
EasyChair Preprint
№ 9317

ARTS: an Adaptive Regularization Training
Schedule for Activation Sparsity Exploration

Zeqi Zhu, Arash Pourtaherian, Luc Waeijen, Egor Bondarev and
Orlando Moreira

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 14, 2022

ARTS: An adaptive regularization training schedule
for activation sparsity exploration

Zeqi Zhu∗†, Arash Pourtaherian∗, Luc Waeijen∗, Egor Bondarev† and Orlando Moreira∗
∗GrAI Matter Labs, †Eindhoven University of Technology

Email: {z.zhu, e.bondarev}@tue.nl, {apourtaherian, lwaeijen, omoreira}@graimatterlabs.ai

Abstract—Brain-inspired event-based processors have at-
tracted considerable attention for edge deployment because of
their ability to efficiently process Convolutional Neural Networks
(CNNs) by exploiting sparsity. On such processors, one critical
feature is that the speed and energy consumption of CNN infer-
ence are approximately proportional to the number of non-zero
values in the activation maps. Thus, to achieve top performance,
an efficient training algorithm is required to largely suppress
the activations in CNNs. We propose a novel training method,
called Adaptive-Regularization Training Schedule (ARTS), which
dramatically decreases the non-zero activations in a model by
adaptively altering the regularization coefficient through training.
We evaluate our method across an extensive range of com-
puter vision applications, including image classification, object
recognition, depth estimation, and semantic segmentation. The
results show that our technique can achieve 1.41× to 6.00×
more activation suppression on top of ReLU activation across
various networks and applications, and outperforms the state-of-
the-art methods in terms of training time, activation suppression
gains, and accuracy. A case study for a commercially-available
event-based processor, Neuronflow, shows that the activation
suppression achieved by ARTS effectively reduces CNN inference
latency by up to 8.4× and energy consumption by up to 14.1×.

Index Terms—deep learning, activation sparsification, efficient
training, computation efficiency, energy reduction

I. INTRODUCTION

DEEP learning (DL) systems, dominantly implemented as
Convolutional Neural Networks (CNNs), achieve state-

of-the-art computer vision performance. CNNs are more ac-
curate and easier to develop than hand-crafted techniques.
Thereby, they enable a plethora of applications, opening new
markets and opportunities at the edge as well as in the cloud.
Novel CNN architectures [1]–[5]) are continuously proposed
and utilized in a variety of AI applications to satisfy the ever-
growing demands for higher model accuracy. However, the
model size (i.e. parameter count) and the computational com-
plexity of CNNs increase along with the accuracy. State-of-
the-art CNNs require billions of multiply-accumulate (MAC)
operations per inference, using millions of parameters. Fre-
quent parameter accesses and intensive computations can lead
to high energy consumption and long latency in inference. This
tends to make high frame-rate CNN inference possible only
on cloud engines, but not on small and resource-constrained
edge devices. However, a considerable part of AI applications
is aimed at edge deployment.

Model optimization methods [6]–[8] have been researched
to accomplish energy- and latency-efficient CNN processing

0%

20%

40%

60%

80%

100%

1

W
2,2

W
1,2

W
0,2

W
2,1

W
1,1

W
0,1

W
2,0

W
1,0

W
0,0

1

W
2,2

W
1,2

W
0,2

W
2,1

W
1,1

W
0,1

W
2,0

W
1,0

W
0,0

Adaptive Activation
Suppression (ARTS)

Deployment
Event-based Processor

Event-based Convolution

14.1x 13.6 x

7.2 x
4.7 x

2.3 x

2.2 x 2.9 x 2.1 x 2.1 x 1.6 x

8.4 x 8.4 x
5.9 x

3.7 x
2.5 x

2.2 x 3.2 x 2.5 x 2.4 x 1.6 x

0%

20%

40%

60%

80%

100%

Non-zero activations

Non-zero activations
Resnet18/Cifar
MobileNetV1/Cifar
MobileNetV1-SSD/KITTI
ResNetV1-SSD/KITTI
Fastdepth/NYU Depth V2

Savings

Energy

Savings

Energy

Latency

Latency

Fig. 1: Our proposed method (ARTS) progressively enforces the
number of zeros in the activation maps, leveraged by event-based
processors to achieve significant inference energy savings and latency
reduction (The blue blocks are non-zero activations, while the white
blocks are zero activations).

on the edge platforms. Taking GPU platforms as an exam-
ple, many researchers have boosted inference efficiency by
pruning network filters, channels, or layers [6], [7]. However,
the computation reduction gained in a structured manner
is not comparable to that achieved in those unstructured
ones [9] [10]. Thus, novel computing architectures are pro-
posed to leverage the irregular sparse patterns in deep neural
networks. One of the innovative architecture paradigms for
CNN inference is event-driven architectures with numerous
proposed solutions from academia (e.g. DYNAPs [11]) and
industry (e.g. TrueNorth [12], Loihi [13], GrAIcore [14]). This
paradigm is inspired by the working mechanism of the human
brain to reduce the computational needs of neural networks
by extensively exploiting sparsity (i.e. the ratio of zero-valued
activations). As shown in Fig. 1, those architectures execute a
standard convolution in an event-based manner, which broad-
casts source events (activations) via a transposed kernel. If
one event is skipped, all its related computations and memory
accesses will not be performed. Thus, with a portion of skipped
events, the entire compute and memory-access requirements
go down proportionally. This demonstrates the need to develop
an optimization approach to induce huge quantities of zero in
the activation maps for efficient CNN edge processing.

Most of the state-of-the-art neural networks contain some
degree of activation sparsity by implementing the Rectified
Linear Unit (ReLU) as an activation function. Nevertheless,

this activation sparsity can be actively re-enforced during
training to achieve much higher ratios. In this paper, we
propose a training methodology that increases the ratio of
zeros in the activation maps (called activation sparsity) to
dramatically boost the capability of an event-based architecture
and to deliver high-accuracy CNN inference at the edge with
low latency and low power consumption.

The training process of suppressing non-zero values in
neural network activation maps, also referred to as activation
sparsification, has been studied in prior research. The state-of-
the-art techniques mostly incorporate a regularization penalty
for activation maps into the loss function [15], [16]. The
regularization term is multiplied by a coefficient, allowing
for adjustment of the trade-off between activation sparsity
and accuracy. Typically, a so-called one-shot approach is
used, in which a constant coefficient is implemented for each
sparsification training, and several training experiments are
executed to find the optimal coefficient. This kind of one-shot
approach leads to two deficiencies in the optimization: first,
aggressively reducing activations with an excessively large
regularization coefficient can result in irrecoverable accuracy
loss and optimization instability; second, searching for an
appropriate coefficient value is computationally expensive
since this value varies significantly depending on network
capacity, dataset complexity, and application properties. Thus,
a very missing part is how to efficiently determine an optimal
coefficient, which gives maximized activation sparsity under
certain accuracy loss tolerance.

To overcome these limitations, we propose an efficient train-
ing schedule called Adaptive-Regularization Training Schedule
(ARTS) to gradually increase the ratio of zero values in
activation maps. The final sparsified model is achieved in a
convenient way by defining a tolerable accuracy loss; enabling
a quick model adjustment to the application’s requirements in
terms of power, performance, and accuracy.

Additionally, activation sparsity is the most easily exploited
on an event-based processor, but it is not the only way to
reduce computations in a neural network. As the predominant
computations in neural networks are computing inner products
of activations and weights, making either weights or activa-
tions zero can result in a computation reduction. Furthermore,
an edge processor’s on-chip memory is extremely limited;
unstructured pruning methods [9], [10] can help to deeply
compress the weight size and allocate it near the processing
units. Therefore, we propose an approach of co-integrating
unstructured weight pruning with ARTS—emphasizing their
mutual compatibility in reducing model redundancy and show-
ing the massive compute-requirement optimization induced by
joint sparsification.

In this paper, we make three main contributions:
1) We propose an efficient yet effective adaptive regulariza-

tion training schedule to boost the sparsity in activation
maps, which gradually suppresses non-zero activations
while retaining the model.

2) We evaluate our method through 7 CNN networks on 5
different datasets under 4 common computer vision ap-

plications. The activation-sparsified models are tested on
an industrial event-based architecture, NeuronFlow [14].
We analyze the trade-offs between activation sparsity
and latency/power reduction, and we show the actual
layerwise performance gains on real-world silicon.

3) We study the compatibility of ARTS with another
prominent sparsification approach (unstructured weight
pruning) for even higher sparsity ratios in MAC.

The remainder of this paper is structured as follows. Sec. II
discusses activation sparsity exploitation in computer architec-
ture. Sec. III gives an overview of the related work on neural
network sparsification. Sec. IV describes ARTS in detail.
Sec. V presents the experimental setup and results. Sec. VI
concludes the paper.

II. SPARSITY EXPLOITATION IN COMPUTE PLATFORMS

An inherent challenge of exploiting activation sparsity on
conventional parallel hardware is the irregularity of sparse
patterns and the dynamic locations of non-zero elements at
run-time, which leads to complex dynamic control flow. We
find that the techniques proposed in earlier studies [15]–[19]
targeting these traditional architectures introduce overheads
in the form of expensive data transformations (e.g. sparse-
to-dense conversion) to benefit from sparsity. Moreover, they
require full layer computation, prohibiting the application
of advanced fusion techniques [20], hampering latency and
increasing memory requirements.

On the other hand, event-driven architectures are inherently
capable of exploiting sparsity [13], [14], [21]. In contrast to
GPUs, for example, which are statically scheduled and always
perform a fixed amount of work independent of the data, event-
driven architectures dynamically adapt based on (input) data.
In such architectures, events are used to trigger compute, rather
than a fixed instruction schedule. Dynamic control flow is a
core part of the architectural concept, aligning perfectly with
the idea of sparse computation. In the context of sparse neural-
network evaluation, a natural fit is to map the output of one or
several neurons to an event. If, and only if, a neuron produces
an output of significant value, an event is created which
triggers updates to the neurons in the next layer(s). In this
way, costly computations and memory accesses surrounding
insignificant neuron outputs are avoided.

At a high level, the leading neural-network accelerators
roughly follow a similar template [13], [14], [21]. They all
consist of a grid of data-driven cores that can communicate
by means of some interconnect fabric. These data-driven cores
are idle, and only become active upon the arrival of events
that trigger neuron updates. Depending on the results of these
updates, new events may or may not be emitted by the cores.

Although the benefits from ARTS are widely applicable, in
this work we focus on sparsity exploitation on event-driven
architectures. In particular, all our results are evaluated on
an experimental machine based on the successor of Neuron-
Flow [14], GrAI-VIP, a commercially-available event-driven
neural-network accelerator by GrAI Matter Labs. As illustrated
in Fig. 2, the experimental machine consists of a 12× 12 grid

Fig. 2: Block diagram of the event-driven neural-network accelerator
(GrAI VIP). The zoom-in shows the high-level structure of a pro-
cessing unit.

of event-driven cores. Each core is equipped with 2Mbit on-
chip memory for storing both weights and neuron states in
an energy-efficient and performant manner. Furthermore, each
event-driven core is equipped with a set of event-queues and
vector units to boost performance and energy efficiency. More
detailed analyses on this machine are provided in Sec. V-B.

III. OVERVIEW OF SPARSIFICATION TECHNIQUES

A. Activation sparsification

Many state-of-the-art network architectures [1], [2] adopt
the ReLU activation function, which clamps all negative
activation values to zero. It can provide about 50% ∼ 70%
inherent activation sparsity in the network. Cnvlutin [22] elim-
inates those small magnitude activations with a static threshold
mask to further enhance the activation sparsity. Yang et al. [23]
improve the activation sparsity even further by employing
a dynamic dropout approach at run-time. Georgiadis [15]
achieves considerable activation sparsity by retraining the
network with an L1 regularization of activation in the loss
function. However, the method performs a grid-search of
the regularization coefficient, which is computationally costly.
Kurtz et al. [16] extend the concept by substituting Hoyer
regularization for L1 regularization. It increases activation
sparsity on classification tasks with faster loss convergence,
while still defining the coefficient through grid-search.

Both state-of-the-art techniques [15], [16] use a constant
regularization coefficient through the whole finetuning, known
as the one-shot approach. They have mainly focused on the
study of sparse regularizers while overlooking the importance
of an efficient sparsification training schedule. In contrast,
our work introduces an adaptive coefficient scheduler, which
enforces more zero values in the activation maps by continu-
ously rewinding the learning rate and raising the regularization
coefficient during optimization. Our experimental results show
that this kind of gradual approach can yield superior results
to existing constant-coefficient approaches.

B. Joint weight and activation sparsification

There are very few studies that examine the integration of
weight pruning and activation sparsification. Han et al. [18]

find that weight pruning increases the ratio of non-zero activa-
tions in the feature maps, not necessarily improving the overall
compute sparsity. Yang et al. [23] address this by applying a
dynamic pruning mask on activation per inference to minimize
the pruning blowback and further boost activation sparsity.
Similar to the above work, our approach puts sparse constraints
on both weights and activations to avoid the negative impact
on the sparsity caused by each method. The difference between
our method and Yang et al. [23] is that we do not introduce
extra operations (dynamic activation mask) during inference,
the lower computational complexity is achieved only through
training.

IV. PROPOSED TRAINING SCHEDULE

A. Fundamental Theory

The neural network learning process is commonly addressed
as the optimization of a loss function, defined as:

min
w∈Rd

{
1

N

N∑
n=1

fn(w) + λwr(w)

}
, (1)

where N is the mini-batch size, n is the index of the training
samples, and w ∈ Rd indicates model parameters. The term
fn(w) represents the task loss (usually the cross-entropy loss
for classification and the l1-norm for regression), and the
other term r(w) is a regularization loss implemented on model
parameters, typically protecting the model from overfitting.

To impose the activation sparsification, we introduce a
sparse regularizer of activation in Eq. (1), simplfied as:

min
w∈Rd ,D∈Rs

{L(w) + λRs(x)} , (2)

Specifically, the sum loss is composed of two terms: task loss
L(w) and sparse penalty Rs(x). The coefficient λ balances
the weight of the sparse penalty in the sum loss, and its value
largely affects the activation sparsity gains in the final model.

In the training phase, model parameters in the lth layer are
updated via the gradients gl, backpropagated from the loss:

gl =
∂L(w)

∂wl
+ λl

∂r(xl,n)

∂wl

=

[
∂L(w)

∂xl+1,n

∂xl+1,n

∂xl,n
+ λl

∂r(xl,n)

∂xl,n

]
∂xl,n

∂wl
,

(3)

Eq. (3) shows that, for the parameters wl in the lth layer,
the updates are determined by two forces: loss gradient from
the task and regularization gradient from the sparse penalty.
If the regularization coefficient λl goes higher, the penalty
force will drive the model parameters to produce sparser
representations and it will not stop unless the regularization
gradient approximates to zero as its loss converges.

Assuming that the learning rate lr remains constant, the
increment of weights is mostly driven by the magnitude of
the coefficient λ. A strong coefficient λ can enlarge the update
of weights, resulting in a gap increase between the pre-trained
weights and the activation sparsified weights. The initialization
of pre-trained weights becomes meaningless if the coefficient
is too large. Thus, merely increasing the coefficient to enhance

activation sparsity by a one-shot approach is not a viable
strategy, especially for massive sparsity exploration. We’re
seeking for a cyclic asymptotic strategy that starts with a
low regularization coefficient and subsequently increases it by
a small amount to improve model sparsity. Such a gradual
approach slightly changes model weights on top of the for-
mer loop to achieve a sparser representation, preventing the
irreversible damage from the dramatic adjustment of weights
through a one-shot approach and making the training more
robust in an iterative manner.

In the following sections, we first present an updated version
of the one-shot approach to activation sparsification, then
propose our gradual approach called Adaptive Regularization
Training Schedule (ARTS) evolved from this one-shot ap-
proach. Additionally, we introduce the sparse regularizer im-
plemented for our study, and finally design a joint optimization
method to check the compatibility of ARTS with other popular
sparsification methods, such as weight pruning.

B. One-shot training schedule

Our proposed one-shot training schedule for activation
sparsification is built on the common knowledge of sparse
representations learning. As a classic training procedure of
CNNs with ReLU, in the early training phase, the large
learning rate drives the dramatic improvement in the loss
function, combined with heavy drops in activation density; in
the latter phases, the learning rate is reduced to stabilize the
weights around the loss minima, while the activation density
slightly increases [24]. Thus, we propose to sparsify the pre-
trained model by applying the learning rate schedule from the
standard training, known as learning rate rewinding [25], [26].
The optimization training starts by suppressing the activations
dramatically to the bottom; then, the lost performance is
recovered through fine-tuning.

C. Adaptive-regularization training schedule

Defining the optimal coefficient for the one-shot approach
requires domain experts to explore the search space intel-
ligently using rule-based heuristics; otherwise, grid-search
requires significant time and computation power resources.
To balance the trade-off between performance and training
time, we design an iterative regularization training scheme that
starts with a small regularization coefficient and progressively
increases it to reach the optimal. In particular, given a pre-
trained model w and an expectation E, we add a regularization
penalty to the loss function to drive the activations to zero.
The regularization coefficient is initialized at a small value
and continuously incremented by a small δ: λi+1 = λi + δλ,
where i is the index of iteration loops, δλ is the granularity
in which we add up the penalty. The growing condition of
λ is that the monitored metric value (e.g. accuracy) of the
validation dataset surpasses an expectation value, which is the
baseline metric with η% tolerance.

The iterative scheme consists of a bunch of one-shot ap-
proaches. The complete ARTS procedure is shown in Algo-
rithm 1. In any training loop, the training will continue with

Fig. 3: Grid search (Left) and our method ARTS (Right).

an updated λ if the growing condition is satisfied (this makes
each loop have a different time length); otherwise, the training
will be terminated after an interval of finetuning. Our proposed
gradual approach enables the final model performance to be
extremely close to the expected value E due to the fine-grained
coefficient adjustment.

The primary difference between our adaptive coefficient
method and the grid-search on one-short approach is that
in each loop, we reuse the pre-trained weights from the
previous training loop and omit some superfluous finetunings,
illustrated in Fig. 3. Applying a mild regularization coefficient
increase results in a small update on weights between two
consecutive training loops, thereby preventing the significant
accuracy degradation from aggressive activation suppression.
Additionally, our training schedule effectively brings down
the entire optimization time by removing those redundant
training epochs on two sides of each loop. For instance,
in the nth training loop, the sparse regularization term of
an optimized model is smaller than the one of the original
model. This makes the sparse regularization approach the
minimal faster, especially for the final loops with a deep sparse
model. Moreover, since the metric of validation can surpass the
expectation, the long finetuning process of weight stabilization
can be done once in the final loop.

In principle, the ARTS method solves the deficiencies
in earlier one-shot approaches, such as the degradation in
performance caused by aggressive activation suppression, and
improve the training time for the entire optimization.

D. Sparse regularizer on activation

In our method, we simply select the hoyer regularizer as
the regularization term r(xl,n) for activation sparsification
in Eq. (2). Hoyer et al. [27] first propose this regularizer
as a normalized sparseness measure. It is defined as the
ratio of the l1-norm and the l2-norm of a vector: r(xl) =(∑d

i=1 |xl |
)2

/
(∑d

i=1 x
2
l

)
. Recently, it has been applied for

weight and activation sparsification [16], [28] because of its
desirable properties for model sparsification training: scale-

Algorithm 1: Adaptive Regularization Training for
Activation Sparsification

1 INPUT: Pre-trained model w, regularization factor for l − th layer
λl, regularization loss Rt

2 INPUT: Initial learning rate lr, decay γ, patience interval Kp,
recovery interval Kr , granularity δλ.

3 INPUT: Performance tolerance η%, expectation E.
4 INIT: Set uniform coefficient λl for all the layers.
5 INIT: Iteration i = 0, regularization stablization steps sri = 0,

weight stablization steps swi = 0.
6 TRAIN:
7 While (Acc ≥ E or swi < Kr) do
8 If Acc ≥ E then
9 Increase the regularization: λl,i+1 ← λl,i + δλ

10 Update the loop index: i← i+ 1
11 Rewind the learning rate: lri ← lr
12 Reset the regularizer stablization step: sri ← 0
13 Reset the weight stablization step: swi ← 0
14 Else do
15 If (Rt,i converges and sri ≥ Kp) then
16 Reduce the learning rate: lri ← lr × γ
17 Count the stablization step: swi ← swi + 1
18 Else do
19 Count the stablization step: sri ← sri + 1
20 End if
21 End if
22 Weight update by gradient descent
23 End While
24 FINETUNE the final iteration weights wi to recover accuracy (∼

expectation E)
25 OUTPUT: Sparsified model wi.

invariance and differentiability almost-everywhere. An addi-
tional advantage of this regularizer is that it can turn weights of
small value to zero, whereas protecting large weights through
gradient descent. Such a property can efficiently recover sparse
solutions from coherent and redundant representations.

E. Joint optimization for weight and activation sparsity

The fundamental aspect of ARTS is that it can be seamlessly
integrated with other compression/acceleration algorithms due
to its adaptive coefficient settings during training. Exemplary,
we focus on weight pruning in this study, since it enables
model compression and sparse computation for efficient infer-
ence on the event-based architectures. Two sequential proce-
dures are proposed to compare for the optimal sparsification:
one starts with ARTS for activation sparsification, followed
by an iterative weight pruning approach; the other works vice
versa. We quantify the joint optimization performance in terms
of MAC sparsity (i.e. the fraction of zeros in MAC), as the
event-based processors can skip execution here.

V. EXPERIMENTS

In this section, we evaluate our proposed training scheduling
technique by applying it to a wide range of models. These
experiments have three main purposes: (1) examine ARTS on
various CNN models/applications and compare the sparsifica-
tion results with the state-of-the-art methods, (2) demonstrate
the energy/latency gains of activation sparsity on a real event-
based silicon, GrAIcore [29], and (3) manifest the massive
MAC sparsity gains in a joint optimization scope.

TABLE I: Comparisons between Grid-Search and our method
(ARTS) on overall training time. Coeff. indicates the search space
of the regularization coefficient.

Model Method Coeff. Epochs Speed-up

ResNet18 Cifar-10 Grid Search 1.0e-8 ∼ 1.0e-6 5400
ARTS 1.0e-8 ∼ 7.1e-7 850 ∼3×

ResNet-SSD KITTI Grid Search 1.0e-7 ∼ 1.0e-5 6000
ARTS 1.0e-7 ∼ 1.8e-5 1900 ∼3×

Fastdepth NYU Grid Search 1.0e-8 ∼ 1.0e-7 1000
ARTS 1.0e-8 ∼ 6.0e-8 80 ∼12×

SkipNet Cityscapes Grid Search 1.0e-8 ∼ 5.0e-8 500
ARTS 1.0e-8 ∼ 4.0e-8 150 ∼3×

We pick several state-of-the-art CNN architectures and
carry out the experiments on well-known datasets: ResNet [1]
and MobileNet [2] for image classification on Cifar-10/Cifar-
100 [30], SSD [4] for object detection on KITTI-2D [31],
Fastdepth [3] for depth estimation on NYU Depth v2 [32], and
SkipNet [5] for semantic segmentation on Cityscapes [33].
These experiments include a wide range of CNNs, with
varying complexity. Networks like MobileNet, SSD, Fastdepth
and SkipNet have already been designed with low computing
complexity in mind, posing a barrier for gaining easy savings.

Experimental setup: Our gradual sparsification method
ARTS is implemented in TensorFlow. The baseline models
are achieved through training from scratch. The pre-trained
models are used as the starting points for the sparsification
experiments. We experiment on a commercial-grade high-level
simulator written for GrAIcore [29]. The simulator is event-
accurate and can report the inference latency and energy/power
consumption.

A. Activation sparsity exploration

In this subsection, we quantify the activation sparsity
achieved through ARTS. Therefore, we study the average
activation sparsity for three cases: 1) the baseline models, 2)
the constant regularized models (one-shot approach), 3) the
ARTS-sparsified models (gradual approach).

a) Effects of ARTS on training time: we use the identical
hyperparameter settings for grid-search and ARTS to provide a
fair comparison, including the initial coefficient and learning-
rate schedule. The search space of ARTS does not need to
be defined manually; a specified loss tolerance will suffice.
The search space of grid-search is roughly defined based on
the coefficient range achieved by ARTS, with a coefficient
increment ⌊log10 λ⌋. Tab. I shows that ARTS reduces the entire
training time by at least 3× versus grid-search, and its ending
coefficient is relatively fine-grained compared to grid-search.

b) Effects of ARTS on activation sparsity: The ARTS ex-
perimental results are displayed in Tab. III. One salient trend is
that those more redundant models allow for greater exploration
of zeros in activations. For instance, by implementing ARTS,
the ResNet-based models achieve lower non-zero activations
than the MobileNet-based ones. Nonetherless, we also note
that ARTS can still largely boost the activation sparsity for
those light-weight models by up to 7.14× on Cifar-10 and
3.85× on KITTI, bringing additional efficiency improvements

TABLE II: Activation sparsification through our method ARTS on
various models and applications, compared with the state-of-the-art
constant coefficient approaches.

Application Dataset Model Method Acc.↑ Act.↓

Image
Classification

Cifar-10

MobileNetV1
L1 +0.21 % 30 %
Hoyer –0.38 % 32 %
Ours +0.01 % 36 %

ResNet18
L1 –1.10 % 22 %
Hoyer +0.03 % 30 %
Ours +0.01 % 33 %

Cifar-100 ResNet18
L1 +0.00 % 16 %
Hoyer +0.26 % 17 %
Ours +0.01 % 25 %

ImageNet ResNet50
L1 –0.30 % 1 %
Hoyer –0.30 % 8 %
Ours –0.40 % 14 %

Object
Detection KITTI-2D

MobileNet-
SSD

L1 –0.40 % 11 %
Hoyer –0.16 % 6 %
Ours +0.41 % 28 %

ResNet-
SSD

L1 +0.14 % 24 %
Hoyer –0.33 % 11 %
Ours +1.05 % 24 %

Depth
Estimation

NYU Depth
v2 Fastdepth

L1 +0.46 % 30 %
Hoyer –0.28 % 33 %
Ours +0.14 % 33 %

Semantic
Segmentation Cityscapes SkipNet+

L1 +1.02 % 21 %
Hoyer –0.19 % 21 %
Ours –0.31% 24 %

on the edge deployment. The second noticeable trend is that
dataset complexities also affect the final activation sparsity
gains. The same network ResNet18 explores more zeros on
a simple dataset Cifar-10 than on a complex one Cifar-100.
A third observation is that more challenging computer vision
tasks, such as object detection, depth estimation, and semantic
segmentation, require much richer activation representations
than the classification tasks to retain high performance. For
instance, segmentation networks always have the shape of a
bottleneck. To extract the features from inputs and reconstruct
them at outputs, the network necessitates the transfer of vast
amounts of information from left to right, which makes the
middle layers extremely crowded (see Fig. 4). In general,
our method is especially effective in the context of redundant
models, where activation sparsity can be thoroughly explored,
without accuracy loss.

Additionally, Tab. III shows that our method can provide
more activation sparsity in the final optimized model by sacri-
ficing approximately 1% of its baseline accuracy. This shows
that ARTS provides a more automated workflow on activation
sparsification than the constant coefficient approaches by pre-
defining a loss tolerance. Users can easily trade-off accuracy
for increased sparsity under various application scenarios.

c) Comparisons with state-of-the-art approaches: Tab. II
presents the comparison between our approach and the state-
of-the-art methods. In general, our method outperforms the
two SOTA approaches by boosting the accuracy on average by
0.44% and suppressing more non-zero activations on average
by 8% across all the experiments. We infer that the superior
results of our method can be related to two factors: first, our
approach continuously increases the coefficient by a small

0 3 6 9 12 15 18 21 24 27 30 33 36 390%

20%

40%

60%

80%

100%

In
pu

t A
ct

iv
at

io
n

M
ap

 D
en

sit
y Sparse baseline

Sparse ARTS

0 3 6 9 12 15 18 21 24 27 30 33 36 390
10
20
30
40
50
60
70
80

Cy
cle

s (
M)

Dense baseline
Sparse baseline
Sparse ARTS

MobileNet-SSD on KITTI-2D

0 3 6 9 12 15 18 21 24 27 30 33 36

0%

20%

40%

60%

80%

100%

In
pu

t A
ct

iv
at

io
n

Ma
p

De
ns

ity Sparse baseline
Sparse ARTS

0 3 6 9 12 15 18 21 24 27 30 33 360

50

100

150

200

250

Cy
cle

s (
M)

Dense baseline
Sparse baseline
Sparse ARTS

SkipNet on Cityscapes
Fig. 4: Layerwise analysis of activation density (Left) and executed
cycles on the event-based processor (Right)

value throughout the training, allowing for a fine-grained final
coefficient for sparsification; secondly, progressively growing
the coefficient can achieve more zeros in the activation maps
than by a one-shot approach while maintaining accuracy.
Another observation from Tab. II is that the constant Hoyer
regularizer does not always outperform the l1-norm one in
various scenarios. Considering our training schedule can serve
different regularizers, we can easily replace the default regu-
larizer for a better optimized model.

B. Evaluation on event-based processors

a) Layer-wise Analysis: We run the models with half-
precision float (FP16) on an event-based simulator, written
for a 12-nm taped-out chip with 144 SIMD-4 cores running at
800MHz. Fig. 4 shows that ARTS can consistently boost the
activation sparsity across all the layers, significantly beyond
the sparse baseline. Additionally, the explored zeros in the
activation maps can be effectively transferred to the reduc-
tion of cycle-counts for layers executed on the event-based
processor (even for depthwise layers, which are not efficient
on most of the hardware). This illustrates that the event-
based processor can benefit substantially from sparsification.
As a result, the reduced cycle-counts result in a significant
improvement in achievable frame-throughput (FPS), latency,
and energy consumption. Another noticeable finding is that
ARTS exceedingly optimizes the computationally-heavy layers
in the network, largely improving the throughput bottlenecks
for pipelines with massive-multicore event-based processing.

b) End-to-end inference performance: The event-based
simulation results on different levels of activation sparsifica-
tion are shown in Fig. 5. Frame latency and energy consump-
tion reduce as the non-zero activations declines in the spar-
sified models, and both latency and energy consumption are
approximately linear to the percentage of non-zero activations.
Additionally, we notice that the slopes of the energy-activation
and latency-activation curves vary amongst models. This is

TABLE III: Results of activation sparsification through ReLU and ARTS. Acts. indicates the percentage of non-zero activations. Acc. denotes
Top1Acc., mAP.5, delta1, and mIoU for image classification, object detection, depth estimation, and semantic segmentation, respectively.
Speed-up 1 is the non-zero activation ratio of the ReLU sparsified baseline and the ARTS sparsified model. Speed-up 2 is the ratio of the
ARTS sparsified model’s activation to that of the dense baseline.

Application Dataset Model Variant Acc. Act. Speed-up 1 Speed-up 2

Image Classification

Cifar-10 [30]

MobileNetV1 [2]
Baseline 93.59 % 50 % 1.00× 2.00×
ARTS tol-0 % 93.60 % (+0.01 %) 14 % 3.57× 7.14×
ARTS tol-1 % 92.80 % (–0.79 %) 11 % 4.55× 9.10×

ResNet18 [1]
Baseline 94.00 % 42 % 1.00× 2.38×
ARTS tol-0 % 94.01 % (+0.01 %) 9 % 4.67× 11.11×
ARTS tol-1 % 93.04 % (–0.96 %) 7 % 6.00× 14.29×

Cifar-100 [30] ResNet18 [1]
Baseline 76.14 % 43 % 1.00× 2.33×
ARTS tol-0 % 76.15 % (+0.01 %) 18 % 2.37× 5.56×
ARTS tol-1 % 75.33 % (–0.81 %) 14 % 3.06× 7.14×

Object Detection KITTI-2D [31]

MobileNet-SSD [4]
Baseline 75.80 % 54 % 1.00× 1.85×
ARTS tol-0 % 76.21 % (+0.41 %) 26 % 2.08× 3.85×
ARTS tol-1 % 75.15 % (–0.65 %) 23 % 2.35× 4.35×

ResNet-SSD [4]
Baseline 75.73 % 48 % 1.00× 2.08×
ARTS tol-0 % 76.78 % (+1.05 %) 24 % 2.00× 4.17×
ARTS tol-1 % 75.25 % (–0.48 %) 23 % 2.09× 4.35×

Depth Estimation NYU Depth v2 [32] Fastdepth [3]
Baseline 77.28 % 63 % 1.00× 1.59×
ARTS tol-0 % 77.42 % (+0.14 %) 30 % 2.10× 3.33×
ARTS tol-1 % 76.93 % (–0.35 %) 30 % 2.10× 3.33×

Semantic Segmentation Cityscapes [33] SkipNet [5]
Baseline 61.47 % 62 % 1.00× 1.62×
ARTS tol-0 % 61.76 % (+0.26 %) 38 % 1.64× 2.65×
ARTS tol-1 % 59.90 % (–1.57 %) 34 % 1.81× 2.93×

10% 20% 30% 40% 50% 60%
Percentage of non-zero activations

0

2

4

6

8

10

En
er

gy
 p

er
 fr

am
e

[m
J]

Fastdepth
ResNet18-SSD
MobileNet-SSD
ResNet18
MobileNetV1

10% 20% 30% 40% 50% 60%
Percentage of non-zero activations

0

2

4

6

8

10

12

La
te

nc
y

[m
s]

Fastdepth
ResNet18-SSD
MobileNet-SSD
ResNet18
MobileNetV1

Fig. 5: Energy consumption (Left) and Latency (Right) of model
inference (batch=1) with different levels of activation density.

because the slope value is related to the number of operations
triggered per event (i.e. non-zero activations), which varies
with the kernel size and channel depth of the layer. However,
the relative improvements in energy consumption and latency
are roughly proportional to the activation sparsity gains.

C. Joint optimization of ARTS and weight pruning

a) Sparsification interaction: Fig. 6 shows how the two
sparsification techniques (ARTS and weight pruning) interact
during joint optimization. In most circumstances, the sparsifi-
cation space for pruning is constrained after activation sparsifi-
cation; meanwhile, weight pruning also increases the non-zero
activations while raising the prune ratio, particularly for pre-
sparsified models. This reveals the fact that the sparsification
executed first has a greater effect on the joint optimization,
while the other has a smaller effect. As a result, it is critical
to prioritize the implementation for various applications.

MobileNet-SSD
Fig. 6: Comparisons of pruned and non-pruned models on accuracy
(Left) and non-zero activation increment (Right).

b) Results on joint optimization: Tab. IV shows the
MAC reductions when using pruning and ARTS techniques
consequently. As shown in the Act. columns, ARTS can
eliminate the pruning blowback on the activations and further
boost the activation sparsity. Furthermore, (MAC.) columns
reveal the fact that both joint strategies are superior to any
individual sparsification on MAC suppression. In addition, if
we look at the 10th and 16th (MAC.) columns, we notice that
for classification applications (e.g., image classification, object
detection), the network can achieve more MAC reduction by
executing the joint optimization in the order: baseline →
ARTS → pruning, since many non-zero activations can be
eliminated to draw the network attention to the important
features only, especially in the deep layers (see Fig. 4).
For applications with element-wise predictions (e.g., depth
estimation), the network is more sensitive to the suppression of
non-zero activations than to weight pruning. Thus, Strategy 2
(order: baseline → pruning → ARTS), dominated by weight
pruning, achieves higher MAC reductions in those encoder-
decoder architectures.

TABLE IV: Multiply-Accumulate Compute (MAC) reduction with two joint optimization strategies. MAC. is the percentage of non-zeros in
MAC. Pm is the prune ratio on model parameters.

Model
Baseline Strategy 1 Strategy 2

Original Training ARTS → Prune Prune → ARTS

Acc. Act. MAC. Acc. Act. MAC. Acc. Pm MAC. Acc. Pm MAC. Acc. Act. MAC.

MobileNetV1 93.59% 50% 47% 93.60% 14% 13% 93.57% 82% 5% 93.56% 49% 30% 93.62% 14% 12%
ResNet18 94.00% 42% 36% 94.01% 9% 11% 93.97% 97% 1% 93.86% 62% 15% 94.00% 12% 6%
MobileNet-SSD 75.80% 54% 37% 76.21% 26% 12% 75.40% 15% 10% 76.01% 30% 28% 76.01% 33% 13%
ResNet-SSD 75.73% 48% 36% 76.78% 18% 18% 76.30% 36% 14% 75.54% 36% 25% 75.57% 27% 17%
Fastdepth 77.28% 63% 61% 77.42% 30% 44% 77.16% 51% 26% 77.37% 67% 26% 77.31% 39% 22%

VI. CONCLUSIONS

In this paper, we presented an efficient training schedule
called ARTS that gradually sparsifies activation maps in
CNNs. ARTS achieves significantly higher activation-sparsity
rates and shorter training times compared to the state-of-the-
art. The technique has high relevance for event-based architec-
tures, which can translate activation sparsity into proportional
improvements in throughput, latency, and energy consumption
at inference time. An analysis conducted for Neuronflow, a
commercial event-based architecture, shows the effectiveness
of ARTS, which can improve the latency/throughput by up
to 2.5–8.4× and the energy consumption by 2.3–14.1× for
various CNN architectures and AI applications. Furthermore,
we show ARTS integration with standard weight pruning,
resulting in an overall reduction in the compute requirements
at inference by up to 4.5–88.0×, compared to a full execution
of the neural network.

VII. ACKNOWLEDGEMENT

This publication is supported by the ANDANTE project,
which has received funding from the ECSEL Joint Undertak-
ing (JU) under grant agreement No 876925. The JU receives
support from the European Union’s Horizon 2020 research
and innovation programme and France, Belgium, Germany,
Netherlands, Portugal, Spain, Switzerland.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE CVPR, 2016, pp. 770–778.

[2] A. G. Howard, M. Zhu, B. Chen et al., “Mobilenets: Efficient con-
volutional neural networks for mobile vision applications,” CoRR, vol.
abs/1704.04861, 2017.

[3] W.Diana and M.Fangchang and Y.Tien-Ju and K.Sertac and S.Vivienne,
“FastDepth: Fast Monocular Depth Estimation on Embedded Systems,”
in ICRA, 2019.

[4] L, Wei and A, Dragomir and E, Dumitru and S, Christian and R, Scott E.
and F, Cheng-Yang and B, Alexander C., “SSD: Single Shot MultiBox
Detector.” in Proc. ECCV, 2016, pp. 21–37.

[5] M. Siam, M. Badawy, M. Abdelrazek et al., “A comparative study
of real-time semantic segmentation for autonomous driving,” in Proc.
CVPRW, Jun. 2018.

[6] Z. Liu, J. Li, Z. Shen et al., “Learning efficient convolutional networks
through network slimming,” in Proc. ICCV, Oct. 2017, pp. 2755–63.

[7] H. Wang, C. Qin, Y. Zhang, and Y. Fu, “Neural pruning via growing
regularization,” in Proc. ICLR, 2021.

[8] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural network with pruning, trained quantization and huffman coding,”
in Proc. IEEE CVPR, 2016.

[9] M. H. Zhu and S. Gupta, “To prune, or not to prune: Exploring the
efficacy of pruning for model compression,” 2018.

[10] S. P. Singh and D. Alistarh, “Woodfisher: Efficient second-order approx-
imations for model compression,” CoRR, vol. abs/2004.14340, 2020.

[11] S. Moradi, N. Qiao, F. Stefanini, and G. Indiveri, “A scalable multicore
architecture with heterogeneous memory structures for dynamic neu-
romorphic asynchronous processors (DYNAPs),” IEEE Trans. Biomed.
Circuits Syst., pp. 106–122, Aug. 2017.

[12] F. Akopyan, J. Sawada, A. Cassidy et al., “Truenorth: Design and tool
flow of a 65 mW 1 M neuron programmable neurosynaptic chip,” IEEE
Trans. CAD, vol. 34, no. 10, pp. 1537–1557, 2015.

[13] M. Davies, N. Srinivasa, T.-H. Lin et al., “Loihi: A neuromorphic
manycore processor with on-chip learning,” IEEE Micro, vol. 38, no. 1,
pp. 82–99, 2018.

[14] O. Moreira, A. Yousefzadeh, F. Chersi et al., “Neuronflow: a neuromor-
phic processor architecture for live AI applications,” in Proc. DATE,
2020, pp. 840–845.

[15] G. Georgiadis, “Accelerating convolutional neural networks via activa-
tion map compression,” in Proc. IEEE CVPR, Jun. 2019, pp. 7078–7088.

[16] M. Kurtz, J. Kopinsky, R. Gelashvili et al., “Inducing and exploiting
activation sparsity for fast inference on deep neural networks,” in Proc.
ICML, Jul. 2020, pp. 5533–5543.

[17] S. Shi and X. Chu, “Speeding up CNNs by exploiting the sparsity of
rectifier units,” CoRR, vol. abs/1704.07724, 2017.

[18] S. Han, X. Liu, H. Mao et al., “EIE: Efficient inference engine on
compressed deep neural network,” ACM SIGARCH Comput. Archit.
News, vol. 44, Feb. 2016.

[19] Z. Gong, H. Ji, C. W. Fletcher, C. J. Hughes, and J. Torrellas, “Sparse-
Train: Leveraging dynamic sparsity in software for training DNNs on
general-purpose SIMD processors,” in ACM PACT, 2020, p. 279–292.

[20] K. Goetschalckx and M. Verhelst, “Breaking high-resolution cnn band-
width barriers with enhanced depth-first execution,” IEEE J. Emerg. Sel.
Top. Circuits Syst, vol. 9, no. 2, pp. 323–331, 2019.

[21] BrainChip Ltd. (2021, Feb.) Akida neural processor system-on-chip.
[22] J. Albericio, P. Judd, T. Hetherington et al., “Cnvlutin: Ineffectual-

neuron-free deep neural network computing,” in ACM/IEEE Proc. ISCA,
2016, pp. 1–13.

[23] Q. Yang, J. Mao, Z. Wang, and H. Li, “DASNet: Dynamic activa-
tion sparsity for neural network efficiency improvement,” CoRR, vol.
abs/1909.06964, 2019.

[24] M. Rhu, M. O’Connor, N. Chatterjee et al., “Compressing DMA engine:
Leveraging activation sparsity for training deep NNs,” 2018, pp. 78–91.

[25] A. Renda, J. Frankle, and M. Carbin, “Comparing rewinding and fine-
tuning in neural network pruning,” in Proc. ICLR, 2020.

[26] D. H. Le and B.-S. Hua, “Network pruning that matters: A case study
on retraining variants,” in Proc. ICLR, 2021.

[27] P. O. Hoyer, “Non-negative matrix factorization with sparseness con-
straints,” CoRR, vol. cs.LG/0408058, 2004.

[28] H. Yang, W. Wen, and H. Li, “DeepHoyer: Learning sparser neural
network with differentiable scale-invariant sparsity measures,” CoRR,
vol. abs/1908.09979, 2019.

[29] S. Ward-Foxton. (2020, Jan.) GrAI Matter research gives rise
to AI processor for the edge. EETimes. [Online]. Available:
www.eetimes.com/grai-matter-raises-14m-for-sparsity-driven-ai-soc/

[30] A. Krizhevsky, “Learning multiple layers of features from tiny images.”
[31] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous

driving? the kitti vision benchmark suite,” in Proc. IEEE CVPR, 2012.
[32] P. K. Nathan Silberman, Derek Hoiem and R. Fergus, “Indoor segmen-

tation and support inference from rgbd images,” in Proc. ECCV, 2012.
[33] M. Cordts, M. Omran, S. Ramos et al., “The cityscapes dataset for

semantic urban scene understanding,” in Proc. IEEE CVPR, 2016.

www.eetimes.com/grai-matter-raises-14m-for-sparsity-driven-ai-soc/

	Introduction
	Sparsity Exploitation in Compute Platforms
	Overview of Sparsification Techniques
	Activation sparsification
	Joint weight and activation sparsification

	Proposed Training Schedule
	Fundamental Theory
	One-shot training schedule
	Adaptive-regularization training schedule
	Sparse regularizer on activation
	Joint optimization for weight and activation sparsity

	Experiments
	Activation sparsity exploration
	Evaluation on event-based processors
	Joint optimization of ARTS and weight pruning

	Conclusions
	Acknowledgement
	References

