specific imperfections,
but also that the coupling between device and environment
during evolution was critical for the device’s operation fol-
lowing evolution. This was demonstrated in two crucial
ways: first, that translating a circuit that was evolved in one
location of the FPGA to another location of the FPGA ex-
hibits a degradation in performance; and second, that fea-
tures of the external environment (temperature, humidity,
proximity to FM radio stations, etc.) during circuit evolu-
tion became prerequisite for circuit operation after evolution
(Thompson, 1995; Thompson et al., 1999). This coupling
between device and environment inspired Adrian Thomp-
son to create a controlled ‘operational envelope’ which he
termed ‘the Evolvatron’ — an artificial conditioning envi-
ronment designed to expose candidate circuits during evo-
lution to a battery of controlled environmental pressures
in an attempt to increase the robustness of the final circuit
(Thompson, 1998).

To explore whether these environmental coupling phe-
nomena are still present in new FPGAs, we devised a mini-
mal litmus test for each type of coupling. First, to determine
whether identical FPGA models perform differently un-
der fixed environmental conditions, we instantiated a hand-
crafted analog oscillator circuit and uploaded it to multiple
FPGAs. The oscillator was created by networking all CLBs
in the central column sequentially and fixing each CLB input
pair to accept from only one location as well as fixing each
logic function to an [AND] operation; doing so ensured that
the output from one CLB was the input to another and that
every CLB would fire in sequence. We then uploaded the
bitstream representing the hand-crafted analog oscillator to
4 separate FPGAs and sampled their output. Each of the
FPGAs were given time to reach standard operating tem-
perature and ran in a typical indoor environment — room
temperature (20C/68F) and 45% humidity.

FPGA # Base Frequency
1 9.503 MHz
2 9.912 MHz
3 9.538 MHz
4 9.365 MHz

Table 1: Base Frequencies for FPGA Ring Oscillators

The base frequency for each FPGA generating the oscilla-
tor varied, though attention should be paid to the magnitude
of variance. FPGAs 1 and 3 behaved most similarly, yet a
remarkable 35 kHz apart, whereas FPGAs 2 and 4 differed
as much as 148 kHz and 409 kHz from FPGA 1, respec-
tively. Although this test is a coarse representation of device
specific circuit behavior, it suggests that circuits evolved on
device may display degraded performance in another.

Experimental Results
Each experiment was performed using a standard genetic al-
gorithm (Holland, 1992) with tournament selection. As an-
ticipated, the algorithm was able to sufficiently evolve a pop-
ulation of candidate circuits to conform to the pressures im-
posed by each fitness function. However, the output trace of
each generation’s best circuit behavior did not always yield
an expected waveform.

Amplitude Maximization The first task we undertook
was to select the simplest behavior we could identify for
unambiguously determining that the intrinsic evolution of
bitstreams works on a different platform than those used in
the past. Given that the FPGA output is an analog signal,
sufficiently modulating the changes in amplitude would do
just that. Using the following fitness function, we evolved a
population of 50 circuits over 100 generations.

Ψ =

∑|I|
i (|xi − xi+1|)

|I|
(1)

This fitness function maximizes the amplitude of an out-
put signal by summing the absolute differentials for all
piecewise sample-pairs (i and i+1). The analog samples
taken from the FPGA are received as an ordered set (I) of
ADC-normalized, time-series voltage readings. The length
of (I) is determined by the maximum buffer size for the dig-
ital sampling of the FPGA’s output signal and is set within
the MCU (I=500 for the work performed here, but varies
depending on sampling resolution). As a result of the vari-
able ADC buffer size, the maximum fitness is achieved when
the FPGA’s output matches the phase and frequency of the
MCU’s sampling period at maximum amplitude (3.3Vpp).

0 20 40 60 80 100
Generation

0

20

40

60

80

100

120

140

Fi
tn

es
s

Best
Mean

Figure 3: Evolution of Amplitude Maximization

As discussed in the previous section, the initial popula-
tion of candidate circuits was seeded following a random

search for a circuit that yielded a non-zero fitness. The fit-
ness function used during the initial random search is based
on Equation 1.

0

200

400

600

800

1000

G
e
n
e
ra

ti
o
n
 1

1

0

200

400

600

800

1000

G
e
n
e
ra

ti
o
n
 7

9

100 200 300 400 500
0

200

400

600

800

1000

G
e
n
e
ra

ti
o
n
 1

0
0

Time

V
o
lt

a
g
e

Figure 4: Generational Sample Outputs

Figure 3 depicts the evolutionary trajectory of the popu-
lation of 50 circuits across 100 generations. It is important
to note that there are periods of dramatic increase in fitness
separated by longer periods of more gradual, incremental
increase; this is due to the nature of the binary connectivity
between logic blocks. A sub-network of CLBs may be well
developed but not attached to the critical path leading to the
output until a single connection binds it to the global net-
work, resulting in a dramatic increase or decrease in fitness.
Reducing this coarseness in the fitness landscape is one of
the targets for future research.

The trace depicted in Figure 4 highlights the three most
dramatic leaps made during the course of evolution. Ini-
tially, the best circuit’s output signal appears to exhibit a
floor of low amplitude, while successive generations exhibit
considerable gain. And although the maximum fitness for
this particular function should display a very-high frequency
triangle wave, the results presented conclusively demon-
strate that the FPGA-intrinsic bitstream-evolution method
does in fact work using modern hardware.

Pulse Oscillation Having verified the approach with a
simple task, we turned next to one of Thompson’s more ad-
vanced tasks — pulse oscillation — the goal of which was
to evolve an analog oscillator whose output matched a pre-
determined frequency.

The experimental setup for this task required a different
approach to measuring the output of the FPGA. Instead of
performing ADC on an analog output signal, the MCU was
programmed to measure rising edge impulses that crossed
the MCU’s trigger voltage (2.0 V). In this manner, pulses
from the FPGA could be counted over a defined period (1

second) and transmitted back to the host CPU for fitness cal-
culation. The fitness function is as follows:

Ψ =
1

|f − n|
(2)

Identical to the millisecond oscillator fitness function by
(Thompson, 1995), this function attributes fitness by taking
the inverse absolute difference of the desired frequency (f)
by the measured frequency (n). Although simple in concept
and implementation, this fitness function has some impor-
tant caveats: first, and most importantly, fitness assignments
are exponentially graded as (n) approaches (f), leading to a
disproportionate population fitness distribution.

0 20 40 60 80 100
Generation

0.0

0.2

0.4

0.6

0.8

1.0

Fi
tn

es
s

Best
Mean

Figure 5: Evolution of Pulse Oscillator

This phenomenon is illustrated in Figure 5 where the
best fitness climbs steadily for 70 generations reaching 25%
of the maximum fitness, then 5 generations later suddenly
jumps the remaining 75% to the maximum; where in stark
contrast, the mean fitness appears to remain very close to
0. However, the actual mean of measured frequencies (as
opposed to mean of fitness) for each generation linearly ap-
proaches the target frequency when plotted in log-scale, as
is shown in Figure 6. This indicates that the mean of the
population is indeed evolving towards the target.

When inspecting the behavior of the best circuit in the fi-
nal generation using an oscilloscope, the output waveform
and frequency displayed unusual characteristics as depicted
in Figure 7. First, the circuit outputs a consistently high
voltage which is aperiodically perturbed by a dip below the
MCU’s trigger voltage. As the MCU is programmed to de-
tect rising edges, a pulse is only counted when the voltage
returns back to the top. In essence, the waveform is upside-
down yet still completes the task; though in subsequent
evolutionary runs, the waveform would appear downside-
up as was described in (Thompson and Rijsbergen, 2001).

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

100

101

102

103

104

Target Frequency

Figure 6: Circuit Population Performance

Second, the measured frequency has unstable periodicity.
When sampling the output over time, the measured fre-
quency would exceed or fall short of the target frequency
by as much as 100 Hz.

100 200 300 400 500
Time (10 uS)

0

200

400

600

800

1000

Vo
lta

ge

Output Waveform
Trigger Voltage

Figure 7: Pulse Oscillator Circuit Output Trace

There are several possible explanations for the observed
instability. One possible explanation worth exploring is the
relationship between the desired frequency and the FPGA’s
fabrication size (process-node); lower frequency oscillators
may be more difficult to evolve on higher density chips than
on lower density ones and vice versa. Another explanation
may be that a single second evaluation period isn’t enough
to enforce periodic-stability. And finally, one explanation
may be that the non-linear fitness assignment is the cause for
such unstable final performance. Each question is a target
for future research.

Concerning Robustness Having demonstrated the capa-
bility of conducting FPGA-intrinsic analog EHW, we turned
finally to the question of robustness. How do evolved cir-
cuits perform under varying conditions, such as: uploading
an evolved bitstream to a new FPGA of the same model, or
operating at higher temperatures, or operating at lower tem-
peratures?

We turned our attention first toward across-chip transla-
tion: how does a circuit evolved on one FPGA perform when
uploaded to another of identical make and model? Using
the same approach described in the previous section where
a hand-designed analog oscillator bitstream was uploaded
to multiple FPGAs, we likewise uploaded the best evolved
pulse oscillator bitstream to multiple FPGAs. Although we
previously determined that the best evolved pulse oscillator
circuit displayed output signal variance during operation, we
were interested in whether or not the circuit would operate
at all after being uploaded to a different FPGA than the one
it was evolved on.

Just as Thompson concluded (Thompson, 1998), the
conditions under which an analog solution is intrinsically
evolved play a critical role in the continued operation of the
final circuit. Upon upload, we measured each FPGA’s out-
put using an oscilloscope. For 2 of the different FPGAs,
the circuit was dead on arrival, yielding no measurable out-
put. Yet the 3rd FPGA exhibited a distinctly different out-
put - one with higher gain and a completely different fre-
quency (30 kHz ± 5 kHz). When evaluating the effect of
temperature on its operation, applying heat to the original
FPGA (145F/62C) on which the pulse oscillator circuit was
evolved resulted in an increase in frequency by several or-
ders of magnitude until it dropped to 0 Volts. When the
FPGA cooled back to standard operating temperature, the
output would resume its typical, evolved behavior. Simi-
larly, when the same FPGA was placed under refrigeration
(45F/7C), it’s output was delayed for several minutes until
it approached standard operating temperature, then would
produce the evolved output behavior.

These observed environmental coupling phenomena are
minimally sufficient for confirming the post-evolution be-
havior as previously described. However, more work is
needed to establish a theoretical understanding of how and
why these phenomena are produced.

Future Work
The methods demonstrated in these experiments present a
clear path forward not only for addressing some of the unan-
swered questions surrounding analog evolvable hardware
but also for questions that have yet to be asked. What is
the relationship between FPGA fabrication size and signal
frequency to evolution? How many CLBs are required to
generate a solution of arbitrary complexity? Can the fitness
landscape be smoothed? Does smoothing of the fitness land-
scape yield more stable circuits?

Currently, the authors are in the process of recreating the
evolution of Thompson’s tone discriminator; a task that re-
quires an exceptionally longer amount of time per experi-
ment in comparison to the tasks completed here.

A particular area of interest we intend to investigate is the
application of FPGA-intrinsic EHW to the domain of reser-
voir computing. The conceptual parallels between reser-
voir computing and analog EHW suggest a unique and in-
terdisciplinary vein of research. Conceptually speaking, a
reservoir is a sparsely connected network of input-driven,
time-dependent activation functions; a description not too
far from the operation of analog EHW platforms.

A final goal for our future efforts is to assist in establish-
ing an underlying theory for EHW as called for by (Haddow
and Tyrrell, 2018) as the field lacks critical theory of the ap-
plication of evolutionary techniques to analog circuit design.

Conclusion
In this work, we have demonstrated a method that until
recently had not been possible for nearly two decades —
since the discontinuation of the Xilinx XC6200 FPGA. We
evolved populations of analog circuits intrinsic to FPGAs
by the genetic manipulation of their bitstreams. We pre-
sented proof of concept results by evolving circuits that max-
imize the variation in amplitude of their output signal. Fur-
thermore, we reproduced results of a millisecond oscillator
demonstrated by one of EHW’s most influential pioneers,
Adrian Thompson. Finally, we established that the opera-
tion of the evolved circuits are tightly coupled to their envi-
ronment, including the specific device on which the solution
was evolved. This work constitutes a milestone for the con-
tinuation of analog evolvable hardware research. Though
the field continues progress in many different directions,
the vein of analog FPGA evolution has been virtually non-
existent since the turn of the century. By carving a path
back into FPGA-intrinsic analog evolution, the field stands
to make further progress as a whole.

The application of evolutionary techniques to analog and
digital circuit design is an ongoing research track in both sci-
ence and industry. In general, the extrinsic approach (simu-
lation) dominates over the intrinsic approach due to the need
for device-independent manufacturability and reproducibil-
ity. However, discarding the imperfections generated during
manufacturing through abstraction is resourcefully waste-
ful; especially when evolution may be able to exapt the ex-
isting resource toward a functional behavior. This device-
dependent evolutionary approach to manufacturing was suc-
cessfully employed by (Takahashi et al., 2006), whereby
VLSI components driven by multi-clock systems that suf-
fered from clock skewing were able to synchronize post
fabrication. Device-specific imperfections are ubiquitous
throughout hardware manufacturing. Researching the com-
plex relationships these imperfections have with the under-
lying function of the hardware is imperative and may yield

knowledge leading to better design. This is the motivation
for the intrinsic approach to EHW.

Unlike the experimental platform used in the 90s (the Xil-
inx XC6216), the platform described here is inexpensive,
widely available, and replete with resources, documentation,
and examples for bootstrapping researchers. In order to spur
interest, participation, and future collaboration, the authors
have open sourced each experiment and included tutorials
for getting up and running swiftly. See (Whitley et al., 2021)
for details as well as the associated GitHub page for source
code and examples.

While the specific technology employed at the origin of
evolvable hardware was rendered obsolete (and nearly tak-
ing a portion of the field with it), the experimental results
detailed here aim to prevent that loss by clearing a path for-
ward. Similar to the work performed through the 90s, we
have demonstrated that the intrinsic evolution of an FPGA
bitstream can yield complex circuits capable of non-trivial
analog behavior. And like most basic research that is per-
formed, we have generated more questions than answers,
though with one exception: we have established that FPGA-
intrinsic analog evolvable hardware is once again possible.

References
Cancare, F., Bhandari, S., Bartolini, D. B., Carminati, M., and San-

tambrogio, M. D. (2011). A bird’s eye view of fpga-based
evolvable hardware. 2011 NASA/ESA Conference on Adap-
tive Hardware and Systems (AHS), pages 169–175.

Clarke, P. (2012). Whatever happened to evolvable hard-
ware? https://www.eetimes.com/whatever-happened-to-
evolvable-hardware/.

de Garis, H. (1991). Genetic programming artificial nervous sys-
tems artificial embryos and embryological electronics. pages
117–123.

Haddow, P. C. and Tyrrell, A. M. (2018). Evolvable hardware chal-
lenges: Past, present and the path to a promising future. In
Inspired by Nature, pages 3–37.

Higuchi, T., Iwata, M., Keymeulen, D., Sakanashi, H., Murakawa,
M., Kajitani, I., Takahashi, E., Toda, K., Salami, M., Kaji-
hara, N., and Otsu, N. (1999). Real-world applications of
analog and digital evolvable hardware. IEEE Transactions on
Evolutionary Computation, 3:220–234.

Higuchi, T., Niwa, T., Tanaka, T., Iba, H., de Garis, H., and Furuya,
T. (1993). Evolving hardware with genetic learning: A first
step towards building a darwin machine. In From Animals to
Animats 2. The MIT Press.

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems.
The MIT Press.

Johnson, H. W. and Graham, M. (1993). High-Speed Digital De-
sign: A Handbook of Black Magic. Prentice-Hall, Inc., Usa.

Miller, J. F., Harding, S. L., and Tufte, G. (2014). Evolution-in-
materio: Evolving computation in materials. Evolutionary
Intelligence, 7:49–67.

Rieffel, J. and Sayles, D. (2010). Evofab: A fully embodied evolu-
tionary fabricator. In Tempesti, G., Tyrrell, A. M., and Miller,
J. F., editors, Evolvable Systems: From Biology to Hardware,
pages 372–380, Berlin, Heidelberg. Springer Berlin Heidel-
berg.

Stoica, A., Zubulum, R., and Keymeulen, D. (2000). Mixtrinsic
evolution. In Lecture notes in computer science, Springer,
1801:208–217.

Takahashi, E., Kasai, Y., Murakawa, M., and Higuchi, T. (2006).
Post-Fabrication Clock-Timing Adjustment Using Genetic Al-
gorithms, pages 65–84. Springer US, Boston, MA.

Thompson, A. (1995). Evolving electronic robot controllers that
exploit hardware resources. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics), volume 929,
pages 640–656.

Thompson, A. (1997). An evolved circuit, intrinsic in silicon, en-
twined with physics. Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 1259:390–405.

Thompson, A. (1998). On the automatic design of robust electron-
ics through artificial evolution. pages 13–24.

Thompson, A., Layzell, P., and Zebulum, R. S. (1999). Explo-
rations in design space: Unconventional electronics design
through artificial evolution. IEEE Transactions on Evolution-
ary Computation, 3(3):167–195.

Thompson, A. and Rijsbergen, C. J. V. (2001). Hardware Evolu-
tion: Automatic Design of Electronic Circuits in Reconfig-
urable Hardware by Artificial Evolution. Springer-Verlag,
Berlin, Heidelberg.

Torresen, J. (2000). Possibilities and limitations of apply-
ing evolvable hardware to real-world applications. Field-
Programmable Logic and Applications: The . . . , pages 230–
239.

Whitley, D., Yoder, J., and Carpenter, N. (2021). Evolvable hard-
ware website. http://evolvablehardware.org.

Wolf, C. and Lasser, M. (2021). Project icestorm.
http://bygone.clairexen.net/icestorm/.

