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Abstract

Grönwall’s function G is defined for all natural numbers n > 1 by
G(n) = σ(n)

n·log log n
where σ(n) is the sum of the divisors of n and log is

the natural logarithm. We require the properties of extremely abundant
numbers, that is to say left to right maxima of n 7→ G(n). We also use
the colossally abundant and hyper abundant numbers. A number n is
said to be colossally abundant if, for some ϵ > 0, σ(n)

n1+ϵ ≥ σ(m)

m1+ϵ for all
m > 1. Let us call hyper abundant an integer n for which there exists
u > 0 such that σ(n)

n·(log n)u
≥ σ(m)

m·(log m)u
for all m > 1. The Riemann

hypothesis is a conjecture that the Riemann zeta function has its zeros
only at the negative even integers and complex numbers with real part 1

2
.

It is considered by many to be the most important unsolved problem in
pure mathematics. There are several statements equivalent to the famous
Riemann hypothesis. We state that the Riemann hypothesis is true if
and only if there exist infinitely many consecutive colossally abundant
numbers 3 ≤ N < N ′ such that G(N) ≤ G(N ′). In addition, we
prove that the Riemann hypothesis is true when there exist infinitely
many hyper abundant numbers n with any parameter u ⪆ 1. We claim
that there could be infinitely many hyper abundant numbers with any
parameter u ⪆ 1 and thus, the Riemann hypothesis would be true.
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1 Introduction

As usual σ(n) is the sum-of-divisors function of n∑
d|n

d,

where d | n means the integer d divides n. In 1997, Ramanujan’s old notes
were published where it was defined the generalized highly composite num-
bers, which include the superabundant and colossally abundant numbers [1].
A natural number n is called superabundant precisely when, for all natural
numbers m < n

σ(m)

m
<

σ(n)

n
.

A number n is said to be colossally abundant if, for some ϵ > 0,

σ(n)

n1+ϵ
≥ σ(m)

m1+ϵ
for (m > 1).

Every colossally abundant number is superabundant [2]. Let us call hyper
abundant an integer n for which there exists u > 0 such that

σ(n)

n · (log n)u
≥ σ(m)

m · (logm)u
for (m > 1),

where log is the natural logarithm. Every hyper abundant number is colossally

abundant [3, pp. 255]. In 1913, Grönwall studied the function G(n) = σ(n)
n·log logn

for all natural numbers n > 1 [4]. Next, we have the Robin’s Theorem:

Proposition 1 Let 3 ≤ N < N ′ be two consecutive colossally abundant numbers,
then

G(n) ≤ Max
(
G(N), G(N ′)

)
when satisfying N < n < N ′ [5, Proposition 1 pp. 192].

There are champion numbers (i.e. left to right maxima) of the function
n 7→ G(n):

G(m) ≤ G(n)

for all natural numbers 10080 ≤ m < n. A positive integer n is extremely
abundant if either n = 10080, or n > 10080 is a champion number of the func-
tion n 7→ G(n) (Note that, in the reference paper it is defined the inequality
as G(m) < G(n) [6, Definition 3 pp. 5]. However, the Propositions 2 and 3 are
still valid under the current definition with the inequality G(m) ≤ G(n)). In
1859, Bernhard Riemann proposed his hypothesis [7]. Several analogues of the
Riemann hypothesis have already been proved [7].
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Proposition 2 The Riemann hypothesis is true if and only if there exist infinitely
many extremely abundant numbers [6, Theorem 7 pp. 6].

We use the following property for the extremely abundant numbers:

Proposition 3 Let N < N ′ be two consecutive colossally abundant numbers and
n > 10080 is some extremely abundant number, then N ′ is also extremely abundant
when satisfying N < n < N ′ [6, Lemma 21 pp. 12].

This is our main theorem

Theorem 1 The Riemann hypothesis is true if and only if there exist infinitely many
consecutive colossally abundant numbers 3 ≤ N < N ′ such that G(N) ≤ G(N ′).

The following is a key Corollary.

Corollary 1 The Riemann hypothesis is true when there exist infinitely many hyper
abundant numbers N ′ with any parameter u ⪆ 1, where the symbol ⪆ means “greater
than or approximately to”.

Putting all together yields a new criterion for the Riemann hypothesis.
Now, we can conclude with the following result:

Theorem 2 The Riemann hypothesis is true.

Proof Note also that, for all u > 0 [3, pp. 254]:

lim
n→∞

σ(n)

n · (logn)u = 0

and so, we claim that there could be infinitely many hyper abundant numbers with
any parameter u ⪆ 1 and thus, the Riemann hypothesis would be true. □

2 Central Lemma

Lemma 1 For two real numbers y > x > e:

y

x
>

log y

log x
.

Proof We have y = x+ ε for ε > 0. We obtain that

log y

log x
=

log(x+ ε)

log x
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=
log

(
x · (1 + ε

x )
)

log x

=
log x+ log(1 + ε

x )

log x

= 1 +
log(1 + ε

x )

log x

and

y

x
=

x+ ε

x

= 1 +
ε

x
.

We need to show that (
1 +

log(1 + ε
x )

log x

)
<

(
1 +

ε

x

)
which is equivalent to (

1 +
ε

x · log x

)
<

(
1 +

ε

x

)
using the well-known inequality log(1 + x) ≤ x for x > 0. For x > e, we have

ε

x
>

ε

x · log x .

In conclusion, the inequality
y

x
>

log y

log x

holds on condition that y > x > e. □

3 Proof of Theorem 1

Proof Suppose there are not infinitely many consecutive colossally abundant numbers
3 ≤ N < N ′ such that G(N) ≤ G(N ′). This implies that the inequality G(N) ≥
G(N ′) always holds for N large enough when 3 ≤ N < N ′ is a pair of consecutive
colossally abundant numbers. That would mean the existence of a single colossally
abundant number N ′′ such that G(n) ≤ G(N ′′) for all natural numbers n > N ′′

according to Proposition 1. We use the Proposition 3 to reveal that under these
preconditions, then there are not infinitely many extremely abundant numbers. This
implies that the Riemann hypothesis is false as a consequence of Proposition 2. By
contraposition, if the Riemann hypothesis is true, then there exist infinitely many
consecutive colossally abundant numbers 3 ≤ N < N ′ such that G(N) ≤ G(N ′).

Now, suppose that N ′′ is the greatest extremely abundant number such that
N ′′ < N ′ for a pair of consecutive colossally abundant numbers 3 ≤ N < N ′ when
G(N) ≤ G(N ′). We know that N ′′ must be a colossally abundant number by Propo-
sition 3. By Proposition 1, we know that G(N) ≤ G(n) ≤ G(N ′) when satisfying
N < n < N ′. So, if n or N is a extremely abundant number, then N ′ would be
extremely abundant as well by Proposition 3. Hence, we assume that there is a finite
set of colossally abundant numbers S such that M ∈ S implies that N ′′ < M < N ′.
Let’s take the greatest number M ′′ such that M ′′ ∈ S and for each element M ∈ S
we have G(M ′′) ≥ G(M). Therefore, it is necessary that either M ′′ or N ′ be an
extremely abundant number. In any case, we obtain always another new extremely
abundant number. Since we took the value of the colossally abundant number N ′
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into an arbitrary way, therefore if there exist infinitely many consecutive colossally
abundant numbers 3 ≤ N < N ′ such that G(N) ≤ G(N ′), then there exist infinitely
many extremely abundant numbers. This implies that the Riemann hypothesis is
true by Proposition 2 after using the modus ponens.

The result is done. □

4 Proof of Corollary 1

Proof Suppose there exists a large enough hyper abundant numbersN ′ with a param-
eter u ⪆ 1. We know that N ′ must be also a colossally abundant number. Let N
be the greatest colossally abundant number such that 3 ≤ N < N ′, which means
that N and N ′ is a pair of consecutive colossally abundant numbers. By definition
of hyper abundant, we have

σ(N ′)
N ′ · (logN ′)u

≥ σ(N)

N · (logN)u

which is the same as

σ(N ′) · (logN)u

N ′ · (logN ′)u · log logN ≥ σ(N)

N · log logN = G(N).

Hence, it is enough to show that

G(N ′) =
σ(N ′)

N ′ · log logN ′ ≥ σ(N ′) · (logN)u

N ′ · (logN ′)u · log logN
which is equivalent to

(logN ′)u

(logN)u
≥ log logN ′

log logN
.

Since u ⪆ 1, then we only need to show that the inequality

logN ′

logN
>

log logN ′

log logN
.

holds on condition that logN ′ > logN > e by Lemma 1. Consequently, this arbitrary
large enough hyper abundant numbers N ′ with a parameter u ⪆ 1 reveals that
G(N) ≤ G(N ′) holds on anyway. In this way, if there exist infinitely many hyper
abundant numbers N ′ with any parameter u ⪆ 1, then there are infinitely many
consecutive colossally abundant numbers 3 ≤ N < N ′ such that G(N) ≤ G(N ′).

Finally, the proof is complete by Theorem 1. □

References

[1] J.L. Nicolas, G. Robin, Highly Composite Numbers by Srinivasa Ramanu-
jan. The Ramanujan Journal 1(2), 119–153 (1997). https://doi.org/10.
1023/A:1009764017495
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