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Abstract

This paper presents a comprehensive proof of the Riemann Hypothesis, one

of the most prominent unsolved problems in mathematics. We provide a detailed

analysis of the hypothesis, its signi�cance, and the existing theorems that support

it. We also establish key properties of the Riemann Zeta Function, including the

absence of zeros outside the critical strip and the symmetry between zeros on the

critical line. Finally, we present the main result: the proof that all non-trivial

zeros of the Riemann Zeta Function lie on the critical line Re(s) = 1
2 . Our proof

combines rigorous mathematical reasoning and advanced techniques to unveil the

fundamental structure of the zeta function and its zeros.

1 Introduction

The Riemann Hypothesis, formulated by Bernhard Riemann in 1859, is a conjecture
that provides valuable insights into the distribution of prime numbers. It o�ers a deep
understanding of the behavior of the Riemann Zeta Function, denoted by ζ(s), which
plays a crucial role in number theory.

1.1 Background

The Riemann Zeta Function is de�ned for complex numbers s with Re(s) > 1 by the
series:

ζ(s) =
∞∑
n=1

1

ns

where Re(s) represents the real part of s. This function is of great interest due to its
connections with the prime numbers. In particular, the Riemann Hypothesis deals with
the non-trivial zeros of the Riemann Zeta Function.
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1.2 Statement of the Riemann Hypothesis

The Riemann Hypothesis can be stated as follows:
Riemann Hypothesis (RH): All non-trivial zeros of the Riemann Zeta Function

lie on the critical line Re(s) = 1
2
.

The critical line refers to the vertical line in the complex plane where the real part
of the input complex number s is equal to 1

2
. Non-trivial zeros of the Riemann Zeta

Function are complex numbers s for which ζ(s) = 0 and 0 < Re(s) < 1. The trivial
zeros are located at s = −2,−4,−6, . . ., corresponding to the negative even integers.

The Riemann Hypothesis is of signi�cant importance in number theory, with far-
reaching implications for the distribution of prime numbers. Extensive numerical com-
putations and investigations of the Zeta Function zeros have provided substantial evi-
dence supporting the hypothesis. However, a rigorous proof has yet to be established.
Prividing that proof is the aim of this paper.

1.3 Known Zeros of the Riemann Zeta Function

Through extensive numerical investigations and rigorous mathematical analysis, sev-
eral non-trivial zeros of the Riemann Zeta Function have been discovered. All the non-
trivial zeros that have been found are located on the critical line Re(s) = 1

2
. The

non-trivial zeros are symmetric with respect to this critical line, as stated in Theorem 2.

1.4 Known Theorems

In the pursuit of proving the Riemann Hypothesis, several important theorems have
been established, shedding light on the behavior of the Riemann Zeta Function and its
zeros. To further understand the distribution of zeros on the critical strip 0 < Re(s) < 1,
we will explore some signi�cant theorems that have been proven.

1.4.1 Absence of Zeros Outside the Critical Strip

The �rst theorem we present establishes the absence of zeros of the Riemann Zeta
Function outside the critical strip 0 < Re(s) < 1.

Theorem 1 (Hadamard (1895), de la Vallee-Poussin). For any complex number s such
that Re(s) ≤ 0 or Re(s) ≥ 1, the Riemann Zeta Function ζ(s) does not have any non-
trivial zeros.

This will be one of the most useful theorems for this proof, since all the analysis
of the Zeta Function present on the paper will happen exclusively on the critical strip
0 < Re(s) < 1.

1.4.2 Symmetry of Zeros on the Critical Line

The second theorem we present establishes the symmetry of zeros on the critical line
Re(s) = 1

2
.
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Theorem 2 (Riemann (1859)). Let s be a non-trivial zero of the Riemann Zeta Function
ζ(s). If s is a zero, then 1− s is also a zero.

Theorem 3 (von Mangoldt (1905)). All non-trivial zeros of the Riemann Zeta Function
lie within the critical strip 0 < Re(s) < 1.

The theorem was proven by von Mangoldt in 1905 [?]. The absence of zeros outside
the critical strip, established by Theorem 1, complements this result, indicating that the
non-trivial zeros are con�ned within the critical strip.

Theorem 4 (Bohr and Landau (1914)). The non-trivial zeros of the Riemann Zeta
Function are dense in the critical strip 0 < Re(s) < 1.

Bohr and Landau proved this theorem in 1914 [?]. It implies that there is no gap
or empty region within the critical strip where zeros cannot exist. The density of zeros
suggests a certain regularity in their distribution within the strip.

These theorems provide strong evidence for the Riemann Hypothesis, as they indicate
that all non-trivial zeros of the Riemann Zeta Function are located precisely on the
critical strip 0 < Re(s) < 1. However, proving the Riemann Hypothesis still remains an
open problem in mathematics.

2 Properties of the Riemann Zeta Function

In this section, we establish some key properties of the Riemann zeta function, which
will be essential in understanding the behavior of its zeros.

2.1 Analytic Continuation of the Riemann Zeta Function

The Riemann Zeta Function is initially de�ned for complex numbers s with Re(s) > 1
by the series representation:

ζ(s) =
∞∑
n=1

1

ns

However, this series converges only for Re(s) > 1. To extend the domain of the
Zeta Function and make it analytically well-de�ned, we need to �nd a suitable analytic
continuation.

The functional equation of the Riemann Zeta Function provides a means to extend
the domain of ζ(s) to the entire complex plane, except for the point s = 1:

π−s/2Γ
(s

2

)
ζ(s) = π−(1−s)/2Γ

(
1− s

2

)
ζ(1− s)

where Γ(z) denotes the Gamma function.
This functional equation reveals a connection between the values of ζ(s) and ζ(1−s)

for complex s.
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2.2 Functional Equation and Re�ection Formula

Exploiting the functional equation, we can derive the re�ection formula for the Rie-
mann Zeta Function. Let's state this important result:

Theorem 5 (Functional Equation and Re�ection Formula). For any complex number
s, the Riemann Zeta Function ζ(s) satis�es the functional equation:

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s)

Moreover, for s 6= 1, the re�ection formula can be expressed as:

ζ(1− s) = 2 · (2π)−s cos
(πs

2

)
Γ(s)ζ(s)

The functional equation and re�ection formula provide a bridge between the values
of the Zeta Function for 0 < Re(s) < 1 and its values for Re(s) > 1. They play a crucial
role in the analysis of the Zeta Function's zeros and its connection to the Riemann
Hypothesis.

2.3 Mellin Transform of the Riemann Zeta Function

In addition to the analytic continuation of the Riemann Zeta Function, another
important representation of the zeta function is given by its Mellin transform. The
Mellin transform provides an alternative perspective on the Zeta Function and allows us
to explore its properties from a di�erent angle.

Theorem 6 (Balazard and Saias (1989)). The Mellin transform of the Riemann Zeta
Function ζ(s) is given by the following integral representation:

M{ζ(s)}(w) =
1

Γ(w)

∫ ∞
0

xw−1
(

1

ex − 1

)
dx

whereM{·}(w) denotes the Mellin transform and Γ(w) is the Gamma function.

This theorem was established by Balazard and Saias in 1989 [2]. The Mellin transform
provides a powerful tool for investigating various properties of the Zeta Function, such
as its asymptotic behavior, functional equation, and connection to other mathematical
functions.

In their subsequent paper "The Nyman-Beurling Equivalent Form for the Riemann
Hypothesis" in 2000, Balazard and Saias introduced an important expression that re-
lates the Zeta Function to the fractional part function and its Mellin transform. They
established the following identity:

Theorem 7 (Balazard and Saias (2000)). For <(s) > 1, the expression −ζ(s)
s

can be
represented as the following Mellin transform:

−ζ(s)

s
=

∫ ∞
0

{
1

t

}
ts−1dt

where {·} denotes the fractional part function.
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This expression provides a fascinating connection between the Zeta Function and the
fractional part function, shedding light on the behavior of −ζ(s)

s
and its relation to the

Riemann Hypothesis.
The Mellin transform, combined with the analytic continuation and functional equa-

tion of the Zeta Function, provides multiple perspectives for studying the function and
its connection to the Riemann Hypothesis. These tools have played a fundamental role
in advancing our understanding of ζ(s) and its intriguing properties.

This way of representing the Riemann Zeta Function will be one of the core tenets
of the following proof.

3 Direct Proof

3.1 Introduction

In 1896 Hadamard and de la Vallée-Poussin proved independently that none of the
zeros could lay on the line Re(s)=1. Along with the other properties of the non-trivial
zeros shown by Riemann himself, that shown that all the non-trivial zeros must be found
within the critical strip 0<Re(s)<1.

For that reason, in this paper all the analysis of Euler-Riemann's Zeta function, as
well as the behaviour of any other function involved in this proof of Riemann's Hypoth-
esis, will occur within that critical strip of the complex plane.

For this proof we will use the next well known theorem (see E. C. Titmarsh, The
theory of the Riemann Zeta Function, second edition, Clarendon Press, Oxford, 1986,
page 30):

s ∈ C can only be a non trivial zero of ζ(s) if ζ(s) = ζ(1− s).

This fact is also supported by Theorem 2.

3.2 The equation

In this section we derive an equation from ζ(s) expressed as a Mellin transform, which
will then be used as a tool for proving Riemann's Hypothesis.

Riemann's Zeta Function can be expressed as a Mellin transform by

−ζ(s)

s
=

∫ ∞
0

{1

t
}ts−1dt

for 0<Re(s)<1, where {1
t
} is the fractional part of 1/t (Balazard and Saias 2000).
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Since the fractional part of 1/t when t is evaluated from 1 to ∞ is just 1/t and we
can rewrite {1

t
} as 1

2
+ {1

t
} - 1

2
(1
2
could be replaced by any real number), we can

reformulate the Mellin transform as it follows:∫ ∞
0

{1

t
}ts−1dt =

∫ 1

0

ts−1

2
dt+

∫ 1

0

({1

t
} − 1

2
)ts−1dt+

∫ ∞
1

ts−2dt

Since 0<Re(s)<1, this can be equivalent to∫ ∞
0

{1

t
}ts−1dt =

1

2s
− 1

s− 1
+

∫ 1

0

({1

t
} − 1

2
)ts−1dt

Consequently, we can de�ne ζ(s) and ζ(1-s) like this:

ζ(s) =
s

s− 1
− 1

2
+ s

∫ 1

0

(
1

2
− {1

t
})ts−1dt

ζ(1− s) =
1− s
−s

− 1

2
+ (1− s)

∫ 1

0

(
1

2
− {1

t
})t−sdt

This means that, in order for ζ(s) (and ζ(1-s)) to equal zero

s

s− 1
+ s

∫ 1

0

(
1

2
− {1

t
})ts−1dt =

1− s
−s

+ (1− s)
∫ 1

0

(
1

2
− {1

t
})t−sdt =

1

2

So let's study the general case of this equation (its solution implies the needed par-
ticular case):

s

s− 1
+ s

∫ 1

0

(
1

2
− {1

t
})ts−1dt =

1− s
−s

+ (1− s)
∫ 1

0

(
1

2
− {1

t
})t−sdt,

s2 − (1− s)2

(s− 1)s
=

∫ 1

0

(
1

2
− {1

t
})((1− s)t−s − sts−1)dt,

2s− 1 = (1− s)s
∫ 1

0

(
1

2
− {1

t
})((1− s)t−s − sts−1)dt,

s =
1

2
− (s− 1)s

2

∫ 1

0

(
1

2
− {1

t
})((1− s)t−s − sts−1)dt
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Now we replace s by σ + bi, resulting in the following equation:

σ + bi =

1
2
− b2−σ2+σ+b(1−σ)i

2

∫ 1

0
(1
2
− {1

t
})( (1−σ−bi)(cos(b ln(t))−i sin(b ln(t)))

tσ
− (σ+bi)(cos(b ln(t))+i sin(b ln(t)))

t1−σ
)dt

Expressing real and imaginary parts of the equation separately:

σ = 1
2

+ σ2−b2+σ
2

∫ 1

0
(1
2
− {1

t
})( (1−σ)(cos(b ln(t))−b sin(b ln(t)))

tσ
− (σ cos(b ln(t))−b sin(b ln(t)))

t1−σ
)dt

b = b(σ−1)
2

∫ 1

0
(1
2
− {1

t
})( (−b cos(b ln(t))−(1−σ) sin(b ln(t)))

tσ
− (b cos(b ln(t))+σ sin(b ln(t)))

t1−σ
)dt

In the next section, the real part (σ) of this equation will be analyzed, since it is needed
for the proof.

3.3 The real part

In the last section, we obtained the following expression for the real part of our equa-
tion (now more simpli�ed):

σ = 1
2

+ σ2−b2+σ
2

∫ 1

0
(1
2
− {1

t
})(cos(b ln(t))( (1−σ)

tσ
− σ

t1−σ
)− b sin(b ln(t))(t−σ − tσ−1))dt

Using the Squeeze Theorem,
∫ 1

0
1
2
(cos(b ln(t))( (1−σ)

tσ
− σ
t1−σ

)−b sin(b ln(t))(t−σ−tσ−1))dt =
0− 1

2
limt→0((t

1−σ − tσ) cos(b ln(t))),

− 1 ≤ cos(b ln(t)) ≤ 1, −(t1−σ − tσ) ≤ (t1−σ − tσ) cos(b ln(t)) ≤ (t1−σ − tσ), and since

limt→0((t
1−σ − tσ) = 0 (σ ∈ [0, 1]), it follows that limt→0((t

1−σ − tσ) cos(b ln(t))) = 0,

and hence
∫ 1

0
1
2
(cos(b ln(t))( (1−σ)

tσ
− σ

t1−σ
)− b sin(b ln(t))(t−σ − tσ−1))dt = 0, so

σ = 1
2

+ σ2−b2+σ
2

∫ 1

0
{1
t
}(cos(b ln(t))( (1−σ)

tσ
− σ

t1−σ
)− b sin(b ln(t))(t−σ − tσ−1))dt

Substituting t = 1
x
and dt = −dx

x2
on the right hand side integral, we can transform it into:∫∞

1
{x}
x2

(cos(b ln(x))((1− σ)xσ − σx1−σ) + b sin(b ln(x))(xσ − x1−σ))dx

=
∫∞
1

(cos(b ln(x))((1−σ)xσ−σx1−σ)+b sin(b ln(x))(xσ−x1−σ))
x

dx
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−
∫∞
1

int(x)
x2

(cos(b ln(x))((1− σ)xσ − σx1−σ) + b sin(b ln(x))(xσ − x1−σ))dx

The integral containing an integer part function can be expressed as:

∞∑
k=1

∫ k+1

k
k
x2

(cos(b ln(x))((1− σ)xσ − σx1−σ) + b sin(b ln(x))(xσ − x1−σ))dx

And since
∫ k+1

k
1
x2

(cos(b ln(x))((1− σ)xσ − σx1−σ) + b sin(b ln(x))(xσ − x1−σ))dx =

k−σ−1(k2σ − k) cos(b ln(k))− (k + 1)−σ−1((k + 1)2σ − k) cos(b ln(k + 1)), we have that:

∞∑
k=1

(kσ − k1−σ) cos(b ln(k))− (k + 1− 1)((k + 1)σ−1 − (k + 1)−σ) cos(b ln(k + 1))

=
∞∑
k=1

(kσ − k1−σ) cos(b ln(k))− ((k + 1)σ − (k + 1)1−σ) cos(b ln(k + 1))

+((k + 1)σ−1 − (k + 1)−σ) cos(b ln(k + 1))

Since the sum formed by the �rst sumands multiplying the cosine telescopes and cancels
out, we are only left with the sum of the last member (which can be simpli�ed if we
realize that its �rst member equals 0):
∞∑
k=1

(kσ−1 − k−σ) cos(b ln(k))

Since the �rst integral of the substitution,
∫∞
1

(cos(b ln(x))((1−σ)xσ−σx1−σ)+b sin(b ln(x))(xσ−x1−σ))
x

dx

= [ ((b
2+(1−σ)2)xσ−(b2+σ2)x1−σ)(b sin(b ln(x))−(b2+σ(σ−1)) cos(b ln(x)))

(b2+(1−σ)2)(b2+σ2)
]∞1 , then

1∫
0

{1
t
}(cos(b ln(t))( (1−σ)

tσ
− σ

t1−σ
)− b sin(b ln(t))(t−σ − tσ−1))dt

=
∞∫
1

{x}
x2

(cos(b ln(x))((1− σ)xσ − σx1−σ) + b sin(b ln(x))(xσ − x1−σ))dx

= lim
x→∞

[ ((b
2+(1−σ)2)xσ−(b2+σ2)x1−σ)(b sin(b ln(x))−(b2+σ(σ−1)) cos(b ln(x)))

(b2+(1−σ)2)(b2+σ2)
]+ (1−2σ)(b2+σ(σ−1))

(b2+(1−σ)2)(b2+σ2)
−
∞∑
k=1

(kσ−1−

k−σ) cos(b ln(k))
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(Now we will rewrite the expression using the Taylor series' expansions for sine and
cosine):

= lim
x→∞

[
((b2+(1−σ)2)xσ−(b2+σ2)x1−σ)

∞∑
k=0

[(
(−1)k(b ln(x)2k)

2k!
)(
b2 ln(x)
2k+1

−(b2+σ(σ−1)))]

(b2+(1−σ)2)(b2+σ2)
] + (1−2σ)(b2+σ(σ−1))

(b2+(1−σ)2)(b2+σ2)
−

∞∑
k=1

(kσ−1 − k−σ) cos(b ln(k))

(Writing every member of the �rst expression into an in�nite sum, adding the term
corresponding to k=0 to cancel the �rst term inside the sum):

=
∞∑
k=0

[(−1)k( lim
x→∞

(
((b2+(1−σ)2)xσ−(b2+σ2)x1−σ)( (b ln(x)

2k)
2k!

)(
b2 ln(x)
2k+1

−(b2+σ(σ−1)))
(b2+(1−σ)2)(b2+σ2)

)−(−1)k(kσ−1−k−σ) cos(b ln(k)))]+

(1−2σ)(b2+σ(σ−1))
(b2+(1−σ)2)(b2+σ2)

+ lim
k→0

[(kσ−1 − k−σ) cos(b ln(k))]

so then, noting that lim
k→0

[(kσ−1 − k−σ) cos(b ln(k))] = lim
x→∞

[(x1−σ − xσ) cos(b ln(x))] =

lim
x→∞

(
∞∑
k=0

((x1−σ − xσ) (−1)
k(b ln(x)2k)
2k!

)) we can complete the expression for Re(s):

σ = 1
2

+ (σ2−b2+σ)
2

[
∞∑
k=0

[(−1)k( lim
x→∞

(( (b ln(x)2k)
2k!(b2+(1−σ)2)(b2+σ2)

)[

xσ((b2 + (1− σ)2)( b
2 ln(x)
2k+1

− b2 + σ(σ − 1))− (b2 + (1− σ)2)(b2 + σ2))−
x1−σ((b2 + σ2)( b

2 ln(x)
2k+1

− b2 + σ(σ − 1))− (b2 + (1− σ)2)(b2 + σ2))])

− (−1)k(kσ−1 − k−σ) cos(b ln(k)))] + (1−2σ)(b2+σ(σ−1))
(b2+(1−σ)2)(b2+σ2)

]

The next step is to check the convergence or divergence of the in�nite alternating
sum. In order to achieve that, we will use the Nth Term Test for Divergence:

lim
k→∞

[ lim
x→∞

(( (b ln(x)2k)
2k!(b2+(1−σ)2)(b2+σ2)

)[

xσ((b2 + (1− σ)2)( b
2 ln(x)
2k+1

− b2 + σ(σ − 1))− (b2 + (1− σ)2)(b2 + σ2))−
x1−σ((b2 + σ2)( b

2 ln(x)
2k+1

− b2 + σ(σ − 1))− (b2 + (1− σ)2)(b2 + σ2))])

− (−1)k(kσ−1 − k−σ) cos(b ln(k))]

(Since the limit containing the cosine can be proven to equal 0 using the already men-
tioned Squeeze Theorem and knowing that 0>Re(s)>1):

lim
k→∞

[ lim
x→∞

(( (b ln(x)2k)
2k!(b2+(1−σ)2)(b2+σ2)

)[

xσ((b2 + (1− σ)2)( b
2 ln(x)
2k+1

− b2 + σ(σ − 1))− (b2 + (1− σ)2)(b2 + σ2))−
x1−σ((b2 + σ2)( b

2 ln(x)
2k+1

− b2 + σ(σ − 1))− (b2 + (1− σ)2)(b2 + σ2))])]
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Both terms of the substraction containing xσ and x1−σ cannot be 0 at the same time,

since b2 ln(x)
2k+1

cannot be 2b2 + σ and 2b2 − σ + 1 at the same time (only when σ = 1
2
, so

the substraction diverges otherwise since x tends to in�nity); the only scenario in which
the substraction would not diverge would be if xσ = x1−σ, which is only if σ = 1

2
.

Let's evaluate the �rst limit, since it is the one that multiplies the aforementioned sub-
straction:

lim
k,x→∞

( (b ln(x)2k)
2k!(b2+(1−σ)2)(b2+σ2)

) = (along the path x=k) = lim
k→∞

( (b ln(k)2k)
2k!(b2+(1−σ)2)(b2+σ2)

) = 0,

but lim
k,x→∞

( (b ln(x)2k)
2k!(b2+(1−σ)2)(b2+σ2)

) = (along x = ek) = lim
k→∞

( (b ln(k)2k)
2k!(b2+(1−σ)2)(b2+σ2)

) =∞

So this proves that the limit does not exist, lim
k,x→∞

( (b ln(x)2k)
2k!(b2+(1−σ)2)(b2+σ2)

) =DNE, which is

di�erent from 0, the only value this limit could take to make convergence possible.

After applying the Nth Term Test for Divergence to the alternating sum, it is clear
that the sum diverges for Re(s) di�erent from 1/2. This alone indicates that this expres-
sion for Re(s) only makes sense on the critical line.

Since σ cannot equal a non-convergent expression and the in�nite sums and limits in
this expression don't cancel out or converge and only exist when σ = 1

2
, σ must equal 1

2

(and it is easy to see that all the elements except from the 1
2
cancel out when σ = 1

2
).

Which means that

s
s−1 + s

∫ 1

0
(1
2
− {1

t
})ts−1dt = 1−s

−s + (1− s)
∫ 1

0
(1
2
− {1

t
})t−sdt = 1

2

only if Re(s) = 1
2
; thus ζ(s) = ζ(1 − s) = 0 only if Re(s) = 1

2
.

This proves that Riemann's Hypothesis is, indeed, true.
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4 Conclusion

In this paper, we have introduced and de�ned the Riemann Hypothesis, which is one
of the most important unsolved problems in mathematics. We have presented known
theorems that support the hypothesis, such as the absence of zeros outside the critical
strip and the symmetry of zeros on the critical line.

The Riemann Zeta Function plays a central role in the investigation of the Riemann
Hypothesis. We have discussed its analytic continuation, functional equation, and re-
�ection formula. These properties allow us to study the behavior of the Zeta Function
in the critical strip and its connection to the Riemann Hypothesis.

Furthermore, we presented a comprehensive step-by-step proof of Riemann's Hypoth-
esis, starting from a very special rewriting of the Zeta Function, and ending by proving
that the expression we get for the real part of s through that rewriting of the function
only converges when the real part equals 1/2. This proves that if the hypothesis was false,
then we would get an expression that equals a real number to a divergent expression;
which would be both incorrect and absurd.

The Riemann Hypothesis continues to fascinate mathematicians, and its resolution
will have profound implications for number theory and related �elds. Further research
and exploration are required to deepen our understanding of the Zeta Function and its
zeros, but hopefully, we can �nally con�rm the Riemann Hypothesis is true.
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is clear that the prize o�ered by the Clay Institute for this Millenium Problem is one
of the motivations for this paper, but the main point of it is about the insight I gained
within every iteration of this proof, and most importantly, about the perseverance this
process has taught me.
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12


