
EasyChair Preprint
№ 11422

Training Dense Object Nets: a Novel Approach

Kanishk Navale, Ralf Gulde, Marc Tuscher and Oliver Riedel

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 29, 2023



Training Dense Object Nets: A Novel Approach
1st Kanishk Navale

Sereact GmbH.
Stuttgart, Germany

kanishk.navale@sereact.ai

2nd Ralf Gulde
Sereact GmbH.

Stuttgart, Germany
ralf.gulde@sereact.ai

3rd Marc Tuscher
Sereact GmbH.

Stuttgart, Germany
marc.tuscher@sereact.ai

4th Oliver Riedel
ISW - Universität Stuttgart

Stuttgart, Germany
oliver.riedel@isw.uni-stuttgart.de

Abstract—Our work proposes a novel framework that addresses
the computational limitations associated with training Dense
Object Nets (DON) while achieving robust and dense visual object
descriptors. DON’s descriptors are known for their robustness to
viewpoint and configuration changes, but training these requires
image pairs with computationally expensive correspondence
mapping. This limitation hampers dimensionality and robustness,
thereby restricting object generalization. To overcome this, we
introduce data generation procedure using synthetic augmentation
and a novel deep learning architecture that produces denser visual
descriptors with reduced computational demands. Notably, our
framework eliminates the need for image pair correspondence
mapping and showcases its application in a robotic grasping
pipeline. Experimental results demonstrate that our approach
yields descriptors as robust as those generated by DON.

Index Terms—Dense Object Nets, robot grasping, generalized
object representation, reduced computation costs.

I. INTRODUCTION

Significant strides have been made in robotics, including self-
driving cars and humanoid robots with advanced capabilities.
Integration of AI models like ChatGPT [1] and PaLM [2]
enhances human-robot interactions and object perception.
However, deploying Large Language Models (LLMs) such
as ChatGPT and Palm-E poses challenges. Their size and
complexity require substantial computational resources, raising
concerns about energy consumption, environmental impact,
and the digital divide [3, 4]. Responsible resource allocation
and addressing ethical implications are crucial for balancing
progress and sustainability.

Currently, in robotics, typical industrial robots perform repet-
itive operations based on pre-programmed instructions, finding
the ideal object representation for grasping and manipulation
tasks still needs to be answered. Existing representations may
be unable to understand an object’s geometrical and structural
information, rendering them unsuitable for complex tasks In
recent work, Florence et al. [5] introduced a novel visual
object representation termed ”dense visual object descriptors”
to the robotics community. This representation, generated
by the Dense Object Nets (DON) framework, converts each
pixel in an image (I[u, v] ∈ R3) into a higher-dimensional
embedding (ID[u, v] ∈ RD) such that D ∈ N+, using image-
pair correspondences as input. These dense visual object
descriptors provide a generalized representation of objects
to a certain extent.

The DON framework has shown promise in various domains,
including rope manipulation [6], block manipulation [7], robot

control [8], fabric manipulation [9], and robot grasp pose
estimation [10, 11]. Adrian et al. [11] demonstrated that DON
can be trained on synthetic data and still generalize well to
real-world objects. Furthermore, Adrian et al. [11] highlight
the importance of the dimensionality of the embedding in
determining the quality of the descriptors produced by the
DON framework.

In this paper, we address the challenge posed by the
computationally intensive nature of DON and propose a new
framework for training DON in a computationally efficient
manner. Furthermore, we introduce a novel synthetic data
generation pipeline that generates a complete dataset from one
image and mask pair. Additionally, the synthetic data generation
pipeline does not rely on the noisy depth information produced
by today’s consumer-grade depth cameras. We also demonstrate
one of the applications of our framework as a robotic grasping
pipeline. Our approach aims to contribute to developing a
sustainable and efficient, and economical solution for industrial
robotics applications.

II. RELATED WORKS

Florence et al. [5] introduced the Pixelwise Contrastive loss
function to train DON, which involves sampling pixels in
an image-pair and computing the Contrastive loss between
the pixels in the first image and those in the second image.
This optimization procedure aims to improve the descrip-
tor based on a similarity metric. However, the Pixelwise
Contrastive loss function is computationally expensive and
requires numerous matching and non-matching image-pair
correspondences to work optimally. When optimizing DON
using a large number (N ) of image-pair correspondences,
the computational resources consumed by the optimization
procedure increase significantly due to the exponential growth
of pixelwise descriptor similarity comparisons (2N ).

In their work, Florence [12] discovered that the Pixelwise
Contrastive loss function used to train DON might yield
poor performance if a computed correspondence is spatially
inconsistent. They also highlighted that the precision of
contrastive-trained models could be sensitive to the relative
weighting between positive and negative sampled pixels. To
address these limitations, Florence proposed a new continuous
sampling-based loss function called the Pixelwise Distribution
loss. This novel loss function leverages smooth and continuous
pixel space sampling instead of the discrete pixel space
sampling method employed by the Pixelwise Contrastive loss.



The Pixelwise Distribution loss eliminates the need for non-
matching correspondences, leading to significant savings in
computation resources.

On a different note, Kupcsik et al. [10] utilized Laplacian
Eigenmaps [13] to embed a 3D object model into an optimally
generated embedding space, serving as the target for training
DON in a supervised fashion. However, this methodology does
not reduce the computational resource consumption required
to train DON. In contrast, Hadjivelichkov and Kanoulas [14]
employed offline unsupervised clustering based on confidence
in object similarities to generate hard and soft correspondence
labels. These labels were then used as matching and non-
matching correspondences to train DON effectively.

Building upon the concept of SIMCLR-inspired frame-
works [15, 16], Adrian et al. [11] introduced a similar
architecture and another novel loss function called the Pixelwise
NTXent Loss. This loss function robustly trains DON by
leveraging synthetic correspondences computed from image
augmentations and non-matching image correspondences. No-
tably, Adrian et al.’s experiments demonstrated that the novel
loss function is invariant to batch size variations, unlike the
Pixelwise Contrastive Loss. Furthermore, it is worth noting
that most of the discussed optimization methodologies heavily
rely on correspondences to train DON effectively.

Moving on to the aspect of image-pair correspondences and
dataset engineering, the DON training strategy proposed in [5,
12] relies on depth information to compute correspondences be-
tween image pairs using camera intrinsics and pose information
[17]. However, when utilizing consumer-grade depth cameras to
capture depth information, the resulting depth data can be noisy,
particularly when dealing with tiny, reflecting objects common
in industrial environments. Noisy depth information hampers
the computation of consistent spatial correspondences in an
image pair. To overcome this challenge, Kupcsik et al. [10]
associated 3D models of objects with image views, effectively
training DON without relying on depth information. Their
approach proved efficient for smaller, texture-less, and reflective
objects. Additionally, Kupcsik et al. compared different training
strategies for producing 6D grasps on industrial objects and
demonstrated that a unique supervised training approach
enhances pick-and-place resilience in industry-relevant tasks.

In contrast, Yen-Chen et al.[18] employed NeRF[19], a
method that reconstructs a 3D scene from a sequence of
images captured by a smartphone camera. They extracted
correspondences from the synthetically reconstructed scene to
train DON. Remarkably, Adrian et al.’s experiments indicated
that DON trained on synthetic data generalizes well to real-
world objects. Furthermore, they adopted the PCK@k metric,
commonly used in [20, 21], to evaluate and benchmark DON’s
performance in cluttered scenes that were previously not
extensively studied.

On further exploration of frameworks that could generalize
objects, we ended up at the framework introduced by Suwa-
janakorn et al. [22]. The authors presented a framework to
predict geometrically consistent keypoints. These keypoints
possess the capability to generalize objects. Upon further

investigation, we discovered that one of the layers within
the framework bears a resemblance to dense visual object
descriptors. This similarity is attributed to the inherent property
of the framework, which involves regressing keypoints that
hold semantic equivalence across objects. Building upon the
framework introduced in [22], Zhao et al. [23] extended it to
a multi-object scene.

In our work, we do not use any loss functions as proposed
in [5, 12, 10, 11, 14, 18] to train DON. However, we adopt
the network architecture from DON [5] as our architecture’s
backbone and train on the task of the KeypointNet[22, 23]
with few network modifications. Moreover, we evaluate the
descriptor’s robustness produced by our framework on the
PCK@k metric as in comparision to benchmarks in [11] as
it is the only benchmark available for DON. Furthermore, we
compare the computational resource consumption used for
training both frameworks.

III. METHODOLOGY

In this section, we outline the methodologies employed. Our
approach encompasses synthetic dataset engineering, a novel
framework, loss function modifications and a comprehensive
grasping pipeline.

Firstly, we focus on synthetic dataset engineering accom-
modating spatial, colour and background augmentation. The
colour and background augmentations help the framework to
predict object-oriented descriptors. Secondly, we present a
novel framework designed to reduce computational resource
consumption with loss function modifications to optimize
performance. Lastly, we introduce a comprehensive robot
grasping pipeline exploiting the generalizing capabilities of our
framework.

A. Dataset Engineering

We have chosen the cap object for creating a synthetic dataset
as the cap mesh models are readily available in the Shapenet
library [24] as it contains rich object information, including
textures. Furthermore, we choose five cap models from the
Shapenet library and use Blenderproc [25] to generate the
synthetic dataset. We save one RGB image, mask, and depth
for each cap model from the synthetic scene. Additionally,
we employ synthetic augmentations as proposed in [11] to
synthetically spatial augment the cap’s position and rotation in
an image, including background randomization using Torchvi-
sion [26] library. An augmented image pair is sampled randomly
to generate camera poses for different viewpoints. Additionally,
image-pair correspondences are computed 1 as illustrated in
the Figure 1. We only compute 24 image-pair correspondences
for an image-pair as we found that 24 image correspondences
yield stable computation for translation and rotation for all
the objects. Using depth information, we project the computed
correspondences to the camera frame and compute the relative
transformation between two camera-frame coordinates of the
correspondences using Kabsch’s transformation [27]. Moreover,
mask and depth images are not used during inference.

1GitHub Link:https://shorturl.at/dimpF

https://shorturl.at/dimpF


Figure 1. Depiction of image synthetic spatial augmentation and correspon-
dences mapping in an image-pair. The colored encoded dots in the figure
represents correspondences in an image-pair.

B. Framework & Mining Strategy

As a backbone, we employ ResNet-34 architecture [28]. We
preserve the last convolution layer and remove the pooling
and linear layers. The backbone downsamples the RGB image
IRGB ∈ RH×W×3 to dense features Id ∈ Rh×w×D such
that h ≪ H,w ≪ W and D ∈ N+. We upsample the dense
features from the identity layer (being identical to the last
convolution layer in the backbone) as illustrated in the Figure 2
in page 4 as follows:

fU : I ∈ Rh×w×D → ID ∈ RH×W×D. (1)

The upsampled dense features are extracted and treated as dense
visual local descriptors produced from the DON. In otherwords
we extract or mine the representations from the backbone.
Similarly as in [22], we stack spatial-probability regressing
layer and depth regressing layer on top of the identity layer to
predict N ∈ N+ number of keypoint’s spatial-probability as
follows:

fS : Id ∈ Rh×w×D → INs ∈ Rh×w×N , (2)

and depth as follows:

fD : Id ∈ Rh×w×D → Id̂ ∈ Rh×w×N . (3)

We incorporate continuous sampling method fE from [12,
22] to convert the upsampled predicted spatial-probability and
depth of a keypoint to spatial-depth expectation as follows:

fE ◦ gE : [Is, Id̂] → [u, v, d]T ∈ R3, (4)

where, gE : I ∈ Rh×w×N → I ∈ RH×W×N . Furthermore, we
train the framework in a twin architecture fashion as proposed
in [15, 16, 5, 12, 10, 11, 14, 18] on the modified KeypointNet
task.

C. Loss Functions

For training, we directly adopt silhoutte consistency loss
(Lobj), variance loss (Lvar) and separation loss (Lsep) func-
tions from [22] to train the network on the keypoint prediction
task. However, we modify the multi-view consistent loss and
relative pose estimation loss. In the case of multi-view consis-
tency loss we project the predicted spatial-depth expectation
using camera intrinsics as follows:

Xcam ∈ R3×1 = I−1
cam [u, v, 1.0]T × d, (5)

where, Icam ∈ R3×3 and u, v, d ∈ R+. Furthermore, we
project the camera coordinates of the keypoints from one

camera viewpoint to another camera viewpoint using relative
transformation supplied from the synthetic augmentation pro-
cedure as follows:

Lmvc ∈ R = H(X̂B
cam, TA→BX̂

A
cam), (6)

where, X̂cam = [Xcam, 1.0]T ∈ R4×1. In Equation 6,
TA→B ∈ SE(3) is a Special Euclidean Group [29] which is
relative transformation from camera-frame A to camera-frame
B. We use Huber loss H as it produces smoother gradients
for framework optimization. Furthermore, we do not discard
the relative transformation information to calculate the relative
pose loss as suggested in [22]. Moreover, being influenced
from [23] we modified the relative pose loss as follows:

Lpose = ∥log(T †
truthTpred)∥, (7)

where, log : SE(3) → se(3) and T † =

[
RT −RT t
0T 1

]
.

D. Robot Grasping Pipeline

To use the proposed framework as a robot grasping pipeline,
we extract dense visual object descriptors from the network and
store one single descriptor of objects in a database manually
for now. During inference, we extract dense visual object
descriptors from the network and query the descriptor from
the database to find the closest match as follows:

E[u∗, v∗]d = argmin
u,v

exp−
(
∥ID[u, v]− d∥

exp(t)

)2

, (8)

where, ∥ID[u, v]− d∥ ∈ RH×W Furthermore, t ∈ R controls
the kernel width influencing the search space to compute the
optimal spatial expectation E[u∗, v∗]d of the query descriptor
d ∈ RD in the descriptor image ID ∈ RH×W×D. The
computed spatial expectation is projected to the robot frame
using camera intrinsics and poses to perform a pinch grasp.
Furthermore, the Franka Emika 7-DOF robot manipulator with
two jaw gripper and wrist-mounted Intel Realsense D435
camera is used as a testing setup as illustrated in Figure 3.

IV. EXPERIMENTS & RESULTS

In this section, we outline the benchmarking results employed
from the methodologies. We benchmark the DON framework
with Pixelwise NT-Xent loss as in [11] and our framework with
our revision of the loss function on a 48GB VRAM GPU. We
benchmark the descriptor’s robustness with the AUC ± σ for
PCK@k,∀k ∈ [1, 100] metric. Furthermore, we benchmark
the computational resource consumption of the DON and
our frameworks. We also demonstrate the application of our
framework as a robot-grasping pipeline in two methodologies,
one of which our framework demonstrates its capabilities to
produce object-specific 6D poses for robot grasping.



Figure 2. Illustration of the novel framework designed to compute and seamlessly extract dense visual object descriptors efficiently. During inference, we
extract dense visual object descriptors directly from the network and ignore predicted spatial-depth expectations of the keypoints.

Figure 3. Illustration of the robot grasping pipeline setup. In the image, the
robot is highlighted in red, the caps in green, and the camera in blue.

A. Training Setup

We implemented training and benchmarking using “PyTorch-
Lightning”[30] and “PyTorch”[31] libraries. Furthermore, we
employ ADAM[32] optimizer to optimize the model for
2500 epochs with a learning rate of α = 3 × 10−4, β1 =
0.9 and β2 = 0.999 with weight decay η = 10−4 to benchmark
the DON with Pixelwise NT-Xent loss as in [11] with a fixed
batch size of 1 and 128 image-pair correspondences.

To train our framework, we employ an ADAM optimizer
to optimize the model for 2500 epochs with a learning rate
of α = 1 × 10−3, β1 = 0.9 and β2 = 0.999 with no weight
decay. We further use a fixed batch size of 1 and the StepLR
scheduler with a step size 2500 and a gamma of 0.9 to train
the model with all the loss weights to 1.0 except variance
loss weight to 1 × 10−3. We trained the three models with
128 keypoints with a margin of 2 pixels for each descriptor
dimension. We specifically chose 128 keypoints as it aligns
with the notion that DON is benchmarked with 128 image-pair
correspondences.

B. Benchmarking & Results

The AUC±σ for PCK@k,∀k ∈ [1, 100] is computed with
256 image-pair correspondences for both models. The metrics
mean and std. deviation is calculated from benchmarking three
models trained for each descriptor dimension. Due to the limited
GPU VRAM capacity, we could not train DON for descriptor
dimensions greater than 32. As per Table I, both frameworks
benefit while training them for longer descriptor dimensions.

Furthermore, the higher values infer robust descriptors in
Table I. We notice that our framework works robustly as
the descriptor dimension gets longer as the metric difference
between DON and our framework reduces.

Table I
BENCHMARKING OUTCOMES FOR DESCRIPTORS’ EVALUATION METRIC.

Benchmarking for AUC ± σ for PCK@k,∀k ∈ [1, 100]

Descriptor Size (D) Dense Object Nets Our framework
3 0.922± 0.006 0.914± 0.009
8 0.933± 0.011 0.928± 0.015
16 0.948± 0.012 0.945± 0.010
32 0.953± 0.008 0.950± 0.009
64 ∼ 0.953± 0.006

128 ∼ 0.957± 0.012
256 ∼ 0.959± 0.008
512 ∼ 0.962± 0.011

While training both frameworks, we monitor the GPU
VRAM consumption. As per the benchmark results in Table II,
the DON consumption increases as the descriptor dimensions
get longer while our framework consumes a fraction of the
computation resource. Furthermore, lower readings are better
in Table II.

Table II
BENCHMARKING OUTCOMES FOR TRAINING COMPUTATION RESOURCE

COMSUMPTION.

Benchmarking for GPU VRAM(GB) consumption

Descriptor Size (D) Dense Object Nets Our framework
3 9.377 4.763
8 13.717 4.785
16 20.479 4.832
32 30.067 4.872
64 ∼ 4.913

128 ∼ 5.409
256 ∼ 6.551
512 ∼ 7.915

To check the impact of descriptors’ robustness compared
to the number of keypoints, we trained our framework with
16 keypoints. Furthermore, we trained three additional models
for each descriptor dimension 64, 128, 256, and 512. As per



the Table III compared to the results in Table I in page I, the
descriptor’s robustness decreased when the framework predicted
16 keypoints. Moreover, this reflects that number of keypoints in
our framework and the number of image-pair correspondences
in DON are directly proportional to the robustness of the
descriptors.

Table III
BENCHMARK OF OUR FRAMEWORK WITH 16 KEYPOINTS FOR GPU

VRAM(GB) CONSUMPTION AND AUC ± σ FOR PCK@k,∀k ∈ [1, 100]
METRIC.

Our framework with 16 keypoints

Descriptor Size (D) Metric VRAM Usage (GB)
64 0.948± 0.009 3.799
128 0.952± 0.010 4.191
256 0.955± 0.013 5.241
512 0.957± 0.006 7.341

C. Descriptor Inspection

Furthermore, to inspect the results of trained DON, an
interface is built using the PyGame library [33] to visualize the
results of the trained DON. The mouse pointer in the image
space is mapped to the pixel, and the descriptor at that pixel
is queried in another image-descriptor space. We further use
the spatial probability of the descriptor to visualize the queried
descriptor in the image space using Equation 8 in page 3. We
identify if there are any multi-modal spatial activations in the
descriptor spaces and none, as shown in Figure 4.

Figure 4. Depiction of the spatial probability heatmaps of the descriptor in
the image space. We set the temperature in the Equation 8 to 1.1 and render
the spatial probability heatmaps in the interface. The first and second image
from the left and the right highlights the semantically equivalent descriptors
in the image space.

For the robot grasping pipeline, we trained our framework
with actual caps. As the synthetic data generation only needs
mask and depth information, we could create a mask in no
time. Additionally, while training the framework, we do not
need the actual real-world depth information as it computes its
own. We later extracted the dense visual local descriptors from
the framework. We visually inspected for any inconsistencies
in the descriptor space, as shown in Figure 5, and found it
consistent. Furthermore, we did not use the models trained on
the synthetic dataset, as the representations were inconsistent
with the real caps.

D. Robot Grasping Pipeline

For robot grasping, a descriptor is picked from the descriptor
space and queried in real-time such that robot can pinch-grasp
the object. We could successfully grasp the caps with the robot,
as shown in Figure 6. Furthermore, we did not evaluate the
robot grasping for position and semantic object location offsets.

Figure 5. The image depicts the visual inspection of the dense visual descriptors
space of the real caps using our developed interface. We trained our framework
on the first two caps from the left, and our framework could generalize the
object representations on an unseen cap while training illustrated in the first
image from the right.

Figure 6. Depiction of the straight robot grasping pipeline.

As our framework inertly regresses keypoints on the object,
we could use it as an alternative approach to grasp the caps by
computing the pose generated by the keypoints considering the
actual depth information instead of network-regressed depth
information. We extract the spatial probability of each keypoint
from the framework and deactivate spatial probabilities where
the depth information is missing, as the depth image from the
camera is noisy. Furthermore, the spatial expectations of the
keypoints are projected to the camera frame to calculate a 6D
pose in the camera frame. The 6D pose is transformed in the
robot frame to perform an aligned grasp, as shown in Figure 7.

Figure 7. Illustration of the aligned robot grasping pipeline.

V. CONCLUSION

This paper introduces a novel framework for mining dense
visual object descriptors without explicitly training DON.
We have successfully eliminated the requirement for image-
pair correspondence mapping in training DON by employing
synthetic augmentation data generation and a novel deep-
learning architecture. Our benchmarking results showcase the
effectiveness of our framework in generating robust and denser
visual local descriptors. However, it needs to outperform the
original DON framework in robustness. Moreover, a notable
advantage of our proposed framework is its significantly
reduced computational resource consumption, amounting to
a remarkable 86.67% decrease compared to the originally
proposed framework. It is important to note that our current
framework is limited to single object-dense visual descriptors.



Nevertheless, we have plans to extend our methodology
to encompass the production of multi-object dense visual
descriptors in cluttered scenes. By doing so, we aim to enhance
the versatility and applicability of our framework in real-world
scenarios. To demonstrate the practicality of our framework,
we have integrated it into a robot-grasping pipeline using
two distinct methodologies. Remarkably, our framework can
generate object-specific 6D poses, enhancing robot grasping
performance. This successful application further highlights
the potential utility of our framework in real-world robotic
systems.

REFERENCES

[1] OpenAI. GPT-4 Technical Report. 2023. arXiv: 2303.08774
[cs.CL].

[2] A. Chowdhery et al. “PaLM: Scaling Language Modeling with
Pathways”. In: arxiv:2204.02311 (2022).

[3] E. M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell.
“On the Dangers of Stochastic Parrots: Can Language Models
Be Too Big?” In: Proceedings of the 2021 ACM conference on
fairness, accountability, and transparency. 2021, pp. 610–623.

[4] E. Strubell, A. Ganesh, and A. McCallum. “Energy and policy
considerations for deep learning in NLP”. In: arXiv preprint
arXiv:1906.02243 (2019).

[5] P. R. Florence, L. Manuelli, and R. Tedrake. “Dense object nets:
Learning dense visual object descriptors by and for robotic
manipulation”. In: arXiv preprint arXiv:1806.08756 (2018).

[6] P. Sundaresan, J. Grannen, B. Thananjeyan, A. Balakrishna, M.
Laskey, K. Stone, J. E. Gonzalez, and K. Goldberg. “Learning
Rope Manipulation Policies Using Dense Object Descriptors
Trained on Synthetic Depth Data”. In: CoRR abs/2003.01835
(2020). arXiv: 2003.01835.

[7] C.-Y. Chai, K.-F. Hsu, and S.-L. Tsao. “Multi-step Pick-and-
Place Tasks Using Object-centric Dense Correspondences”. In:
2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). 2019, pp. 4004–4011. DOI: 10 .1109/
IROS40897.2019.8968294.

[8] P. Florence, L. Manuelli, and R. Tedrake. “Self-supervised
correspondence in visuomotor policy learning”. In: IEEE
Robotics and Automation Letters 5.2 (2019), pp. 492–499.

[9] A. Ganapathi et al. “Learning Dense Visual Correspondences
in Simulation to Smooth and Fold Real Fabrics”. In: 2021
IEEE International Conference on Robotics and Automation
(ICRA). 2021, pp. 11515–11522. DOI: 10.1109/ICRA48506.
2021.9561980.

[10] A. Kupcsik, M. Spies, A. Klein, M. Todescato, N. Waniek,
P. Schillinger, and M. Bürger. “Supervised Training of Dense
Object Nets using Optimal Descriptors for Industrial Robotic
Applications”. In: arXiv preprint arXiv:2102.08096 (2021).

[11] D. B. Adrian, A. G. Kupcsik, M. Spies, and H. Neumann.
“Efficient and Robust Training of Dense Object Nets for Multi-
Object Robot Manipulation”. In: 2022 International Conference
on Robotics and Automation (ICRA). IEEE. 2022, pp. 1562–
1568.

[12] P. R. Florence. “Dense visual learning for robot manipulation”.
PhD thesis. Massachusetts Institute of Technology, 2020.

[13] M. Belkin and P. Niyogi. “Laplacian eigenmaps for dimension-
ality reduction and data representation”. In: Neural computation
15.6 (2003), pp. 1373–1396.

[14] D. Hadjivelichkov and D. Kanoulas. “Fully Self-Supervised
Class Awareness in Dense Object Descriptors”. In: 5th Annual
Conference on Robot Learning. 2021.

[15] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. “A simple
framework for contrastive learning of visual representations”.
In: International conference on machine learning. PMLR. 2020,
pp. 1597–1607.

[16] J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S. Deny. “Barlow
twins: Self-supervised learning via redundancy reduction”. In:
International Conference on Machine Learning. PMLR. 2021,
pp. 12310–12320.

[17] R. Hartley and A. Zisserman. Multiple view geometry in
computer vision. Cambridge university press, 2003.

[18] L. Yen-Chen, P. Florence, J. T. Barron, T.-Y. Lin, A. Rodriguez,
and P. Isola. NeRF-Supervision: Learning Dense Object De-
scriptors from Neural Radiance Fields. 2022. DOI: 10.48550/
ARXIV.2203.01913.

[19] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R.
Ramamoorthi, and R. Ng. “Nerf: Representing scenes as neural
radiance fields for view synthesis”. In: Communications of the
ACM 65.1 (2021), pp. 99–106.

[20] C.-Y. Chai, K.-F. Hsu, and S.-L. Tsao. “Multi-step pick-and-
place tasks using object-centric dense correspondences”. In:
2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE. 2019, pp. 4004–4011.

[21] M. E. Fathy, Q.-H. Tran, M. Z. Zia, P. Vernaza, and M.
Chandraker. “Hierarchical metric learning and matching for
2d and 3d geometric correspondences”. In: Proceedings of
the european conference on computer vision (ECCV). 2018,
pp. 803–819.

[22] S. Suwajanakorn, N. Snavely, J. J. Tompson, and M. Norouzi.
“Discovery of latent 3d keypoints via end-to-end geometric
reasoning”. In: Advances in neural information processing
systems 31 (2018).

[23] W. Zhao, S. Zhang, Z. Guan, W. Zhao, J. Peng, and J. Fan.
“Learning deep network for detecting 3d object keypoints and
6d poses”. In: Proceedings of the IEEE/CVF Conference on
computer vision and pattern recognition. 2020, pp. 14134–
14142.

[24] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang,
Z. Li, S. Savarese, M. Savva, S. Song, H. Su, et al. “Shapenet:
An information-rich 3d model repository”. In: arXiv preprint
arXiv:1512.03012 (2015).

[25] M. Denninger, M. Sundermeyer, D. Winkelbauer, Y. Zidan, D.
Olefir, M. Elbadrawy, A. Lodhi, and H. Katam. “Blenderproc”.
In: arXiv preprint arXiv:1911.01911 (2019).

[26] S. Marcel and Y. Rodriguez. “Torchvision the machine-vision
package of torch”. In: Proceedings of the 18th ACM interna-
tional conference on Multimedia. 2010, pp. 1485–1488.

[27] W. Kabsch. “A solution for the best rotation to relate two
sets of vectors”. In: Acta Crystallographica Section A: Crystal
Physics, Diffraction, Theoretical and General Crystallography
32.5 (1976), pp. 922–923.

[28] K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning
for image recognition”. In: (2016), pp. 770–778.

[29] W. P. Thurston. “Three-Dimensional Geometry and Topology,
Volume 1”. In: Three-Dimensional Geometry and Topology,
Volume 1. Princeton university press, 2014.

[30] W. A. Falcon. “Pytorch lightning”. In: GitHub 3 (2019).
[31] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al. “Pytorch: An
imperative style, high-performance deep learning library”. In:
Advances in neural information processing systems 32 (2019).

[32] D. P. Kingma and J. Ba. “Adam: A method for stochastic
optimization”. In: arXiv preprint arXiv:1412.6980 (2014).

[33] S. Kelly. “Basic introduction to pygame”. In: Python, PyGame
and Raspberry Pi Game Development. Springer, 2016, pp. 59–
65.

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2003.01835
https://doi.org/10.1109/IROS40897.2019.8968294
https://doi.org/10.1109/IROS40897.2019.8968294
https://doi.org/10.1109/ICRA48506.2021.9561980
https://doi.org/10.1109/ICRA48506.2021.9561980
https://doi.org/10.48550/ARXIV.2203.01913
https://doi.org/10.48550/ARXIV.2203.01913

	Introduction
	Related Works
	Methodology
	Dataset Engineering
	Framework & Mining Strategy
	Loss Functions
	Robot Grasping Pipeline

	Experiments & Results
	Training Setup
	Benchmarking & Results
	Descriptor Inspection
	Robot Grasping Pipeline

	Conclusion

