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Abstract: Big data shows that offshore oil spills have been on the rise in recent years. Oil spills at 

sea can be monitored using SAR images, which can assist in preventing the economic damage 

and pollution caused by spills. Detecting offshore oil spills with SAR images is essentially a 

segmentation of oil spill images. However, reliably distinguishing the oil spill location from the 

clean sea surface area using SAR photos is a huge challenge. Considering that the SAR image 

itself has multiplicative noise, the traditional threshold segmentation algorithm has many defects. 

To overcome this challenge, methods based on a wavelet threshold transform and the Otsu 

segmentation algorithm were applied. Therefore, this study is devoted to enhancing the 

denoising effect of wavelet threshold transform, so as to further improve the segmentation 

accuracy of oil spill area and clean sea area. In this study, a new hierarchical adaptive threshold 

and a threshold function with bi-directional shrinkage are proposed to handle wavelet 

coefficients. While removing the SAR image noise, the edge details of the oil spill area can be 

retained. Experiments demonstrate that the suggested strategy enhances overall denoising and 

segmentation accuracy significantly. 

Keywords: SAR; oil spill detection; image segmentation; wavelet threshold transformation; 

threshold function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1. Introduction 

Ocean oil spills have become a serious environmental and public economic security 

concern that cannot be overlooked. The maritime transportation business and offshore oil 

and gas sector have grown quickly in the latest few years in virtue of growing concern about 

the exploitation of marine resources [1,2]. Oil spills from ships and offshore oil rigs, on the 

other hand, occur often in various waterways across the world, wreaking havoc on the 

environment and destroying property. More than $1 billion was allegedly spent and over two 

hundred thousand marine creatures were evaporated noiselessly in Deep Water Horizon oil 

leak in 2010 [3]. The growing quantity of marine oil spill contaminants will have a severe 

influence on the environment, biodiversity will decline, and ecological imbalance would 

eventually jeopardise human existence and progress. Therefore, distinguishing oil spill areas 

from clean sea surface areas from SAR oil spill images is a major challenge. 

There are currently two basic methods for locating an oil leakage district: manual 

abstraction and automated abstraction. The trend, edge texture, form, and other 

interpretation cues of the oil spill region characteristics in SAR pictures are commonly 

employed to identify clean seawater from the oil spill area [4,5]. This is a manual extraction 

procedure. However, on this account, visual decipherment necessitates picture decipherment, 

the reader must have extensive expertise with visual decipherment as well as a thorough 

understanding of many earth scientific concepts, which necessitates additional effort. 

Furthermore, this method of interpretation is labor-intensive, and it is strenuous to guarantee 

the quality of interpreted photographs to a degree. Because oil spills occur so often, precise, 

efficient, and automated offshore oil spill monitoring has become a need. As a result, present 

SAR image oil spill region extraction research is mostly focused on automated extraction [6,7]. 

Extracting the oil spill zone from SAR images is a technique of image division on the basis 

of features of seawater and oil film border. Threshold segmentation algorithms are the most 

used picture segmentation methods (e. g. Otsu algorithm, maximum entropy algorithm). 

Although these threshold segmentation methods are uncomplicated and quick, they are 

susceptible to noise, and the edge localization is insufficient, therefore they are not universally 

applicable. Many researchers have conducted active exploration and developed various 

successful extraction techniques in order to discover the entire and accurate oil spill zone 

from SAR images. 

Wavelet Threshold Transform (WTT) is developed on the basis of spatial filtering 

algorithm. The two-dimensional discrete wavelet threshold transform is a huge 

accomplishment in image denoising and has a lot of research potential. In recent years, with 

the extensive research on wavelet threshold transform denoising algorithm, two-dimensional 

discrete wavelet threshold transform denoising algorithm has been widely concerned by 

researchers and involved in more and more fields. However, due to the problems of blurred 

boundary, low contrast, high gray scale and susceptibility to noise interference in SAR images, 

the traditional method of 2D discrete wavelet threshold transform still encounters some 

problems, such as weak edge information, image distortion and small granular noise cannot 

be removed. 

From this paper, this enhanced wavelet threshold transform is presented to increase the 

denoising impact on oil spill photos, and it is integrated with the Otsu threshold segmentation 



technique to further improve the segmentation accuracy of the offshore oil spill region. This 

paper first proposes a novel hierarchical adaptive thresholding estimation formula, which fully 

considers the relative changes of image signal and noise coefficients at each wavelet scale 

and better fits the distribution of speckle noise in each layer. Then a novel threshold function 

with two-way preserving shrinkage is proposed, and an adjustment factor is introduced to 

eliminate the noise coefficients while protecting the oil spill region edge detail coefficients, 

making denoised images more realistic. Finally, the Otsu algorithm is used to threshold the 

denoised image for segmentation. By comparing two picture quality evaluation index, the 

enhanced approach in this study is compared to the classic wavelet threshold transform 

method, and then the segmentation result map using the OTSU algorithm and the 

segmentation result map of the oil spill image decoded by experts are compared precisely 

element by element to derive the segmentation accuracy, which further illustrates the 

applicability of the method in this paper and the great prospect of application in SAR image 

oil spill detection. 

This is the layout of the paper. The background and associated research are presented 

in Section 2, as well as the major approaches of wavelet threshold transform for SAR picture 

denoising. In this work, Section 3 covers the materials and techniques, which include the 

research data, the traditional wavelet threshold transformation, the wavelet threshold 

transform enhancement, and the oil spill region extraction method. In Section 4 , the features 

of the improved threshold function are validated. In Section 5, these findings of the 

experiments are organized . Finally, in Section 6, these findings and potential study directions 

are reviewed. 

2. Background and Related Work: 

The most widely utilized and efficient monitoring approach is oil spill detection using 

SAR images [4]. Imaging geometry is an oblique projection type in an active side facing radar 

system [5]. The back scattering of a signal is affected by the working wavelength, incidence 

angle, polarization mode, superficies rugosity, and dielectric constant of the ground 

substance of a radar sensor [6]. Accidents involving oil spills are common in locations with 

complicated maritime ecosystems[7]. As a result, entering the contaminated region to 

liquidate or take stock in the early stages is difficult. Such occurrences typically last days [8, 

weeks [9], or even months [10], necessitating ongoing monitoring to better understand how 

oil spills spread [11]. Different polarization phenomena are formed by the horizontal and 

vertical polarization electric field vectors. Rough surfaces have a higher back scattering 

intensity than smooth surfaces. Because the oil spill region's surface is significantly smoother 

than seawater's without evident wave effect, the oil spill region appears as black pixels in the 

synthetic aperture radar picture, whereas the saltwater surface appears as brilliant pixels [12].  

Substantial studies have been conducted in order to extract image information from SAR 

images. In these studies, four main types of methods have been applied. Filtering methods 

include linear, nonlinear, partial differential equation (PDE), and discrete wavelet transform 

(DWT)-based filtering. 

Mean filter, Gaussian filter, box filter, Laplace filter, and other linear filters are common. 

The stencil coefficient is usually the sole variation between linear filters. The mean filtering 

technique selects the current pixel to be processed as a template, which is made up of a 

number of pixels in its vicinity, and uses the template's mean value to replace the value of the 



original pixel. The technique lowers noise by blurring the image, notably the edges and 

features of the scene, yet being simple and computationally quick. It is very sensitive to noisy 

images, especially those with large isolated points, and even a very small number of points 

with large differences can lead to significant fluctuations in the average value. The mean filter 

performs poorly in terms of edge protection because it ignores the image's flat and 

homogenous areas [13].Gaussian filtering is effective at reducing noise that is introduced 

randomly at the picture input and typically targets Gaussian noise. It works by considering 

pixel points as a Gaussian distribution in respect to neighboring pixels and convolving the 

picture using a Gaussian kernel. The usual reason for performing Gaussian filtering is that real 

images vary slowly in space in terms of pixels, so that pixel changes in close proximity will not 

be significant, but two random points may form a large pixel difference. It is on this basis that 

Gaussian filtering reduces noise while preserving the signal. Unfortunately, this method 

becomes ineffective close to the edges, so Gaussian filtering destroys image edges. 

Non-linear filtering, such as median filters, bilateral filters (BF) [13], and non-local 

average filters (NLM) [14], rely on a logical link between the original picture and the template 

to produce the desired output. These filtering algorithms keep the image's edge areas while 

removing noise. The median filtering technique involves choosing a template for the current 

pixel to be processed, which consists of a number of pixels in its vicinity, sorting the pixels of 

the template from smallest to biggest, and replacing the original pixel's value with the 

template's median value. As a result, in homogenous regions, this median filtering approach 

performs well at denoising. However, it does poorly towards the periphery in terms of 

retention. Bilateral filtering constructs a weighted average based on each pixel and its domain, 

and the weighting calculation consists of two parts, where the first part is weighted in the 

same way as Gaussian filtering, and the second part is also part of Gaussian filtering weighting, 

but instead of weighting which is on basis of the spatial distance between the central pixel 

point and the other pixel points above, it is weighted based on the difference in luminance 

between the other pixels and the central pixel. As a result, this approach performs badly in 

terms of decreasing speckle noise since it is based on the Gaussian filtering concept. The NLM 

is a approach based on BF [15] that enhances performance. The similarity between pixel units 

is used by BF to apply weights. On the other side, the NLM filter is expanded to apply weights 

depending on the masks' similarity. While the previous ones averaged the local picture inside 

the neighborhood, NLM's noise reduction filtering procedure employs the information from 

the entire image. The main distinction between NLM and bilateral filtering is that bilateral 

filtering only calculates weights using the current and reference points, but NLM uses all 

values in the neighborhood. A sequence of actions on the picture block create the overall 

blurring of the output image. As a result, the NLM filter performs poorly in terms of 

diminishing speckle noise [16]. 

PDE approach is based on the notion of treating image processing as a process of solving 

partial differential equations. Using PDEs, the PDE approach turns noisy photos into PDEs, 

resulting in noise-free images [17]. Other noise reduction approaches include PDE-based 

filtering methods such as AD filters [18] and AWAD methods [19]. The gradient operator is 

employed in the AD filtering method to identify gradient fluctuations in the picture produced 

by noise and edge effects. Small gradient fluctuations produced by noise are removed by the 

closest neighbour weighted average approach, while big gradient variations induced by 



edges are kept [20]. This AD filter approach has shown to be effective in smoothing additive 

noise in photographs. However, on this account, the noise in the speckle images cannot be 

identified by the AD filter, it has poor speckle noise (multiplicative noise) reduction 

performance. The mask's size and orientation are modified on the basis of image's structure. 

The AWAD approach may regulate the window's size and orientation, resulting in effective 

edge protection [21].  

DWT approaches may examine the signal's localisation in terms of time and 

frequency[22]. Because of its useful qualities, DWT has been widely employed in different 

image processing disciplines since the 1990s and is progressively becoming one of the most 

researched approaches [23].The DWT method for speckle noise removal has the following 

steps. DWT [24] is used to do a multiscale decomposition of the picture first. Following that, 

wavelet functions are used to minimize unwanted wavelet coefficients [25]. Hard threshold 

[26], soft threshold [27], and universal threshold [28] are examples of traditional threshold 

approaches. Finally, the processed wavelet coefficients are synthesized into a noise-free 

image by inverse DWT [29]. The conventional DWT method can effectively remove the noises 

with larger particles, however those with smaller particles cannot be removed. The DWT 

method based on the thresholding method and wavelet function can lead to blurred edges 

of images, which  have affect on the final segmentation accuracy because traditional 

threshold method and wavelet function have great defects [30]. 

3. Materials and methods: 

3.1. Data 

The data used in this paper are from four full polarization SAR images of radarsat-2 and 

the corresponding expert interpretation results of the oil spill area. As shown below, the first 

and fourth photographs of an oil spill in Beihai, Europe, in June 2011 were interpreted as three 

substances (crude oil, oil emulsion, vegetable oil). The second and third photos were taken in 

May 2010 and August 2011 respectively.  

    

a a 1 b b 1 
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Fig. 1 SAR image and the result image of oil spill expert interpretation. (a-d) fully polarized 

SAR images, (a1-d1) the result images interpreted by oil spill experts corresponding to the 

SAR image 



3.2. Theoretical Background 

3.2.1. Logarithmic Transformation 

The model is worsened by speckle noise in SAR pictures, as shown in Equation (1)[31]. 

𝑃(𝑎, 𝑏) = 𝑈(𝑎, 𝑏) × 𝑄(𝑎, 𝑏) + 𝐶(𝑎, 𝑏)                   (1) 

Where 𝑃(𝑎, 𝑏) is the SAR picture's degraded image. The original picture is 𝑈(𝑎, 𝑏), 

speckle noise is 𝑄(𝑎, 𝑏), and additive noise is 𝐶(𝑎, 𝑏) [33]. Because additive noise has a 

smaller impact on SAR pictures, it is usually excluded, and Equation (2) is found.   

                              𝑃(𝑎, 𝑏) = 𝑈(𝑎, 𝑏) × 𝑄(𝑎, 𝑏)                        (2) 

It is pretty strenuous to distinguish actual picture from whole degraded image when a 

multiplicative noise model is used to represent speckle noise. In terms of the logarithmic 

transformation, the speckle noise becomes additive noise, as shown in equation (2)[32]:  

log𝑃(𝑎, 𝑏) = log𝑈(𝑎, 𝑏) + log𝑄(𝑎, 𝑏) = 𝑀(𝑎, 𝑏) + 𝑆(𝑎, 𝑏)           (3) 

 𝐹(𝑎, 𝑏) = 𝑀(𝑎, 𝑏) + 𝑆(𝑎, 𝑏)                        (4) 

The logarithms of 𝑃(𝑎, 𝑏) , 𝑈(𝑎, 𝑏) , and 𝑄(𝑎, 𝑏)  are 𝐹(𝑎, 𝑏) , 𝑀(𝑎, 𝑏) , and 𝑆(𝑎, 𝑏) , 

respectively ,and we try to eliminate noise in the wavelet domain. 

3.2.2. Discrete wavelet decomposition of SAR image 

The core principle of the DWT is explained as follows for the 2D picture. A SAR image is 

transformed into four sub-band images using one-level DWT (Fig 2b) which are consists of 

approximation sub-band picture and three high-frequency sub-band pictures. The results of 

the two-level wavelet decomposition [34] are shown in Fig 2c. The two-level DWT 

decomposes the LL1 sub-band picture to produce four sub-band images. The low-frequency 

coefficients are represented by the approximate sub-band image (LL2), while the high-

frequency coefficients are represented by detailed sub-band images. The lower frequency 

sub-band images contain detailed information about the image, which consists of texture 

and edge information. Whereas noise is contained in the sub-band images at high 

frequencies [35]. 

   

a b c 

 

Fig. 2 The two-dimensional image decomposition results under different discrete wavelet 

transform scales. (a) the preprocessed oil spill image, (b) the image under one-layer wavelet 

decomposition, (c) the image under two-layer wavelet decomposition 

3.2.3. Traditional threshold λ Estimation formula  

Visushrink threshold uses the same threshold in each sub-band image of wavelet. 

[36]This method is also called “unified threshold method”. In wavelet threshold denoising, 

because the amplitude change of noise coefficient is small and the number is huge, the 

wavelet coefficients larger than Visushrink threshold tend to zero after wavelet decomposition 



[37]. The estimation method is expressed as follows: 

𝜆 = 𝜎√2 log𝑁                              (5) 

Where, σ represents the noise standard deviation, N corresponds to the length of the 

signal after wavelet transform. Wavelet performs a multi-scale transform, and as  

decomposition scale increases,  amplitude of useful signal of the image will become larger 

and larger, and the number of image signals and noise signals in different wavelet layers will 

be different, and VisuShrink threshold uses a uniform threshold for wavelet coefficients at 

different scales. In this way, some useful signal coefficients in the image are easily filtered out, 

which affects the denoising effect[38]. 

3.2.4. Improved threshold λ Estimation formula  

For the shortages of VisuShrink threshold, this paper proposes a hierarchical adaptive 

threshold[39], as shown in the following equation: 

𝜆 = 𝜎√2 log𝑁 / log(1 + 𝑒
1−

1

𝑗)                     (6) 

Like the Visushrink threshold, σ Represents the standard deviation of noise images, N is 

the length of the signal after wavelet transform, j represents the decomposition scale, and 

when J is equal to 1, it is the Visushrink threshold. When wavelet decomposition, the image 

signal amplitude and noise amplitude change in opposite directions as the scale j increases, 

and the threshold λ becomes smaller accordingly. Compared with the VisuShrink threshold, 

the new threshold fully takes into account the relative changes of image signal and noise 

coefficients at each wavelet scale, and is more consistent with the distribution of speckle noise 

in each layer[40]. 

3.2.5. Traditional threshold function 

There are several threshold approaches [41-42]. The soft threshold and hard threshold 

wavelet functions are utilized wavelet functions. In SAR images, threshold approaches are 

used to eliminate speckle noise. When coefficients are less than these thresholds, both 

thresholds are set to zero, but there is a significant difference between them. The former 

suppresses coefficients greater than the threshold, whereas the latter keeps them 

constant[43]. 

3.2.5.1. Hard threshold function 

The hard threshold eliminates the coefficients below the noise variance-determined 

threshold 𝜆 [44]. The following is a description of the hard threshold: 

�̂�𝑗,𝑘 = {
𝑊𝑗,𝑘 , |𝑊𝑗,𝑘| ≥ 𝜆

0, |𝑊𝑗,𝑘| < 𝜆
                            (7) 

The wavelet coefficient is 𝑊𝑗,𝑘, and the threshold is 𝜆 . After applying a hard threshold, 

the wavelet coefficients are represented as 𝑊𝑗,𝑘. In noiseless pictures, the hard threshold is 

known to be discontinuous. because at the threshold value, the wavelet coefficients abruptly 

become 0 .The wavelet coefficients that do not surpass a specific threshold are canceled out 

in hard threshold approach, while the other wavelet coefficients remain unaffected. As a result, 

the despeckled image has artifacts due to the hard threshold[45]. 

3.2.5.2. Soft threshold function 

To circumvent the issues of hard threshold, soft threshold uses symbolic functions in its 

model[46]. As seen in the formula below: 



�̂�𝑗,𝑘 = {
𝑠𝑖𝑔𝑛(𝑊𝑗,𝑘)(|𝑊𝑗,𝑘 − 𝜆|), |𝑊𝑗,𝑘| ≥ 𝜆

                     0                    , |𝑊𝑗,𝑘| < 𝜆
                (8) 

The symbolic role of the 𝑠𝑖𝑔𝑛 is depicted here. The wavelet coefficients after scaling 

down the soft threshold are �̂�𝑗,𝑘. Wavelet coefficients are 0 in the soft threshold approach if 

they are below the threshold. The threshold reduces the scale of wavelet coefficients above 

it. As a result, gentle thresholding produces smooth, artifact-free output. Soft threshold 

typically has better preservation than hard threshold. Soft thresholding often preserves detail 

well at the cost of increased computing complexity. The image is blurred as a whole when 

using the soft threshold approach[47-48]. 

3.2.6. Improved threshold function 

In order to solve the shortcomings of hard and soft threshold, this paper puts forward 

the following four requirements for the newly constructed threshold function: 

(1) The threshold function should be continuous at the threshold to avoid additional 

oscillation of the denoised image or signal; 

(2) The threshold function should take F (x) = x as the asymptotic line and have a good 

approximation degree to avoid constant deviation like the soft threshold function; 

(3) The threshold function should have a relatively good smooth transition zone near the 

threshold, that is, there should be a relatively good smooth transition zone between the 

dividing point of noise and signal, so that the signal will be closer to the natural signal; 

(4) The threshold function should meet the differentiability in order to realize the 

adaptive learning of gradient algorithm. 

In order to meet the above four principles, this paper introduces the adjustment factor 

and constructs the new threshold function as follows: 

�̂�𝑗,𝑘 =

{
 

 𝑊𝑗,𝑘 +
𝜆𝑘+1𝑠𝑖𝑔𝑛(𝑊𝑗,𝑘)

(𝑚+1)|𝑊𝑗,𝑘|
𝑘 −

𝑠𝑖𝑔𝑛(𝑊𝑗,𝑘)𝑒
𝑚𝜆

𝑒
𝑚|𝑊𝑗,𝑘|

𝜆 , |𝑊𝑗,𝑘| ≥ 𝜆

𝑠𝑖𝑔𝑛(𝑊𝑗,𝑘)|𝑊𝑗,𝑘|
(𝑚𝜆+1)(𝑚+1)−𝑘

(𝑚+1)𝜆(𝑚𝜆+1)(𝑚+1)−(𝑘+1)
, |𝑊𝑗,𝑘| ≤ 𝜆

         (9) 

Where m and K are variable parameters with values between 0 and 1, and K is a positive 

integer. The threshold function which has been improved is adjustable and continuous in 

threshold point λ . The adjustment factors in the enhanced threshold function are the 

parameters m and K. The function has a hard threshold when k≥|𝜆| And m→0, and when 

0<K<|𝜆 | And m →1, the function is endlessly near to the soft threshold. At|𝑊𝑗,𝑘≤𝜆 | 

Smoothness in, m controls the change of wavelet coefficients, and K controls the threshold 

function. This research proposes a novel threshold function that combines the benefits of soft 

and hard thresholds. This paper's enhanced threshold function achieves a smooth transition 

of the wavelet threshold curve while avoiding the pseudo Gibbs phenomena. 

3.3. Method 

3.3.1. Accurate extraction of oil spill area 



 
Fig. 3 Extraction process of oil spill area 

The following is the actual extraction procedure for the oil spill region. 

Step 1: Perform a logarithmic transformation on the SAR picture. 

Step 2: Using the revised threshold estimation algorithm, perform 3-layer 2D discrete wavelet 

decomposition on the pre-processed SAR picture and calculate the threshold value of each 

sub-band layer. 

Step 3: The improved threshold function is used to process the wavelet coefficients of each 

layer, and the processed wavelet coefficients are synthesized into the denoised SAR picture 

using the inverse 2D discrete wavelet transform. 

Step 4: Using the Otsu technique, threshold segment the denoised picture. 

This method's flow chart is shown in Figure 3. 

4.Verification  

4.1. Continuity analysis 

lim
𝑥⟶𝜆−

𝑓(𝑥) =
𝜆

𝑚+1
  

lim
𝑥⟶𝜆+

𝑓(𝑥) = 𝜆 +
𝜆

𝑚+1
− 𝜆 =

𝜆

𝑚+1
  

That is, f (x) is in 𝑥=𝜆 Continuous at. 

lim
𝑥⟶−𝜆−

𝑓(𝑥) = 𝜆 −
𝜆

𝑚+1
− 𝜆 =

−𝜆

𝑚+1
  

lim
𝑥⟶−𝜆+

𝑓(𝑥) =
−𝜆

𝑚+1
  

That is, f (x) is in 𝑥=−𝜆 Continuous at. 

4.2. Progressive analysis 

lim
𝑥⟶+∞

𝑓(𝑥)

𝑥
= lim

𝑥⟶+∞
(1 +

𝜆𝑘+1

(𝑚+1)|𝑥|𝑘+1
−

𝑒𝑚𝜆

𝑒𝑚|𝑥|𝑥
𝜆) = 1  

lim
𝑥⟶+∞

𝑓(𝑥)

𝑥
= lim

𝑥⟶+∞
(1 −

𝜆𝑘+1

(𝑚+1)|𝑥|𝑘+1
+

𝑒𝑚𝜆

𝑒𝑚|𝑥|𝑥
𝜆) = 1  

4.3. Differentiability analysis 

Because the function satisfies the differentiability, it is easy to realize complex 

mathematical calculation, and the number of parameters can be reduced by making the 

function satisfy the differentiability, which is convenient for subsequent simulation calculation. 

To satisfy the threshold function in the threshold variable 𝜆 It is differentiable at 𝑥=𝜆 It has 

continuity and differentiability at the threshold. Since the function has been continuous at the 



threshold, to realize differentiability at the threshold, you need to meet: 

𝜕𝑓(𝑥)

𝜕𝜆
|𝑥⟶𝜆− =

𝜕𝑓(𝑥)

𝜕𝜆
|𝑥⟶𝜆+  

Because: 

𝜕𝑓(𝑥)

𝜕𝜆
|𝑥⟶𝜆− =

𝑘+1

𝑚+1
− (mλ + 1)  

𝜕𝑓(𝑥)

𝜕𝜆
|𝑥⟶𝜆+ =

𝑘+1

𝑚+1
− (mλ + 1)  

So differentiability can be proved. 

4.4. Threshold function image comparison 

In order to facilitate observation and comparison, the threshold of each function in the 

figure is set to 5, the abscissa is 𝑊𝑗,𝑘  and the ordinate is �̂�𝑗,𝑘. The function image of the new 

threshold function is a cluster function image in theory. In order to more clearly see the new 

threshold function image, the values of adjusting factor m and k in the above figure 4 are all 

1.  

 

Fig. 4 Three threshold functions and images in the same coordinate system. 

The hard threshold function is represented by the black solid line, the soft threshold 

function by the blue solid line, and the new threshold function by the red solid line, as 

illustrated in the diagram above. As shown in the diagram below, the threshold function 

suggested in this study not only has the benefit of being continuous at the threshold, but it 

also has the advantage of being more progressive than soft threshold function. The threshold 

function in this research features a gradual transition zone between thresholds, which is more 

similar to real signal characteristics. 

5.Results 

This section is mainly divided into three parts to show these results. The first part shows  

denoising effects of different denoising algorithms and improved wavelet threshold transform. 

The second part shows the evaluation index of denoised image. The third part is to accurately 

judge the denoised image and the oil spill image interpreted by experts pixel by pixel, and 

compare the segmentation accuracy. 

5.1. De-noised results 
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Figure 5. (a)SAR images, (b) Lee filter denoising images, (c)Frost filter denoising images, (d) 

NLM filter denoising images, (e) AWAD filter denoising images, (f) Hard threshold function 

denoising images, (g) Soft threshold function denoising images, (h) New threshold function 

denoising images. 

5.2. Evaluation Metrics  

MSE and PSNR are objective measuring tools for evaluating picture quality, with the 

following definition:  

 𝑃𝑆𝑁𝑅 = 20 log10(
255

√𝑀𝑆𝐸
)                     (10) 

𝑀𝑆𝐸 =
1

𝑀𝑁
∑ ∑ {𝑌(𝑥, 𝑦) − 𝑍(𝑥, 𝑦)}2𝑁−1

𝑦=0
𝑀−1
𝑥=0             (11) 

The number of pixels in the vertical and horizontal directions of the picture are M and N, 

respectively. 𝑌(𝑥, 𝑦)  is the pixel value at the original image's position, and 𝑍(𝑥, 𝑦) is the 

pixel value at the filtered image's coordinates. As the picture approaches the original image 

Y, the MSE of the filtered image Z(x, y) decreases. The higher the PSNR number, the greater 

the noise reduction performance. SSIM is a similarity index that compares original picture 

𝑌(𝑥, 𝑦) with filtered image 𝑍(𝑥, 𝑦). The following is SSIM: 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+𝑐1)(2𝑐𝑜𝑣𝑥𝑦+𝑐2)

(𝜇𝑥
2+𝜇𝑦

2+𝑐1)(𝜎𝑥
2+𝜎𝑦

2+𝑐2)
            （12） 

The mean values of 𝑥 and 𝑦 are represented by 𝜇𝑥 and 𝜇𝑦 respectively. The variance 

of 𝑥 and 𝑦 is represented by the variables 𝜎𝑥
2 and 𝜎𝑦

2. The covariance of 𝑥 and 𝑦 is 

𝑐𝑜𝑣𝑥𝑦. The variables 𝑐1 and 𝑐2 are utilised to stabilise the division that might arise when the 

denominator is weak[49-50].  

Table1. MSE for SAR image 

Noise variance Lee Frost AWAD NLM Hard threshold Soft threshold Proposed 

0.001 21.78 21.21 19.37 17.30 15.63 16.72 12.43 

0.002 43.13 40.84 21.53 19.44 17.53 18.77 13.19 

0.003 63.46 60.27 43.25 21.70 19.02 20.76 15.06 

0.004 84.88 78.30 65.25 42.77 37.22 39.72 16.65 

0.005 106.09 96.33 86.86 64.61 52.56 56.85 18.30 

0.006 128.24 113.99 107.32 85.10 68.21 72.43 33.32 

0.007 147.62 130.50 130.37 104.58 83.10 88.73 47.27 

0.008 169.32 147.72 150.37 124.14 97.35 106.36 61.13 



0.009 189.25 163.39 172.14 143.51 111.77 120.95 73.72 

0.01 219.20 181.19 194.38 164.04 126.24 135.86 87.09 

 
Fig. 6 Plot of MSE versus noise variance for SAR image 

Table2.PSNR values for SAR image 

Noise variance Lee Frost AWAD NLM Hard threshold Soft threshold Proposed 

0.001 34.78 34.93 35.29 35.81 36.22 35.93 37.22 

0.002 31.82 32.06 34.84 35.32 35.73 35.43 36.96 

0.003 30.14 30.40 31.80 34.80 35.37 34.99 36.39 

0.004 28.88 29.23 30.02 31.85 32.46 32.18 35.95 

0.005 27.91 28.33 28.78 30.08 30.96 30.62 35.54 

0.006 27.08 27.60 27.86 28.87 29.83 29.57 32.94 

0.007 26.47 27.01 27.01 27.97 28.97 28.68 31.42 

0.008 25.86 26.47 26.39 27.23 28.28 27.90 30.30 

0.009 25.39 26.03 25.81 26.60 27.68 27.34 29.49 

0.01 24.92 25.58 25.28 26.02 27.15 26.83 28.77 

 
Fig. 7 Plot of PSNR versus noise variance for SAR image 

Table3. SSIM for SAR image 

Noise variance Lee Frost AWAD NLM Hard threshold Soft threshold Proposed 



0.001 0.770 0.675 0.798 0.841 0.896 0.873 0.950 

0.002 0.690 0.624 0.748 0.836 0.782 0.783 0.931 

0.003 0.654 0.576 0.725 0.833 0.719 0.762 0.904 

0.004 0.637 0.532 0.714 0.831 0.678 0.754 0.895 

0.005 0.629 0.493 0.707 0.829 0.651 0.750 0.887 

0.006 0.624 0.457 0.703 0.828 0.632 0.748 0.882 

0.007 0.621 0.425 0.700 0.826 0.619 0.747 0.877 

0.008 0.619 0.396 0.698 0.824 0.609 0.746 0.875 

0.009 0.617 0.371 0.696 0.821 0.603 0.745 0.874 

0.01 0.616 0.349 0.695 0.819 0.598 0.744 0.873 

 
Fig. 8 Plot of SSIM versus noise variance for SAR image 

In terms of MSE, PSNR, and SSIM, Figs. 6-8 compare the new approach to the previous 

technique. The suggested approach outperforms the present technique in terms of low and 

high noise, as shown in the figures. There is a significant reduction in MSE with different noise 

variances, and the PSNR and SSIM are improved accordingly. 

5.3. Comparison of segmentation results 
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Fig. 9  (a)Interpretation result images of oil spill expert, (b) Lee filter denoising segmentation 



images, (c)Frost filter denoising segmentation images, (d) AWAD filter denoising 

segmentation images, (e) NLM filter denoising segmentation images, (f) Hard threshold 

function denoising segmentation images, (g) Soft threshold function denoising segmentation 

images, (h) New threshold function denoising segmentation images. 

In this paper, Otsu algorithm is used to segment the image denoised by hard threshold 

function, soft threshold function and new threshold function respectively, and accurately 

judge the result image interpreted by oil spill experts pixel by pixel to obtain the segmentation 

accuracy. Through comparison, it can be found that the segmentation accuracy of images 

denoised by improved wavelet threshold transform is significantly higher than that of images 

denoised by traditional wavelet threshold transform. Therefore, it is reasonable to believe that 

the wavelet threshold transform has a great application prospect in SAR image oil spill 

detection. The division accuracy is shown in the following table: 

Table 4. Accuracy results of each method in the proposed algorithm for each standard image 

 Lee Frost AWAD NLM Hard threshold Soft threshold Proposed 

Image 1 70.5% 65.4% 69.3% 82.3% 85.6% 87.2% 91.3% 

Image 2 71.1% 77.4% 75.8% 85.6% 86.4% 88.4% 94.4% 

Image 3 70.3% 76.3% 73.3% 83.4% 85.7% 86.3% 92.4% 

Image 4 70.7% 79.8% 76.5% 82.1% 85.1% 86.7%   93.5% 

 

6.Discussion and Conclusions 

This study uses the improved wavelet threshold transform and Otsu segmentation 

algorithm to detect oil spill in SAR image. The traditional wavelet threshold transform has a 

good effect on removing the noise with large particles in SAR image, while the noise with 

small particles is difficult to remove, and the edge details of the image can not be well 

preserved, resulting in the blurring of the image edge after denoising, which affects the 

accuracy of segmentation. In view of the above research problems, this paper proposes a 

layered adaptive threshold and a new threshold function. The denoised image outperforms 

the standard wavelet threshold transform in terms of mean square error and peak signal-to-

noise ratio, as demonstrated by testing on four full polarization SAR oil spill images, and the 

quality of the denoised image is guaranteed. The segmentation accuracy of the picture 

denoised by the enhanced wavelet threshold transform is much greater than that of the 

previous approach, according to the results of the image segmentation accuracy evaluation. 

For the remediation of maritime environmental contamination, accurate and prompt 

detection of oil spills is critical. Because the smooth surface and sea surface of the oil leaking 

location may produce variable performance of SAR image at sea, the most efficient technique 

to monitor offshore oil leakage is to utilize SAR image. The picture of the oil spill area, on the 

other hand, is comparable to that of similar oil spill areas, which is another essential aspect 

determining the accuracy of the oil spill area. Although the oil spill detection approach 

suggested in this research enhances segmentation accuracy by combining enhanced wavelet 

threshold transform and Otsu segmentation algorithm, it can only be used to extract oil spill 

dark spots and cannot determine the kind of oil film. Therefore, in the future research, we can 

continue to dig deeper and further combine convolutional neural network to classify oil film. 
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